用户名: 密码: 验证码:
水平潜流芦苇人工湿地脱氮机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
人工湿地具有生态、高效、节能的特点,受到世界各国推崇,广泛应用于分散或非点源污水处理。随着对污水处理要求的提高,人工湿地也从最初主要用于处理污水中悬浮物和有机物逐渐向除磷脱氮方向发展。人工湿地有着公认的脱氮潜能,但实际运行的人工湿地脱氮效率较低,一般不超过50%。人工湿地脱氮因涉及微生物、基质(包括土壤、填料)、植物等等因素,其复杂性决定了人工湿地中氮的转换和去除机理还远不清晰。这就制约了湿地实际脱氮性能的改进。因此研究湿地生物脱氮作用的机制,特别是阐明根际微生态环境中,根系分泌物、植物、脱氮微生物三者耦合关系及调控机制,对正确预测和评估湿地脱氮效率、改进湿地脱氮性能具有重要意义。
     在各种人工湿地处理技术中,芦苇潜流人工湿地是应用最广的湿地类型。试验以芦苇潜流人工湿地为研究对象,人工配制以氨氮为唯一氮源的污水,探讨3种潜流人工湿地(空白湿地、芦苇湿地、根袋湿地)的运行效果,研究了湿地运行期各种污染物的沿程净化规律;采用根袋法区分湿地种根际与非根际环境,测定了芦苇根际土壤与非根际土体土壤ORP及土壤溶液中TOC的变化,检测了空白湿地与植物湿地中硝化细菌/反硝化细菌的数量与分布、湿地不同空间土壤硝化/反硝化强度;初步鉴定了芦苇根系分泌物中有机酸的类型及其对脱氮微生物性能的影响。实验结果表明:
     空白湿地、芦苇湿地和根袋湿地3种小型潜流人工湿地对水中污染物均有着较好的去除效果,对NH_4~+-N去除率分别为54.4%、77.6%和51.9%;对TN的去除率分别为56.2%、76.5%和51.8%;对TP的去除率分别为60.0%、69.5%、59.1%;对COD的去除率分别为67.5%、79.3%、76.8%。
     在HRT为5d,水位保持在35cm,进水C/N=5的运行条件下,空白湿地、芦苇湿地和根袋湿地对NH_4~+-N和TN的去除效果,分别达到了66.2%、94.2%、82.2%和67.2%、90.7%、76.1%。NH_4~+-N和TN去除具有沿程同步性,且在NH_4~+-N减少的同时,TN也有所降低,说明试验中存在同步硝化反硝化。从湿地沿程净化规律看,污染物的去除主要存在于湿地的前端,去除率达到总去除率的80~90%。
     根袋湿地前端的根际土壤ORP明显高于空白湿地和湿地土体土壤,差值分别为11~311mV、62~261mV,根际附近较高的氧化还原电位有利于硝化反应的进行;根际土壤与非根际土体土壤中TOC含量分别为21.3~54.6mg·L~(-1)和6.65~12.0mg·L~(-1),根际附近较高的TOC含量能促进反硝化反应的顺利进行,因此试验中有植物的湿地对氮的去除要好于空白湿地。
     湿地中硝化强度存在明显的分层现象。芦苇湿地中上层土壤的硝化强度高于下层,沿程逐渐上升;空白湿地上层土壤硝化强度高于下层,沿程略有下降;植物根际土壤的硝化强度低于非根际土体土壤,芦苇湿地和根袋湿地硝化能力强于空白湿地,植物湿地中硝化强度与硝化细菌的空间分布之间没有明显的对应关系;反硝化强度在芦苇湿地中分层现象不明显,沿程基本不变;空白湿地中底层反硝化强度低于表层,沿程略有升高;根际土壤反硝化强度低于非根际土体土壤,3个湿地中,反硝化强度和反硝化细菌空间分布均存在较好的对应关系,其中以空白湿地的反硝化能力较高。
     利用高效液相色谱初步鉴定出芦苇根系分泌物含有草酸,根据试验结果和文献报导,选用草酸和柠檬酸研究根系分泌物中有机酸对湿地土壤中分离出的硝化细菌和反硝化细菌活性的影响,结果表明,培养基中添加不同弄得的草酸和柠檬酸,对硝化细菌均有抑制作用。相同培养基条件下,添加含碳量均为0.1mg·L~(-1)草酸和柠檬酸,抑制率分别为37.5%和35.4%,且随着有机酸浓度增大,抑制率逐渐增大,当含碳量为3.0mg·L~(-1),抑制率增加至80.7%、85.5%。;反硝化细菌可以利用草酸和柠檬酸作为反硝化所需的碳源,培养基中添加相同含碳量的草酸和柠檬酸,C/N达到12.3,脱氮率分别为16.5%和93.0%,倾向于利用柠檬酸。
     根据试验结果,在芦苇湿地床人工湿地中,根际土壤ORP较高,TOC含量较多,但根际附近硝化强度较低,说明芦苇根际分泌物对硝化细菌存在一定的抑制作用,使硝化作用过程受阻;同时根际附近反硝化强度也较非根际低,不能缓解根系分泌物对硝化细菌的抑制作用,导致整个微生物脱氮途径不畅通。
Constructed wetlands,a kind of strengthen natural processing technique for water purification and pollution-control,has been extensive applied in dispersive sewage and micro-contaminated water around the world.With the high demand of sewage treatment in nitrogen and phosphorus removal,the research field has been changed into nitrogen and phosphorus removal.As everyone knows,constructed wetland has the protential in nitrogen removal,but the removal efficiency is always below 50%.Because nitrifitation is a complex progress involving wetland vegetation,substance(soil,padding) and associated microbial,the transformation of nitrogen and removal mechanism are still not very clear. So it is important to forecast and evaluate nitrogen removal efficiency and enhance nitrogen removal ability by illustrating the relationship between root exudate,wetland vegetation and microbial in rhizosphere.
     During different typies of constructed wetlands,subsurface flow wetland is the main type in engineering application.In this thesis,three subsurface flow constructed wetlands (CWs) with and without reed were investigated with artificial ammonium-rich wastewater. Root bag made of nylon sieve with 300 mesh was used to enwrap the reed root in one of reed CWs to distinguish reed rhizosphere from non-rhizosphere.The CWs with root bag enwrapped reed root hereinafter was called as Mesh CWs.Contaminants removal efficiencies were assessed during running period,also the removal of contaminants along the stream way,the change of the oxidation-reduction position(ORP) and concentration of total organic carbon(TOC) in rhizosphere and non-rhizosphere were detected.Furthermore, the relationship between the amount of microorganism and intensity of nitrification and denitrification in wetlands was researched.Finally,root exudate of reed was detected and the mechanism of nitrogen removal based on the different root exudate was discussed.The results were as follows:
     In running period,the removal efficiencies of NH_4~+-N in Control CWs,Reed CWs and Mesh CWs were 54.4%,77.6%and 51.9%,respectively.TN removal efficiencies were 56.2%,76.5%and 51.8%respectively.TP removal efficiencies were 60.0%,69.5%,and 59.1%,COD removal efficiencies were 67.5%,79.3%,and 76.8%respectively.
     When hydraulic rention time was 5 days,water level was 35 centimeters,C/N ratio was 5,removal efficiencies of NH_4~+-N in Control CWs,Reed CWs and Mesh CWs were 66.2%,94.2%and 82.2%,respectively.TN removal efficiencies were 67.2%,90.7%and 76.1%respectively.Simultaneous nitrification and denitrification phenomenon in this study was also observed.Most contaminants were degradated in the front of wetlands.
     The ORP in the front of Mesh CWs's rhizosphere was much higher than that in control CWs and non-rhizosphere in Mesh CWs,which were 11~311mV and 62~261mV, respectively.Root exudate also showed the difference between rhizosphere and non-rhizosphere in Mesh CWs,the TOC of them were 21.3~54.63mg·L~(-1) and 6.65~12.0mg·L~(-1).Due to the higher OPR and concentration of TOC,the nitrogen removal efficiency in Reed and Mesh CWs was much higher than that in Control CWs.
     The intensity of nitrification was different in two layers.Upper layer was higher than lower layer in Reed CWs,and the intensity increased along the bed.In Control CWs,also upper layer was higher than lower layer,but the intensity declined along the water stream. Rhizosphere had lower intensity than non-rhizosphere in Mesh CWs.The Reed and Mesh CWs's nitrification ability was better than Control CWs,but the intensity of nitrification had no corresponding with the amount of nitrify bacteria in Reed and Mesh CWs. Denitrification intensity had no obvious difference in the two layers or along the length of Reed CWs,Contrary to Reed CWs,the upper layer was lower than lower layer in Control CWs,and the intensity was better along the steam in the CWs.Non-rhizosphere's intensity was higher than that in rhizosphere in Mesh CWs.The amount of microorganism of denitrification had pretty good corresponding with intensity of denitrification,and Control CWs had the best ability of denitrification in the three CWs.
     Root exudate of reed was detected for oxalic acid by using HPLC.The influence of oxalic and citric on the microorganism of nitrification and denitrification was analyzed.The results showed that nitrification was inhibited by 0.1mg·L~(-1) of carbon in oxalic and citric. The inhibitation percentage was 37.5%for oxalic and 35.4%for citric.As the concentration of organic acid increased,the rate of nitrification would decrease.The inhibitation of oxalic and citric were 80.7%and 85.5%when carbon concentration was 3.0mg·L~(-1).Oxalic and citric can be used as carbon source for denitrification,TN removal efficiencieis was 16.5% and 93.0%when the C/N was 12.3 and citric was preferred to be utilized.
     According to the results,there was a contradiction between the lower nitification intensity and higher ORP and the concentration of TOC in rhizosphere in the reed constructed wetland,and it demonstrated that reed root exudate could inhibit nitrification. Meanwhile,lower denitrification intensity in rhizosphere could not eliminate the inhibitation of root exudate,so the nitrification-denitification was set back.
引文
陈明利,吴晓芙,胡日利.人工湿地去污机理研究进展[J].中南林学院学报,2006,26(3):123-127.
    成水平,吴振斌,况琪军.人工湿地植物研究[J].湖泊科学,2002,14(2):179-184.
    段志勇,刘超翔,施汉昌,等.复合植物床式人工湿地研究[J].环境污染治理技术与设备,2002,3(8):4-7.
    郝桂玉,黄民生,徐亚同.潜流湿地在水体生态吸附中的应用[J].净水技术,2004,23(1):34-37.
    胡焕斌,周化民,王桂珍,等.人工湿地处理矿山炸药污水[J].环境科学与技术,1997,(3):17-26.
    胡康萍.一种经济、有效、简便、可靠的污水处理技术—人造湿地系统[J].环境工程,1991,9(2):6-10.
    黄时达,王庆安,钱骏,等.从成都活水公园看人工湿地系统处理工艺[J].四川环境,2000,19(2):8-12.
    靖元孝,杨丹菁.风车草人工湿地系统氮去除及氮转化细菌研究[J].生态科学,2004,23(1):89-91.
    靖元孝,杨丹青,任延丽,等.水翁(Cleistocalyx operculatus)在人工湿地的生长特性及对污染物的去除效果[J].环境科学研究,2005,18(1):9-13.
    李科德,胡正嘉.芦苇床系统净化污水的机理[J].中国环境科学,1995,15(2):140-144.
    李科德,胡正嘉.人工模拟芦苇床系统处理污水的效能[J].华中农业大学学报,1994,13(5):511-517.
    李智,杨在娟,岳春雷.人工湿地基质微生物和酶活性的空间分布[J].浙江林业科技,2005,25(3):1-5.
    廖德祥,李小明,曾光明,等.全程自养脱氮新工艺[J].中国给水排水,2004,20(4):31-33.
    刘超翔,董春宏,李峰民,等.潜流式人工湿地污水处理系统硝化能力研究[J].环境科学,2003,24(1):80-83.
    刘超翔,胡洪营,张健,等.不同深度人工复合生态床处理农村生活污水的比较[J].环境科学,2003,24(5):92-96.
    刘超翔,胡洪营,张健,等.人工复合生态床处理低浓度农村污水[J].中国给水排水,2002,18(7):1-4.
    刘家宝,唐晓斌,莫风鸾.垂直流人工湿地系统工程的污染物净化效率研究[J].环境科学究,2005,18(6):68-71.
    刘育,夏北成.不同植物构成的人工湿地对生活污水中氮的去除效应[J].植物资源与环境学报,2005,14(4):46-48.
    马安娜,张洪刚,洪剑明.湿地植物在污水处理中的作用及机理[J].首都师范大学学报,2006,27(6):57-63.
    聂发辉.人工湿地中新型填料净化污水能力的研究[D].中南林学院硕士学位论文,2003.
    沈耀良,王宝贞.人工湿地系统的除污机理[J].江苏环境科技,1997,3:1-6.
    宋志文,毕学军,曹军.人工湿地及其在我国小城市污水处理中的应用[J].生态学杂志,2003,22(3):74-78.
    宋志文,赵丙辰,席俊秀,等.人工湿地对有机污染物的去除效果与动态特征[J].生态环境,2006,15(1):15-19.
    孙亚兵,冯景伟,田园春,等.自动增氧型潜流人工湿地处理农村生活污水的研究[J].环境科学学报,2006,26(3):404-408.
    谈玲.一种新型的改进潜流人工湿地处理生活污水的研究[J].云南环境科学,2005,24(3):48-50.
    汤显强,李金中,李学菊,等.间歇曝气对人工垂直潜流湿地氮磷去除性能的影响[J].环境科学, 2008,29(4):896-901.
    王爱萍,周琪.人工湿地处理污水的研究[J].四川环境,2005,24(2):76-80.
    王宝贞,王琳.水污染治理新技术—新工艺、新概念、新理论[M].北京:科学出版社,2004.
    王全金,李丽,刘江,等.潜流人工湿地基质除氮磷效果研究[J].华东交通大学学报,2006,23(5):1-3.
    王薇,俞燕,王世和.人工湿地污水处理工艺与设计[J].城市环境与城市生态,2001,14(1):59-62.
    吴晓磊.人工湿地废水处理机理[J].环境科学,1995,16(3):83-86.
    吴振斌,梁威,成水平,等.复合垂直流构建湿地净化污水机制研究Ⅰ微生物类群和基质酶[J].长江流域资源与环境,2002,11(2):180-183.
    吴振斌,周巧红,贺峰,等.构建湿地中试系统基质剖面微生物活性的研究[J].中国环境科学,2003,23(4):422-426.
    徐丽花,周琪.不同填料人工湿地处理系统的净化能力研究[J].上海环境科学,2002,21(10):603-605.
    许春华,周琪,宋乐平.人工湿地在农业面源污染控制方面的应用[J].重庆环境科学,2001,23(3):70-72.
    俞孔坚,李迪华,孟亚凡.湿地及其在高科技园区中的营造[J].中国园林,2001,2:26-28.
    张虎成,田卫,俞穆清.盐碱土壤基质人工湿地对低浓度氮磷废水的净化效果[J].生态环境,2005,14(2):182-184.
    张甲耀,夏盛林,邱克明,等.潜流型人工湿地污水处理系统氮去除及氨转化细菌的研究[J].环境科学学报,1999,19(3):323-327.
    朱夕珍,崔理华,温晓露,等.不同基质垂直流人工湿地对城市污水的净化效果[J].农业环境科学学报,2003,22(4):454-457.
    Arias C A,Bubba D M,Brix H.Phosphorus removal by sands for use as media in subsurface flow constructed reed beds[J].Water Research,2001,35(5):1159-1168.
    Bavor H J,Roser D J,Fisher J,et al.Performance of solid-matrix wetland systems,viewed as fixed-film.In Constructed Wetland for wastewater treatment.Ed.D.A Hammer,1989,pp.646-656.Lewis Publishing,MI.
    Booker N A.Ammonia removal from sewage using natural Australian zeolite[J].Wat.Sci.Tech.,1996,34(9):17-24.
    Brij G.Natural and Constructed Wetlands for Wastewater Treatment:Potentials and Problems[J].Wat.Sci.Tech.,1999,40,Issue(3):27-35.
    Brix H.Use of constructed wetland on water pollution control:historical development,present status and future perspectives[J].Wat.Sci.Tech.,1997,30(8):209-223.
    Gahonia T S, Farouq A, Henrietta G, et al. Root-released organic acid and phosphorus uptake of two barley cultivars in laboratory and field experiments[J]. European Journal of Agronomy, 2000,12:281-289.
    Gerberg R M, Elkins B V, Lyons S R, Goldman C R. Role of Aquatic Plants in Wastewater Treatment by Artificial Wetlands [J].Water Research, 1985, 20:363-367.
    Gillespie Jr. W B, et al. Transfers and transformations of Zinc in constructed wetlands: mitigation of a refinery effluent [J].Ecological Engineering, 2000,14:279—292.
    IWA. Constructed wetlands for pollution control: processes, performance, design and operation.International Water association Scientific and Technical Report No.8 [R].London, UK: IWA Publishing, 2000.
    Jetten M, Strous M. The anaerobic oxidation of ammonium [J]. FEMS Microbiol Rev, 1999,22:421 —437.
    Jos Verhoeven T A, Meuleman, Arthur F M. Wetlands for wastewater treatment: Opportunities and limitations [J]. Ecological Engineering, 1999 12(12):5—12.
    Kadlec, Robert H. Chemical, Physical and Biological Cycles in Treatment Wetlands [J]. Wat. Sci. Tech.,1999, 40 (3):37—44.
    Kickuth S K. Macrophytes and Water Purification: Biological Control of Water Pollution [M].Philadelphia: Pennsylvania University Press, 1976.
    Knight R L. Constructed wetlands for livestock wastewater management [J]. Ecological Engineering,2000,15,41—55.
    Li Xianfa, Jiang Chuncai. Constructed wetland systems for water pollution control in North China [J].Wat. Sci. Tech., 1995, 32(3):349—356.
    Mays P M, Edwards G S. Comparison of heavy metal accumulation in a natural wetland and constructed wetlands receiving acid mine drainage [J]. Ecological Engineering, 2001,16:487—500.
    Mitchell D S, Chick A J, Raisin G W. The use of wetlands for water pollution control in Australia: An ecological perspective [J]. Wat. Sci. Tech., 1995, 32(3): 365—373.
    
    Mulder J W, Van Kempen R. N-removal by SHARON [J]. Water Quality International, 1997,3/4:30—31.
    Nguyen L M. Organic matter composition, microbial biomass and microbial activity in gravel-bed constructed wetlands treatment farm dairy wastewaters [J]. Ecological Engineering, 2000, 16:199—221.
    
    Peter D H. The reality of sewage treatment using wetland [J]. Wat. Sci. Tech., 1995,32(3):329—338.
    Reddy K R. Fate of Nitrogen and Phosphorus in a wastewater Retention Reservoir Containing Aquatic Macrophytes [J]. J Environ Qual, 1983, 12(1):137—141.
    Shackle V, Freeman C, Reynolds B. Exogenous enzyme supplements to promote treatment efficiency in constructed wetlands [J]. Science of the Total Environmental,2006,361:18-24.
    Stroru L, Andrew G O, Douglas L G, et al. Organic acid mediated P mobilization in the rhizosphere and uptake by maize roots[J]. Soil Biology and Biochemistry, 2002, 34:703-710.
    Sun G Treatment of agricultural wastewater in a combined tidal flow-down flow reed bed system [J].Wat. Sci. Tech., 1999, 40(3):139—146.
    Tanner C C. Plants for constructed wetland treatment systems-A comparison of the growth and nutrient uptake of eight emergent species [J]. Ecological Engineering, 1996, 7: 59—83.
    Tanner C C, Sukias J P, I, Psdell M P. Relationships between loading rates and pollutant removal during maturation of gravel bed constructed wetlands [J]. J. Enviro. Qual., 1998, 27: 448~458.
    Tanner C C, D'Eugenio J, McBride G B, et al. Effect of water level fluctuation on nitrogen removal from constructed wetland mesocosms [J].Ecological Engineering, 1999, 12:67~92.
    Thurston K A. Lead and petroleum hydrocarbon changes in an urban wetland receiving storm water runoff [J]. Ecological Engineering, 1999,12:387-399.
    USEPA. Guiding principles for constructed treatment wetlands; providing for water quality and wildlife habit[M]. Washington D C;U S EPA, Office of wetlands, Ocean and Watershed,2000.
    Vansever S, Bossier P, Vanderhasselt A, et al. Improvement of activated sludge performance by the addition of Mutriflok 50S [J]. Water Research, 1997,31:366—371.
    Verstraete W, Philips S. Nitrification-denitrification process and technologies in new contexts [J].Environmental Pollution, 1998,102:717—726.
    Vymazal, J. Types of constructed wetlands for wastewater treatment: their potential for nutrient removal.In: Vymazal, J. (Ed.), Transformations on Nutrients in Natural and Constructed Wetlands. Backhuys Publishers, Leiden, The Netherlands, 2001a pp.1—93.
    Yin C Q, Lan Z W.The nutrient retention by ecotone wetlands and their modification for Baiyangdian lake restoration [J].Wat. Sci. Tech., 1995,32(3):159-167.
    陈明利,吴晓芙,胡曰利.人工湿地去污机理研究进展[J].中南林学院学报,2006,26(3):123-127.
    成水平,吴振斌,况琪军.人工湿地植物研究[J].湖泊科学,2002.14(2):179-184.
    国家环境保护总局编.《水与废水监测分析方法》编委会.水与废水监测分析方法[M].(第四版).北京:中国环境科学出版社,2002.
    黄辉,赵浩,饶群,等.人工湿地基质除磷影响因素研究进展[J].环境科学与技术,2006,29(11):112-114.
    李林锋,年跃刚,蒋高明.人工湿地植物研究进展[J].环境污染与防治,2006,28(8):616-620.
    梁威,胡洪营.人工湿地净化污水过程中的生物作用[[J].中国给水排水,2003,19(10):28-31.
    王爱萍,周琪.人工湿地处理污水的研究[J].四川环境,2005,24(2):76-80.
    王平,周少奇.人工湿地研究进展及应用[J].生态科学,2005,24(3):278-281.
    王全金,李丽,刘江,等.潜流人工湿地基质除磷效果研究[J].华东交通大学学报,2006,23(5):1-3.
    熊飞,李文朝,潘继征,等.人工湿地脱氮除磷的效果与机理研究进展[J].湿地科学,2005,3(3):228-214.
    袁东海,景丽洁,张孟群,等.几种人工湿地草质净化磷素的机理[J].中国环境科学,2004,24(5):614-617.
    张建,邵文生,何苗,等.潜流人工湿地处理污染河水冬季运行及升温强化处理研究[J].环境科学,2006,27(8):1560-1564.
    郑亚杰.人工湿地系统处理污水新模式的探讨[J].环境科学进展,1995,3(6):1-8.
    Brij G.Natural and constructed wetlands for wastewater treatment:potentials and problems[J].Wat Sci Tech, 1999,40(3):27—35.
    Brix H. Treatment of wastewater in the rhizosphere of wetland plants-The root-zone method [J].Wat Sci Tech, 1987, 19:107—118.
    Reddy K R, Connor G A, Gale P M. Phosphorus sorption capacities of wetland soils and stream sediments impacted by dairy effluent[J]. Journal of Environmental Quality, 1998, 27:438~447.
    Reddy K R. Fate of Nitrogen and Phosphorus in waste water Retention Reservoir Containing Aquatic Macrophytes[J]. Environmental Quality, 1983,129(1):137—141.
    Sakadevan K, Bavor H J. Phosphate adsorption characteristics of soils, slag and zeolite to be used as substrates in constructed wetland systems [J]. Wat Res, 1998, 32(2):393.
    Tanner C C. Plants for constructed wetland treatment systems-A comparison of the growth and nutrient uptake of eight emergent species [J].Ecological Engineering, 1996, 7:59-83.
    Vymazal J, Brix H, Cooper P F. Removal Mechanisms and Types of Constructed Wetlands [M]. Leiden:Backhuys Publishers, 1998:35,41-43.
    Wiessner A, Kappelmeyer U, Kuschk P, K(?)stner M. Sulphate reduction and the removal of carbon and ammonia in a laboratory-scale constructed wetland [J].Wat Res, 2005, 39(19):4643—4650.
    陈能场,童庆宣.根际环境在环境科学中的地位[J].生态学杂志,1994,13(3):45-52.
    国家环境保护总局编.《水与废水监测分析方法》编委会.水与废水监测分析方法[M].(第四版).北 京:中国环境科学出版社,2002.
    何连生,刘鸿亮,席北斗,等.人工湿地氮转化与氧关系研究[J].环境科学,2006,27(6):1083-1087.
    贺峰,吴振斌,陶菁,等.复合垂直流人工湿地污水处理系统硝化与反硝化作用[J].环境科学,2005,26(1):47-50.
    黄娟,王世和,鄢璐,等.潜流型人工湿地硝化和反硝化作用强度研究[J].环境科学,2007,28(9):1965-1969.
    靖元孝,杨丹菁,陈章和,等.两栖榕在人工湿地的生长特性及其对污水的净化效果[J].生态学报,2003,23(3):614-619.
    李科德,胡正嘉.芦苇床系统净化污水的机理[J].中国环境科学,1995,15(2):140-144.
    李睿华,管运涛,何苗,等.河岸芦苇、茭白和香蒲植物带处理受污染河水中试研究[J].环境科学,2006,27(3):493-497.
    刘超翔,董春宏,李峰民,等.潜流人工湿地污水处理系统硝化能力研究[J].环境科学,2003,24(1):80-83.
    史荣刚.植物根系分泌物的生态效应[J].生态学杂志,2004,23(1):97-101.
    王超,张文明,王沛芳,等.黄花水龙对富营养化水体中氮磷去除效果的研究[J].环境科学,2007,28(5):975-981.
    王晟,徐祖信,李怀仁.潜流湿地处理人工污水时的强化方法[J].环境科学,2006,27(12):2432-2438.
    吴晓磊.人工湿地废水处理机理[J].环境科学,1995,16(3):83-86.
    徐卫红,黄河,王爱华,等.根系分泌物对土壤重金属活化及其机理研究进展[J].生态环境,2006,15(1):184-189.
    鄢璐,王世和,雒维国,等.运行条件下潜流型人工湿地溶氧状态研究[J].环境科学,2006,27(10):2009-2013.
    张建,邵文生,何苗,等.潜流人工湿地处理污染河水冬季运行及升温强化处理研究[J].环境科学,2006,27(8):1560-1564.
    张荣社,李广贺,周琪,等.潜流湿地中植物对脱氮除磷效果的影响中试验就[J].环境科学,2005,26(4):83-86.
    张荣社,周琪,张建,等.潜流构造湿地去除农田排水中氮的研究[J].环境科学,2003,24(1):113-116.
    张锡洲,李廷轩,王永东.植物生长环境与根系分泌物的关系[J].土壤通报,2007,38(4):785-789.
    诸惠昌,胡纪萃.新型废水处理工艺—人工湿地的设计方法[J].环境科学,1993,14(2):39-43.
    Brix H.Functions of macrophytes in constructed wetland[J].Wat Sci Tech,1994,29(4):71-78.
    Verhoeven J T A,Meuleman A F M.Wetlands for wastewater treatment Opportunities and limitations[J]. Ecological Engineering, 1999, 12(1-2):5-12.
    Korner S, Vermaan J E. The relative importance of Lemna GibbaL., bacteria and algae for the nitrogen and phosphorus removal in duckweed-covered domestic wastewater [J]. Wat Res, 1998,32(12):3651-3661.
    Lu H L, Yan C L, Liu J C. Low-molecular-weight organic acids exuded by Mangrove (Kandelia cadel (L.) Druce) roots and their effect on cadmium species change in the rhizosphere [J]. Environmental and Experimental Botany, 2007,61(2):159-166.
    Tanner C C, Kadlec R H, Gibbs M M, et al. Nitrogen processing gradients in subsurface-flow treatment wetlands-influence of wastewater characteristics [J]. Ecological Engineering, 2002, 18(4):499-520.
    Tanner C C. Plant for constructed wetland treatment systems-A comparison of the growth and nutrient uptake of eight emergent of species [J]. Ecological Engineering, 1996, 7(1):59-83.
    Wiessner A, Kappelmeyer U, Kuschk P, Kastner M. Sulphate reduction and the removal of carbon and ammonia in a laboratory-scale constructed wetland [J]. Wat Res, 2005, 39(19):4643-4650.
    Zhu T, Sikora F J. Ammonium and nitrate removal in vegetated and unvegetated gravel bed microcosm wetlands [J]. Wat Sci Tech, 1995, 32(3):219-228.
    何起利,粱威,贺锋,等.人工湿地氧化还原特征及其与微生物活性相关性[J].华中农业大学学报,2007,26(6):844-849.
    胡康萍,许振成,朱彤,等.人工湿地污水处理系统初步研究[J].上海环境科学,1991,10(9):41-44.
    黄娟,王世和,鄢璐,等.潜流型人工湿地硝化和反硝化作用强度研究[J].环境科学,2007,28(9):1965-1969.
    李旭东,周琪,张旭,等.沸石芦苇床硝化/反硝化能力研究[J].水处理技术,2005,31(12):27-31.
    李智,杨在娟,岳春雷,等.人工湿地基质微生物和酶活性的空间分布[J].浙江林业科技,2005,25(3):1-5.
    刘超翔,董春宏 李峰民,等.潜流式人工湿地污水处理系统硝化能力研究[J].环境科学,2003,24(1):80-83.
    土壤微生物研究会编:土壤微生物实验法[M].北京:科学出版社,1983.
    汪民,吴永峰.污水快速渗滤土地处理[M].北京:地质出版社,1993:24-29.
    王丽丽,赵林,谭欣,等.不同碳源及其碳氮比对反硝化过程的影响[J].环境保护科学,2004,30(121):15-18.
    王晓娟,张荣社.人工湿地微生物硝化和反硝化强度对比研究[J].环境科学学报,2006,26(2);225-229.
    诸惠昌,胡纪萃.新型废水处理技术—人工湿地的设计方法[J].环境科学,1993,14(2):39-43.
    吴晓磊.人工湿地废水处理机理[J].环境科学,1994,16(3):83-86.
    吴振斌,周巧红,贺峰,等.构建湿地中试系统基质剖面微生物活性的研究[J].中国环境科学,2003,23(4):422-426.
    徐亚同.不同碳源对生物反硝化的影响[J].环境科学,1994,15(2):29-35.
    International Water Association.Constructed Wetland s for Pollution Control,Processes,Design,and Operation[M].London:IWA Publishing,2000.
    Lance J C.Effect of sludge additions on nitrogen removal in soil columns flooded with secondary effluent[J].J Environ Qual.,1986,15(3):298-301.
    Mashauri D A,Mulungu D M M,Abdulhussein B S.Constructed wetland at.university of Dar Es Salaam[J].Wat Res.,2000,34(4):1135-1144.
    Sutherson Set al.Inhibition of nitrite oxdidation during nitrification:some observations.Water Pollut,1986,21:257-266.
    陈尚文,胡谦.高效液相色谱法测定食品中有机酸[J].色谱,1993,11(3):175-177.
    董彩霞,董园园,王健,等.同一种流动相测定植物体内12种有机酸和维生素C的高效液相色谱法[J].土壤学报,2005,42(2):331-335.
    韩丽梅,王树起,鞠会艳,等.大豆根系分泌物的鉴定及其化感作用的初步研究[J].大豆科学,2000,19(2):121-127.
    李军,杨秀山,彭永臻.微生物与水处理工程[M].北京:化学工业出版社,2002.
    牟金明,李万辉,张风霞,等.根系分泌物及其作用[J].吉林农业大学学报,1996,18(4):114-118.
    潘瑞炽,董愚得编.植物生理学(第三版)[M].北京:高等教育出版社,1995,30
    申建波,张福锁.根系分泌物的生态效应[J].中国农业科技导报,1999,1(4):21-27.
    施卫民.根系分泌物与土壤有效性[J].土壤,1993,25(5):252-256.
    土壤微生物研究会编:土壤微生物实验法[M].北京:科学出版社,1983:558.
    王平,周荣.高效液相色谱法测定植物根系分泌物中的有机酸[J].色谱,2006,24(3):239-242.
    徐亚同.生物反硝化除氮研究[J].环境科学学报,1994,14(4):52-55.
    徐亚同.pH值、温度对反硝化的影响[J].中国环境科学,1994,14(4):308-313.
    张小冰.根系分泌物及其作用[J].生物学教学,2004,29(11):6-9.
    张福锁.根系分泌物及其在植物营养中的作用[J].北京农业大学学报,1992,18(4):353-356.
    张福锁.根系分泌物与禾本科植物缺铁胁迫的适应机理[J].植物营养化与肥料学报,1995,(11):17-22.
    赵景婵,郭治安,常建华,等.有机酸类化合物的反相高效液相色谱法的分离条件研究[J].色谱,2001.19(3):260-263.
    Darrah PR.Model of the rhizosphere[J].Plant and Soil,1991,138:147-158. Dinkelaker B. Citric acid excretion and precipitation of calcium citrate in the rhizosphere of white lapin [J]. Plant Cell and Environment, 1989,12:285-292.
    Rovira A D. Note on terminology: orlmaterials in the rhizosphere [A]. In: HARLEY J L, et al. The Soil-Root Interface [M].London: Academic Press, 1979:1-4.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700