用户名: 密码: 验证码:
不同工艺生态浮床技术对污染水体的净化效果、机制及示范研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生态浮床作为一种有效的水体原位修复技术,具有无需占用土地,无二次污染,可以直接从水体中去除污染物并且造价低廉、运行管理相对容易等优点,已受到人们的广泛关注。目前,在国内外已开发出多种工艺的生态浮床,应用到湖泊、水库等静态污染水体和河流等动态污染水体的生态修复中,均有较好的净化效果,但对于不同工艺的浮床能适应的浓度范围,以及不同污染物构成的水体所适合的浮床工艺均不清晰,将不同工艺的净化效率进行系统比较的研究也鲜有报道。
     为此,本文开展了不同工艺生态浮床的研究,首先研究了传统生态浮床在不同污水浓度下不同植物对污染物的净化效果,然后在此基础上设计构建了复合式生态浮床和移动式湿地浮床,并对其净化效果进行系统研究,进而对不同工艺浮床的净化效率进行比较,最后从植物吸收、根系泌氧和微生物角度对净化机理进行初步的探讨。通过本研究得到以下结论:
     1、传统植物浮床技术对污染水体的净化效率
     本试验根据生态学原理及低成本的要求,选择美人蕉、风车草、黄菖蒲、香根草、再力花、象草等湿地植物,构建植物浮床,对不同浓度污水的净化效果进行研究,结果显示:
     选择的湿地植物均能够在较高有机物和氮磷浓度废水中生长,6种植物浮床对CODCr、TP、TN、NH4+-N均表现出较高的去除负荷,不同植物浮床对CODcr均有较好的去除效果(p>0.05);再力花、美人蕉、风车草、黄菖蒲浮床对TP的去除负荷显著高于象草和香根草浮床(p<0.05);对TN、NH4+-N去除效率以美人蕉、黄菖蒲、再力花浮床最好(p<0.05)。
     2、复合式生态浮床技术对污染水体的净化效率
     采用美人蕉、风车草两种湿地植物,弹性填料、组合填料两种填料类型,通过不同植物+不同填料两两组合,构建4种类型复合式生态浮床,并以不加植物的2种填料浮床作为对照,开展对不同浓度污水处理效果研究,结果显示:
     6种处理方式对CODCr均有较好的去除效果,且不同处理工艺间无显著差异(p>0.05),表明在CODCr的降解中,植物和微生物同时发挥作用,且微生物的去除作用更为明显;6种浮床对不同浓度污水TP均有较好的处理效果,且4种有植物的复合式生态浮床对TP的去除负荷均显著高于无植物的填料浮床(p<0.05),说明浮床对于磷的去除,依赖于植物和微生物的共同作用,且植物吸收发挥着重要作用;6种处理方式对不同浓度污水中TN、NH4+-N也有好的处理效率,与TP趋势相同,也表现出4种复合式生态浮床去除负荷高于无植物填料组(p<0.05)。
     3、移动式湿地浮床技术对污染河水的净化效率
     开展珠江三角洲内河河道移动式湿地浮床对污染河水示范工程研究,通过为期一年的采样监测,结果显示:
     美人蕉、风车草、黄菖蒲、再立花、梭鱼草5种植物构建的移动式湿地浮床在污染的水体中均能正常运行,植物成活率高达95%以上,且全年保持较高的生长速率;移动式湿地浮床自运行以来,对CODCr的去除负荷均维持在较高的范围,且示范区CODCr的浓度较对照区有显著的下降(p<0.05),说明移动式湿地植物和填料上的微生物均在其中发挥了重要作用;浮床运行期间,示范区TP、TN、NH4+-N的去除也保持着较好的效果,与对照区相比呈现出显著差异(p<0.05),同样表明除了浮床植物的吸收、吸附作用外,填料微生物在此也有重大的作用。
     4、不同工艺生态浮床的净化效果比较
     对不同工艺生态浮床净化效果进行比较,结果表明,三种不同类型生态浮床对CODcr均有很好的去除效果,其中复合式生态浮床和移动式湿地浮床的净化效果优于于传统植物浮床(p<0.05);对于TP、TN、NH4+-N等营养物的处理,有植物浮床的净化效果显著大于无植物填料(p<0.01)。
     5、生态浮床的净化机制
     两种浮床植物(美人蕉、风车草)的根系泌氧量与TN的去除率呈极显著正相关(p<0.01),与NH4+-N呈显著正相关(p<0.05),植物的孔隙度与NH4+-N、CODcr的去除率呈显著正相关(p<0.05);浮床系统中氨化细菌、硝化细菌、亚硝化细菌、反硝化细菌的丰度与各污染物的去除密切相关,表现为氨化细菌、硝化细菌的丰度与TN、NH4+-N去除负荷分别呈显著正相关(p<0.05)及极显著正相关(p<0.01),硝化细菌的数量与CODcr的去除负荷呈显著正相关(p<0.05);亚硝化细菌的数量与TN的去除负荷相关性极显著(p<0.01),与NH4+-N、CODCr去除负荷呈显著正相关(p<0.05)。
     综上结果表明,三种不同工艺生态浮床对CODCr、TP、TN、NH4+-N等污染物的去除效果,以复合式生态浮床效果最好,其次是移动式湿地浮床和传统植物生态浮床。
As an effective in-situ water remediation technology, Ecological Floating Bed System(EFBS) possessed many advantages:(1) remove pollutants directly from water body; (2) be able to dispense with land; (3) low operating cost and convenient maintenance management. So EFBS technology have aroused wide concern. Current research showed many kinds of EFBS with good decontamination performance had been developed and applied in the ecological remediation of lentic (lake, reservoir, etc.) and lotic (river) polluted water. But it is still not clear that what concentration range these EFBS could work effectively? Which kind EFBS was best for certain kind of contaminant? And there was rare report on systematic comparison of decontamination efficiency of different EFBS.
     Therefore, different process EFBS was studied in our paper. Firstly, the decontamination efficiency of traditional EFBS to different concentration of pollutant was studied, and then, Combined Ecological Floating Bed System (CEFBS) and Movable Wetland Floating Bed System (MWFBS) was designed and constructed. their decontamination efficiency was evaluated and compared. Finally, the decontamination mechanism was discussed through Phytoaccumulation, radial oxygen loss (ROL) and microorganism. Our results were as follows:
     1、The decontamination efficiency of traditional EFBS
     On the basis of ecologicl principle and low cost,6 kinds of wetland plants (Canna generalis, Cyperus alternifolius, Acorus calamus, vetiveria zizanioides, Thalia dealbata and Pennisetum purpureum) were chose to constructed the EFBS in order to study the decontamination performance in different concentration sewage. For one EFBS, only one kind of plant was planted. Results showed that:
     All the 6 wetland plants could maintain their regularly growth in high concentration of N,P and organic matter. They all had high remove loading to CODCr、TP、TN and NH4+-N. A good decontamination performance to CODcr was obtained for all EFBS (p>0.05); The EFBS with T. dealbata, C. generalis, C. alternifolius and A. calamus all had a higher remove loading than the EFBS with P. purpureum and V. zizanioides (p<0.05); EFBS with C. generalis, A. calamus and T. dealbata showed the best decontamination performance to TN and NH4+-N (p<0.05).
     2. The decontamination efficiency of CEFBS
     Four kinds of CEFBS were constructed by the pairwise combination of two kinds of plants (C. generalis and C. alternifolius) and two kinds of paddings (elastic packing and combination packing). Compared with the EFBS with each paddings only, to study the decontamination performance in different concentration sewage. Results showed that:
     All the 6 EFBS had good decontamination performance to CODCr, and there was no significant difference among them (p>0.05), which showed that plant and microorganism worked simultaneously in the degrdation of CODCr. And microorganism played a more important role;
     All the 6 EFBS had good decontamination performance to TP in different concentration sewage, and the EFBS with plant showed notably high decontamination effiency compared to the EFBS with paddings only (p<0.05), which showed that the remove for EFBS to P was depend on the cooperation of plant and microorganism, and plant play a more important role;
     The 6 EFBS also had good decontamination performance to TN and NH4+-N, which showed the same trend as TP:The EFBS with plant showed notably high decontamination effiency compared to the EFBS with paddings only (p<0.05),
     3、The decontamination efficiency of MEFBS
     One year sampling and monitoring work were conducted to study the MEFBS in the river channal of inland river in the Pearl River Delta. Results showed that:
     The MEFBS with C. generalis, C. alternifolius, A. calamus, T. dealbata and P. purpureum could worked regularly in the polluted water, the survival rate of plant reached up to 95% and a high growth rate was maintained for the whole year. High remove loading to CODcr was maintained since the MEFBS worked, and a notably decrease to CODCr was obtained in the demonstration plot compared to the check plot (p<0.05). This showed that the microorganism in both the plant and paddings played a crucial role; During the EFBS working period, the remove loading to TP, TN and NH4+-N was high in check plot, showed a significant difference compared to demonstration plot. This also showed that besides the absorption of plant, the microorganism in paddings also played a important role.
     4、The performance comparison of different EFBS
     The decontamination performance were compared among different EFBS, results showed that:All the three EFBS showed good decontamination performance to CODcr, of which the decontamination performance of CEFBS and MEFBS were better than EFBS(p< 0.05); To remove TP, TN and NH4+-N, the decontamination performance of EFBS with plant were notably higher than EFBS with paddings only (p<0.01).
     5、The decontamination mechanism of EFBS
     There was a significantly positive correlation between the ROL and TN removing load of the two kinds of floating bed plant (C. generalis, C. alternifolius) (p<0.01) and there was also a positive correlation between ROL and NH4+-N (p<0.05). The plant porosity was positively correlated to the removing load of NH4+-N and CODcr (p<0.05).
     The abundance of ammonifying bacteria, nitrifying bacteria and nitrosification bacteria played a important role for the contaminant remove which was proved by their correlation. The abundance of ammonifying bacteria and nitrifying bacteria had a positive correlation (p< 0.05) and a significantly positive correlation (p<0.01) to the removing load of TN and NH4+-N respectively. The abundance of nitrifying bacteria had a significantly positive correlation to the removing load of CODCr (p<0.05); There was a significant correlation between the abundance of nitrosification bacteria and the removing load of TN (p<0.01), and there was also a correlation to the removing load of NH4+-N and CODCr(p<0.05).
     In sum, the CEFBS showed the best decontamination performance among the three kinds of EFBS, followed by MEFBS and traditional EFBS.
引文
1. 邴旭文,陈家长.浮床无土栽培植物控制池塘富营养化水质[J].湛江海洋大学学报,2001,2(3):29-33
    2. 陈荷生,宋祥甫,邹国燕.利用生态浮床技术治理污染水体[J].中国水利.2005,(15),8:50-53
    3. 许光辉,郑洪元.农业微生物学实验技术[M].北京农业出版社,1986
    4. 中国科学院南京土壤研究所微生物室.土壤微生物分析方法手册[M].农业出版社,1985
    5. 操家顺,朱伟,严以新,等.浮床植物及生物膜生物-生态技术净化受污染河水装置[P].CN200520068256.2.河海大学.2006-03-08
    6. 成水平,吴振斌,况琪军.人工湿地植物研究[J].湖泊科学,2004,14(2):179-184
    7. 成水平.人工湿地废水处理系统的生物学基础研究进展[J].湖泊科学,1996,8(3):268-273
    8. 成水平,夏宜(王争).香蒲、灯心草人工湿地的研究-Ⅱ.净化污水的空间[J].湖泊科学,1998,10(1):62-66
    9. 陈荷生,宋祥甫,邹国燕.利用生态浮床技术治理污染水体[J].中国水利,2005(5):50-53
    10.程洪,黄伟,莫斌,等.弹性填料处理河道污水实验研究[J].2006,20(2):174-177
    11.戴媛媛,杨新萍,周立祥.芦苇根际微环境对潜流人工湿地氮与COD去除性能的影响[J].环境科学,2008,29(12):3387-3392
    12.邓泓,叶志鸿,黄铭洪.湿地植物根系泌氧的特征[J].华东师范大学学报(自然科学版),2007,6:69-76
    13.丁疆华,舒强.人工湿地在处理污水中的应用[J].农业环境保护,2000,19(5):320-321
    14.丁则平.日本的湿地净化技术-人工浮岛(AFI)[J].观念,2005,8
    15.董哲仁,刘蓓,曾向辉.受污染水体的生物-生态修复技术[J].水利水电技术,2002,33(2):1-4
    16.高阳俊,赵振,孙从军.组合生态浮床在滇池入湖河流治理中的应用[J].中国给水排水,2009,25(15):46-48.
    17.郭韦,王昱,王昊,等.城市水污染现状和国内外水生态修复方法研究现状[J].水科学与工程技术,2010,(2):57-59
    18.郭蔚华,张智,何冰,等.高等水生植物修复双龙湖水体叶绿素a变化试验研究[J].重庆环境科学,2002,24(3):45-48
    19.郭蔚华,张智,林艳,等.风车草净化作用研究[C].中国水环境污染控制与生态修复技术高级研讨会论文集(上),2006,674-679
    20.何成达.循环水流-浮床种植法处理生活污水的试验研究[J].环境科学与技术,2004,27(6):12-13
    21.贺锋,吴振斌,陶普,等.复合垂直流人工湿地污水处理系统硝化与反硝化作用[J].环境科 学,2005,26(1):47-50
    22.胡洪营,何苗,朱铭捷,等.污染河流水质净化与生态修复技术及其集成化策略[J].给水排水,2005,31(4):1-9
    23.胡细全,李兆华,王春秀,等.复合生态浮岛处理重度富营养化水体的静态试验研究[J].湖北大学学报:自然科学版.2008,30(3):309-312
    24.金相灿,王圣瑞,赵海超,等.磷形态对在水-沉水植物-底质中分配的影响[J].生态环境,2005,14(5):631-635
    25.金承翔,孙建军,黄民生,等.组合生物技术对黑臭水体净化修复研究[J].净水技术,2005,24(4):1-4
    26.井艳文,胡秀琳,许志兰,等.利用生物浮床技术进行水体修复研究示范[J].北京水利,2003,(6):20-22
    27.蒋跃平,葛滢,岳春雷,等.人工湿地植物对观赏水中氮磷去除的贡献[J].生态学报,2004,24(8):1718-1723
    28.李大成.立体式生态浮床对水源地水质改善效果的研究[D].东南大学硕士学位论文,2006
    29.李宏文,梁娜,CHIEN P K.水生植物的生态敏感度研究[J].生态学杂志,2001,21(2):20-22
    30.李科得,胡正嘉.芦苇床系统净化污水的机理[J].中国环境科,1995,15(2):140-144
    31.李莉,秦大庸,张占庞,等.基于循环经济的水资源可持续发展新模式[J].水利科技与经济,2006,12(6):359-363
    32.李先宁,宋海亮,朱光灿,等.组合型浮床生态系统的构建及其改善湖泊水源地水质的效果[J].湖泊科学,2007,19(004):367-372
    33.李英杰,金相灿,年跃刚,等.人工浮岛技术及其应用[J].水处理技术,2007,33(10):49-51
    34.李欲如,陈娟.浮床植物对不同污染程度水体中氮、磷的去除效果[J].水资源保护,2011,27(1):58-62
    35.李林锋,年跃刚,蒋高明.植物吸收在人工湿地脱氮除磷中的贡献[J].环境科学研究,2009,22(3):337-342
    36.李止正,黄国宏,倪晋山.太湖水面无土栽培高等陆生植物研究[J].植物学报,1991,33(8):614-620
    37.李海英,李文朝,冯慕华,等.微曝气生态浮床水芹吸收N、P的特性及其对系统去除N、P贡献的研究[J].农业环境科学学报2009,28(9):1908-1913
    38.凌云,丁浩,徐亚同.芦苇人工湿地根际微生物效应研究[J].农业系统科学与综合研究,2008,24(2):214-216
    39.刘玉生,唐宗武,韩梅,等.滇池富营养化生态动力学模型及其应用[J].环境科学研究,1991,4(6):2-8
    40.卢进登,陈红兵,赵丽娅,等.人工浮岛7种植物在富营养化水体中的生长特性研究[J].环境污染治 理技术与设备,2006,7(7):58-61
    41.罗固源,卜发平.生态浮床的去污效果与机理研究[J].四川大学学报(工程科学版),2009,41(6):108-113
    42.罗固源,肖华,韩金奎,等.人工浮床处理重污染河水的效能分析[J].重庆大学学报(自然科学版),2008,31(8):932-936
    43.罗固源,郑剑锋,许晓毅,等.4种浮床栽培植物生长特性及吸收氮磷能力的比较[J].环境科学学报,2009,29(2):285-290
    44.雷泽湘,徐德兰,谢贻发,等.太湖水生植物氮磷与湖水和沉积物氮磷含量的关系[J].植物生态学报,2008,32(2):402-407
    45.马立珊,骆永明,吴龙华,等.浮床香根草对富营养化水体氮磷去除动态及效率的初步研究[J].土壤,2000,(2):99-101
    46.梅秀芹.水稻的渗氧在其对重金属(砷、铅、镉)的吸收和耐性中的作用及机理研究[D].中山大学博士学位论文,2009
    47.梅菲,吴永红.富营养化湖泊水质的改善性探讨[J].科技进步与对策,2003.12(2):179-181
    48.钱正英,张光斗.中国可持续发展水资源战略研究[R].北京:水利水电出版社,2001
    49.任照阳,邓春光.生态浮床技术应用研究进展[J].农业环境科学学报,2007(S1):261-263
    50.张锡辉.水环境修复工程学原理及应用[M].北京:化学工业出版社,2002
    51.宋海亮,吕锡武.利用植物控制水体富营养化的研究与实践[J].安全与环境工程,2004,11(3):35-38
    52.宋祥甫,应火冬,朱敏,等.自然水域无土栽培水稻的研究[J].中国农业科学,1991,24(4):8-13
    53.宋祥甫,邹国燕,吴伟明,等.浮床水稻对富营养化水体中氮、磷的的去除效果及规律研究[J].环境科学学报.1998,(05):489-494
    54.田伟君,郝芳华,翟金波.弹性填料净化受污染入湖河流的现场试验研究[J].环境科学,2008,(5):1308-1312
    55.屠清瑛,章永泰,杨贤智.北京什刹海生态修复试验工程[J].湖泊科学,2004,16(1):61-66
    56.王国祥,淮培民,张圣照.人工复合生态系统对太湖局部水域水质的净化作用[J].中国环境科学,1998,6(2):15-19
    57.王鹏,曹薇,董仁杰.人工湿地植物研究现状[C].第十届中国科协年会论文集(二).2008
    58.魏复盛.水和废水监测分析方法:第四版[M].北京:中国环境科学出版社,2002
    59.魏树和,周启星.有机污染环境植物修复技术[J].生态学杂志,2006,25(6):716-721
    60.吴爱平,吴世凯,倪乐意.长江中游浅水湖泊水生植物氮磷含量与水柱营养的关系[J].水生物学报,2005,29(4):406-412
    61.吴海明,张建,李伟江,等.人工湿地植物泌氧与污染物降解耗氧关系研究[J].环境工程学报,2010,4,(9):1973-1977
    62.吴林林,黄民生,邓泓.城市污染河流生物-生态治理研究与应用进展[J].净水技术,2006,25,(06):11-15
    63.肖羽堂,赵美姿,高立杰.富氧生物膜法修复微污染水源的机理研究[J].长江流域资源与环境,2005,14(6):796-800
    64.夏汉平.人工湿地处理污水的机理与效率[J].生态学杂志,2002,21(4):51-59
    65.夏宏生,蔡明,向欣.人工湿地净化作用与微生物相关性研究[J].广东水利水电,2008,(3):4-8
    66.徐伟锋,孙力平.DO对同步硝化反硝化影响及动力学[J].城市环境与城市生态,2003,16(1):8-10
    67.由文辉,刘淑媛,钱晓燕.水生经济植物净化受污染水体研究[J].华东师范大学学报(自然科学版),2000,(1):99-102
    68.殷峻,闻岳,周琪.人工湿地中微生物生态的研究进展[J].环境科学与技术,2007,30(1):108-111
    69.袁东海,高士祥,任全进,等.几种湿地植物净化生活污水COD、总氮效果比较[J].应用生态学报,2004,15(12):2337-2341
    70.张洪刚,洪剑明.人工湿地中植物的作用[J].湿地科学,2006,4(2):146-154
    71.张鸿,陈光荣,吴振斌,等.两种人工湿地中氮、磷净化率与细菌分布关系的初步研究[J].华中师范大学学报,1999,33(4):575-578
    72.张甲耀,夏盛林,邱克明,等.潜流型人工湿地污水处理系统氮去除及氮转化细菌的研究[J].环境科学学报,1999,19(3):233-237
    73.张明,曹梅英.浅谈城市河流整治与生态环境保护[J].中国水土保持,2002,(9):33-341
    74.张小东,陈季华,奚旦立.生态填料在微污染水体处理中的应用[J].水处理技术,2008,34(1):56-58
    75.张毅敏,高月香,吴小敏,等.复合立体生物浮床技术对微污染水体氮磷的去除效果[J].生态与农村环境学报,2010(z1):24-29
    76.张增胜,徐功娣.强化生态浮床中纤维填料生物膜特性的动态试验研究[J].水处理技术,2009,35(9):37-40
    77.张志勇,王建国,杨林章,等.植物吸收对模拟污水净化系统去除氮、磷贡献的研究[J].土壤,2008,40(3):412-419
    78.张志勇,冯明雷,杨林章.浮床植物净化生活污水中N、P的效果及N2O的排放[J].生态学报,2007,27(10):4333-4341
    79.张钟祥,钱易.废水生物处理新技术[M].北京:清华大学出版社.2004
    80.张勇.城市黑臭河道生境改善与生态重建实验研究:技术耦合效应及机制[D].华东师范大学博士 学位论文,2007.
    81.郑剑锋,罗固源,许晓毅,等.低温下生态浮床净化重污染河水的研究[J].中国给水排水,2008,24(21):17-20
    82.中国国家环保总局.中国环境状况公报[R].2009
    83.中国科学院上海植物生理研究所.现代植物生理学实验指南[M].上海:上海科学出版社,1999
    84.钟成华,李杰,邓春光.人工湿地废水处理中氮、磷去除机理研究[J].重庆建筑大学学报,2008,4:141-146
    85.周红菊,尚忠林,王学东,等.湿地净化污水作用及其机理研究进展[J].南水北调与水利科技.2007,4:64-66
    86.周小平,王建国,薛利红,等.浮床植物系统对富营养化水体中氮,磷净化特征的初步研究[J].应用生态学报,2005,16(11):2199-2203
    87.屠清瑛,章永泰,杨贤智.北京什刹海生态修复试验工程[J].湖泊科学,2004,16(1):61-67
    88. Armstrong W. Aeration in higher plants. Advances in botanical research,1980,7:225-232
    89. Amanda MN and William JM. Tropical treatment wetlands dominated by free-floating macrophytes for water quality improvement in Costa Rica. ecological engineering,2006,28(3):246-257
    90. Bai JH, Ou YH, Deng W, et al. A review on nitrogen transmission process in natural wetlands. Acta Ecologica Sinica,2005,25(2):326-333
    91. Baker LA. Design conside rations and applications forwetland treatment of highnitratewaters. Water Science and Technology,1998,38 (1):389-395
    92. Boeije GM, Wagner JO, Koorman F, et al. New PEC definitions for river basins applicable to GIS-based environmental exposure assessment.Chemosphere,2000,40:255-265
    93. Bojcevska H, Tonderski K Impact of loads,season,and plant species on the performance of a tropical constructed wetland polishing effluent from sugar factory stabilization ponds.Ecological Engineering.2007,29(01):66-76
    94. Eun JL and Oh BK. The effects of floating islands planted with various hydrophytes for water quality improvement. Rep.Res.Edu.Ctr.Inlandwat.Environ,2004, (2):121-126
    95. Fennessy MS, Cronk JK, Mitsch WJ. Macrophyte productivity and community development in created freshwater wetlands under experimental hydrological conditions. Ecological Engineering,1994,3(4): 469-484
    96. Glick BR, Karaturovic DM, Newell PC. A novel procedure for rapid isolation of plant growth promoting. Canadian Journal of Microbiology,1995,41,533-536
    97. Gerloff GC, Krombholz PH. Tissue analysis as a measure of nutrient availability for the growth or angiosperm aquatic plants. Limnol. Oceanogr,1966,11:529-537
    98. Healy MG, Rodgersa M and Mulqueena J. Treatment of dairy waste water using constructed wetlands and intermittent sand filters. Bioresource Technology,2007,98 (12):2268-2281
    99. Haberlr and Perfler R. Nutrient removal in the reed bed system. Water Science Technology,1991,23(4): 729-737.
    100. Hadad HR, Maine MA, Bonetto CA. Macrophyte growth in a pilot-scale constructed wetland for industrial wastewater treatment. Chemosphere,2006,63:1744-1753
    101. Hristina Bojcevska, Karin Tonderski. Impact ofloads, season, and plant species on the performance of a tropical constructed wetland polishing effluent from sugar factory stabilization ponds. Ecological Engineering,2007, (29):66-76
    102. Jackson MB, Armstrong W. Formation of aerenchyma and the processes of plant ventilation in relation to soil flooding and submergence. Plant Biology,1999,1:274-287
    103. Jensen CR Luxmoore RJ, Van Gundy SD, et al. Root air space measurements by a pycnometer method. Agronomy Journal,1969,61:474-475
    104. Justin SHFW, Armstrong W. The anatomical characteristics of roots and plant response to soil flooding. New Phytologist,1987,106:465-495
    105.Nakamura K, Shimatani Y. Water purification and environmental enhancement by the floating wetland. Proceedings of 6th IAWQAsia-Pacific Regional Conference in Korea,1997:335-343
    106. Kim SY, Geary PM. The impact of biomass harvesting on phosphorus uptake by wetland plants. Water Science and Technology,2001,44:61-67
    107. Kludze HK, Delaune RD, Patrick J. A colorimetric method for assaying dissolved oxygen loss from container-grown rice roots. Agronomy Journal,1994,86:483-487
    108. Kludze HK, DeLaune RD, Patrick WH. Aerenchyraa formation and methane and oxygen exchange in rice. Journal of Soil Science Society of America,1993,51:386-391
    109. Kludze HK, DeLaune RD. Straw application effects on methane and oxygen exchange and growth in rice. Soil Science and Society of America,1995,59:824-830
    110. Koottatept T. Role of plant uptake on nitrogen removal in constructed wetlands located in the tropics. Water Science Technology,1997,36(12):1-8
    111. Liang W, Wu ZB. Reviewof removal mechanism in constructed wetland treating nitrogen and phosphorus from wastewater. Environmental Science Trends,2000, (3):32-37
    112. Liesje De Schamphelaire, Leen Van Den Bossche, Hai Sondang,etal. Microbial fuel cells generating electricity from rhizodepositesof rice plants. Environmental Science Technology,2008, 42(8):3053-3058
    113. Lu SY, Zhang PY, Yu G, et al. Stabilization pond-plant bed composite system treatment of farmland irrigation and drainage water. China Environmental Science,2004,24 (5):605-609
    114. Ouellet-Plamondon C,Chazarenc F,Comeau Y,et al. Artificial aeration to increase pollutant removal efficiency of constructed wetlands in cold climate[J].Ecological Engineering,2006,27(3):258-264
    115. Peterson S.B., and Teal J.M.. The role of plants in ecologically engineered wastewater treatment systems. Ecological Engineering,1996,6 (1-3):137-148
    116. Reddy KR, Angelo EM, Debusk TA. Oxygen transport through aquatic macrophytes:The role in waste water treatment.Journal of Environental Quality,1989,19(2):261-270
    117. Sorrell BK. Effect of external oxygen demand on radial oxyen loss by Juncus roots in titanium citrate solutions. Plant,Cell and Environment,1999,22:1587-1593
    118. Stottmeister U, Wiepner A, Kuschk P, et al. Effects of plants and microorganisms in constructed wetlands for wastewater treatment. Biotechnology Advances,2003,22 (122):93-117
    119. Sun L,Liu Y,Jin H. Nitrogen removal from polluted river by enhanced floating bed grown canna. Ecological Engineering,2009,35(01):135-140
    120. Tanner CC. Plants for constructed wetland treatment systems-a comparison of the growth and nutrient uptake of eight emergent species. Ecological Engineering,1996,7:59-83
    121. Wetzel RG., Howe M. High production in a herbaceous perennial plant achieved by continuous grow than synchronized population dynamics. Aquatic Botany,1999,6(2):111-129
    122. Whitman RL, Nevers MB, Goodrich ML, et al. Characterization of Lake Michigan coastal lakes using zooplankton assemblages. Ecological Indicators,2004,4(4):277-286
    123. WieBner A, Kuschk P, Kastner M, et al. Abilities of helophyte species to release oxygen into rhizospheres with varying redox conditions in laboratory-scale hydroponic systems. International Journal of Phytoremediation,2002,4(1):1-15
    124. Vymazal J. Constructed Wetlands for Wastewater Treatment in Europe. Eds Dunne EJ, Reddy KR, Carton OT. Nutrient management in agricultural watersheds:a wetlands solution,2005:230-244
    125. Yang Yang, Hongqu Tang, Hongliang Sun, et al. Improvement of water quality and restoration of ecosystem in a tidal channel through the vegetated floating islands[C]. The 13th World Lake Conference,wuhan,2009
    126. Zehnder AJ and Wuhrmann K. Titanium (Ⅲ) citrate as a nontoxic oxidation-reduction buffering system for the culture of obligate anaerobes. Science,1976,194:1165-1166
    127. Zhang Xiao dong, Yang Bo, Chen Ji hua, et al. Applied Study of Ecological Fibre and Ceramic Paddi -ng for Micro-polluted Water Treatment. Acta Scientiarum Naturalium Universitatis Sunyatseni,2007, 46(6):125-127

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700