用户名: 密码: 验证码:
卟啉和金属卟啉的设计合成及其作为光敏化剂敏化TiO_2的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自然界在漫长的发展演变过程中选择了卟啉作为植物体内光合作用的反应中心和动物体内携氧释氧的活性中心。这种由20个碳原子和4个氮原子组成的共轭大环以其独特的魅力不光丰富了自然界也丰富了人类化学研究领域,越来越多的目光被卟啉化合物所发出的光彩所吸引,卟啉化合物也在大家的关注中得到迅速的发展和应用。
     同时,在无机研究领域,自1972年Fujishima和Honda发现TiO_2电极光致分解水以来,TiO_2所表现出的种种独特性质,使之在众多研究领域中备受青睐。TiO_2众所周知的光催化活性、较高的稳定性、无毒及容易获得等优点,使之成为目前最有潜力的光催化材料。
     在可见光范围内有着强吸收的卟啉负载于具有良好光催化活性的TiO_2上,两者形成的“有机-无机”复合光敏催化材料在不断的实践与发展中为人们带来了更多的惊喜和希望。实验研究证实:这种“强-强”联合的新型材料能够利用清洁的太阳能对水溶液中的有机物分子进行有效的降解,使水中的总有机碳(TOC)含量降低,水质得到净化。
     但是,目前卟啉-TiO_2光敏材料作为一种污水光降解处理催化剂还尚在实验室研究阶段,距离工业化的实际应用还有很长路要走,人们对其中的许多细节问题还不清楚,特别是卟啉结构对光催化效果的影响以及光降解过程中的反应机理等。本课题紧随这一发展前沿,综合大量文献,筛选合成出具有特定结构的一系列卟啉配合物,将其负载于TiO_2表面,形成卟啉-TiO_2光敏催化剂,并在可见光照射条件下利用其对水溶液中对-硝基苯酚的不同降解效果,探讨了卟啉结构对催化剂催化效果的影响,总结了其影响的特点和规律,为今后卟啉-TiO_2光催化剂的进一步发展,提供了有益的借鉴和启示。
     本论文内容如下:
     1.在参考文献的基础上,合成了三种新的醛以及12种变化非常有规律的新型卟啉并对其进行了相应表征描述,总结了其结构和性质差异的关系。这十二种卟啉取代基数目分别为1、2、3、4个,其取代基位置分别在卟啉环中位取代苯环的邻、间、对位。变化有规律的取代基位置和数目,有利于发现并揭示影响敏化催化效率的规律。
     2.合成了相应卟啉的Cu(Ⅱ)、Zn(Ⅱ)、Fe(Ⅲ)、Co(Ⅱ)、Ni(Ⅱ)、Mn(Ⅲ)、Sn(Ⅳ)等金属卟啉共计51种,并进行了表征和分析。
     3.合成了相应卟啉或金属卟啉的TiO_2光敏催化剂并利用其对水溶液中的4-NP的光降解实验比较了它们的催化效果,发现配位金属在这一过程中起了极其重要的作用。另外,卟啉环上取代基的数目、位置、种类以及卟啉在TiO_2上面的负载量等因素都不同程度的影响了光催化效果。
     4.根据卟啉或金属卟啉的TiO_2光敏催化剂的光催化降解效果总结分析了造成这一结果的原因,为以后进一步研究合成高效光敏剂提供了思路和借鉴。
     5.总结参考其他文献及实验结果初步探讨了光降解过程中的反应机理。
Nature has chosen porphyrin as the photosynthetic center for green plants and combine-release oxygen center for heme in their long process of development and evolution. The conjugated macrocycle,which is built by 20 carbon atoms and 4 nitrogen atoms,prospers the whole nature and the chemical research field due to its particular property,so it has attracted more and more attention.Meanwhile,in the inorganic research area,TiO_2 shows all kinds of unique properties and enjoys high popularity in the research field since Fujishima and Honda discovered that the TiO_2 electrode has the capacity of photo-induced decomposition of water in 1972.TiO_2 becomes one of the most potential photocatalytic materials at present due to its photocatalytic activity,high stability,innocuity and accessibility.
     As a kind of organic-inorganic composite photosensitive catalytic material, Porphyrins-TiO_2 brings more and more hope to people as it develops.This strong-strong united new-style material can degrade the organic pollution molecules efficiently in aqueous solutions,decrease the total organic carbon(TOC),and purify water under solar light.
     However,Porphyrin-TiO_2 photocatalyst is still being tested in the laboratory for its photodegradation,and it will be a long time before industrial application.Some detailed problems in the process of photodegradation are still unknown,especially the influence of porphyrin structures on potocatalytic efficiency and the mechanism in this process.We synthesized some porphyrins and impregnated them onto the TiO_2 surface to produce a porphyrin-TiO_2 pohotocatalyst,to investigate the influence of porphyrin structures on potocatalytic efficiency by photo-degradation of 4-nitrophenol(4-NP) under visible light,and summarize the characteristics and rules of the influence and put forward some reflection and inspiration which can be used as reference for future research in this field.
     The main work in this paper is as follows:
     1.Three new aldehydes and twelve new porphyrins have been synthesized and characterized by various spectroscopic techniques.The relationship between the structure of porphyrins and their properties have been discussed and analyzed.The number of substitutions is one,two,three,and four respectively and the position of the substitutions is in the tetraphenylporphyrin's ortho-,meta- and para- sites respectively.Changes in the terms of the position and number of substituents help to discover the efficiency of the porphyrins sensitization.
     2.Some metalloporphyrins have been synthesized and characterized,such as Cu(Ⅱ), Zn(Ⅱ),Fe(Ⅲ),Co(Ⅱ),Ni(Ⅱ),Mn(Ⅲ),Sn(Ⅳ),etc.
     3.The photocatalytic activity of polycrystalline TiO_2 samples which are impregnated with porphyrins(metal free porphyrins and metalloporphyrins) as sensitizers have been investigated by carrying out the photo-degradation of 4-nitrophenol(4-NP) as a probe reaction in aqueous suspension and under visible light.Factors like the appropriate position and the number of substitutions,their spacer length,the type of the coordinated metal,and the amount of the porphyrin can influence the efficiency of TiO_2-porphyrins systems,but the coordination of metal is the key factor.
     4.We summarized the reasons for the different photocatalytic degradation effect of porphyrin-TiO_2,which will provide useful thought and reference for future researh
     5.At the same time,we summarized the reaction mechanism of the photo-degradation via some references and the experiment results.
引文
[1]Rothemund P.A new porphyrin Synthesis,The synthesis of porphyrin by Paul Rothemund[J].J.Am.Chem.Soc,1936,V58(4):625-627
    [2]Adler A.D,Longo F.R,Finarelli J.D,et al.A simplified synthesis for meso-tetraphenylporphine[J].J.Org.Chem,1967,V32(2):476
    [3]Leszek Czuchajowski,Jan Habdas,Halina Niedbala.Porphyrinyl-uridines as the first water soluble porphyrinyl-nucleosides[J],Tetrahedron Lett,1991,V32(51):7511-7512
    [4]Lavallee D.K,Xu Z.J,Pina R.Synthesis and properties of new cationic-periphery porphyrins,tetrakis(p-(aminomethyl)phenyl)porphyrin and N-methyltetrakis(p-(aminomethyl)phenyl)porphyrin[J].J.Org.Chem,1993,V58(22):6000-6008
    [5]ACS(美国化学学会)数据库,[DB/OL]http://pubs.acs.org/action/doSearch?searchText=Jonathan+S.Lindsey&action=search&type=within&prevSearch=Jonathan%2B S.Lindsey&target=&targetTab=&filter=&startPage=&func=showSearch&result=true&stem ming=&sortBy=&pageSize=20&restrict=&displaySummary=&startYear=&startMonth=&e ndYear=&endMonth=&pubDateRange=&saveSearchName=&alertme=Never&author=Lin dsey%2C+Jonathan+S.
    [6]Lindsey J.S,Schreiman I.C,Hsu H.C,et al.Rothemund and Adler-Longo reactions revisited:synthesis of tetraphenylporphyrins under equilibrium conditions[J].J.Org.Chem,1987,V52(5):827-36
    [7]Wessendorf F,Hirsch A.Self-assembly of supramolecular oligo-phenylene-ethynylene wires consisting of double Hamilton receptor modified OPE rods and a tetraphenylporphyrin cyanurate[J]. Tetrahedron, 2008, V64(50):11480-11489
    [8] Sander J. Wezenberg G. A, Metselaar E. C, et al. Access to hybrid supramolecular salen-porphyrin assemblies via a selective in situ transmetalation-metalation self-assembly sequence[J]. Inorg. Chim. Acta, 2009, V362(4): 1053-1057
    [9] Balaban M.C, Chappaz-Gillot C, Canard G, et al. Metal catalyst-free animation of meso-bromoporphyrins: An entry to supramolecular porphyrinoid frameworks[J].Tetrahedron, In Press, 2009
    [10] Roberto C. J, Alicia M. Díaz-Garcíaa, Roberto C. Coordination compounds built on metal surfaces[J]. Coordin. Chem. Rev, 2009, V253(9-10):1262-1275
    [11] Ribeiro M. G., Liegel R. M, Azzellini G. C, et al. Supramolecular assemblies of a new class of nonplanar cationic metalloporphyrins and anionic metallophthalocyanines[J]. Inorg.Chim. Acta, 2009, V362(2):307-317
    [12] Eda Y, Itoh K, Ito Y. N, et al. 2,6-Bis(porphyrin)-substituted pyrazine: a new class of supramolecular synthon binding to a transition-metal ion and fullerene (C_(60))[J]-Tetrahedron, 2009, V65(1):282-288
    [13] Ramirez G., Ferraudi G., Chen Y. Y, Et al. Enhanced photoelectrochemical catalysis of CO_2 reduction mediated by a supramolecular electrode of packed CoII(tetrabenzoporphyrin)[J]. Inorg. Chim. Acta, 2009, V362(1):5-10
    [14] Yu-Jing Guo, Pu Zhang, Jian-Bin Chao, et al. Study on the supramolecular system of5-(p-hydroxyphenyl)-10,15,20-tris-(4-chlorophenyl)porphyrin with cyclodextrins and its analytical characteristics[J]. Spectrochim Acta A, 2008, V71(3):946-950
    [15] Veling N, Thomassen P. J, Thordarson P, et al. Construction of supramolecular multi-component assemblies by using allosteric interactions[J]. Tetrahedron, 2008, V64(36):8535-8542
    [16] Choi Myung-Seok. One-dimensional porphyrin H-aggregates induced by solvent polarity[J].Tetrahedron Lett, 2008,49(49):7050-7053
    [17] Bhosale S. V, Chong C, Forsyth C, et al. Investigations of rotamers in diaxial Sn(Ⅳ)porphyrin phenolates-towards a molecular timepiece [J]. Tetrahedron, 2008,V64(36):8394-8401
    [18] Liu Xien, Liu Jianhui, Kun Jin, et al. Synthesis, characterization and some properties of amide-linked porphyrin-ruthenium(Ⅱ) tris(bipyridine) complexes[J]. Tetrahedron, 2005,V61:5655-5662
    [19] Arsenault G. P, Bullock E, MacDonald S. F Pyrromethanes and Porphyrins Therefrom[J]. J. Am. Chem. Soc, 1960, V82 (16):4384-4389
    [20] Clarke O. J, Boyle R. W. Selective synthesis of asymmetrically substituted 5,15-diphenylporphyrins[J]. Tetrahed Lett,1998 , V39:7167-71681
    [21] Ravikanth M, Ptrachan S. J, Li F, et al. Synthesis of meso-tetraphenyl porphyrins via condensation of dipyrromethanes with N-tosyl imines [J]. Tetrahed Lett, 1998, V54:7721-77241
    [22] Temelli B, Unaleroglu C. Synthesis of meso-tetraphenyl porphyrins via condensation of dipyrromethanes with N-tosyl imines[J]. Tetrahedron, 2009, V65(10):2043-2050
    [23] Gariboldi M. B, Ravizza R, Baranyai P, et al. Photodynamic effects of novel 5,15-diaryl-tetrapyrrole derivatives on human colon carcinoma cells[J]. Bioorgan. Med.Chem, 2009, V17(5):2009-2016
    [24] Fan Dazhong, Masahiko T.C, Zhen Yao, et al. 1,9-Bis(N,N-dimethylaminomethyl) dipyrromethanes in the synthesis of porphyrins bearing one or two meso substituents[J].Tetrahedron, 2005, V61(43):10291-10302
    [25] Saltsman I, Goldberg I, Balasz Y, et al. Porphine and pyrrole-substituted porphyrin from cyclocondensation of tripyrrane with mono-substituted pyrroles[J]. Tetrahedron Lett, 2007,V48(2):239-244
    [26] Orlewska C, Maes W, Toppet S, et al. 5,5-Dialkyldipyrromethane as a precursor for the synthesis of calix[4]phyrins and pseudocorroles using MacDonald [2+2] condensations [J].Tetrahedron Lett, 2005, V46(36):6067-6070
    [27] Zhang B, Lash T. D. Total synthesis of the porphyrin mineral abelsonite and related petroporphyrins with five-membered exocyclic rings[J]. Tetrahedron Lett, 2003,V44(39):7253-7256
    [28] Fang Zhen, Liu Bin. A cationic porphyrin-based self-assembled film for mercury ion detection[J]. Tetrahedron Lett, 2008, V49(14):2311-2315
    [29] Sol V, Chaleix V, Champavier Y, et al. Porphyrins Linked Directly to the 5,5' Positions of 2,2'-Bipyridine: A New Supramolecular Building Block and Switch [J]. Inorg. Chem,2003, V42 (6):2075-2083
    
    [30] Xu Xing, Chen Hao, Cai Xian Rong, et al. Synthesis and properties of polyfluorene copolymers bearing thiophene and porphyrin[J]. Chinese. Chem. Lett, 2007, V18:879-882
    [31] Broadhurst M. J, Grigg R, Johnson A. W. Synthesis of porphine analogs containing furan and/or thiophene rings[J]. J. Chem. Soc. [Section] C: Organic, 1971, V21:3681-3690
    [32] Boudif A, Momenteau M. A new convergent method for porphyrin synthesis based on a '3+1'condensation[J]. J. Chem. Soc. Perkin Trans, 1996, V1:1235-1242.
    [33] Senge M. O. Synthetic access to 5,10-disubstituted porphyrins[J]. Tetrahedron Lett, 2003,V44:157-160
    [34] Lash T. D. Synthesis of porphyrins by the '3+1' approach[J]. J. Porphyrins Phthalocyanines, 1997, V1:29-44
    [35] Lash T. D. Porphyrin Synthesis by the "3+1" Approach: New Applications for an Old Methodology[J]. Chem -A. Eur. J. (Early View). 2006, V2 (10):1197 -1200
    [36] P. Y. Hin, T. Wijesekern, D. Dolphin, An efficient route to vinylporphyrins[J]. Can. J. Chem, 1990, V68:1867-1875.
    [37] Aoyagi K, Toi H, Aoyama Y, et al. Facile syntheses ofperfluoroalkylporphyrins. electron deficient porphyrins Ⅱ [J]. Chem. Lett, 1988, V17(11):1891-1894
    [38] Petit A, Loupy A, Maiuardb P. et al. Irradiation in drymedia - a new and easy method for synthesis of tetrapyrrolic compounds[J]. Microwave. Synthetic. Commun, 1992,V22(8):1137-1142
    [39] Rillema D. P, Nagle J. K, Barringer L. F, et al. Redox Properties of Metalloporphyrin Excited States, Lifetimes, and Related Properties of a Series of Para-Substituted Tetraphenylporphine Carbonyl Complexes of Ruthenium( Ⅱ) [J]. J. Am. Chem. Soc, 1981,V103(1):56-62
    [40] Collman J. P, Barnes C. E, Swepston P. N, et al. Synthesis, Proton NMR Spectroscopy, and Structural Characterization of Binuclear Ruthenium Porphyrin Dimers[J]. J. Am. Chem.Soc, 1984, V106(12):3500-3510
    [41] Collman J. P, Barnes C. E, Brothers P. J, et al. Oxidation of Ruthenium(Ⅱ) and Ruthenium(Ⅲ) Porphyrins. Crystal Structures of μ-Oxo-bis[(p-methylphenoxo)(meso-tetraphenylporphyrinat)-ruthenium(Ⅳ)]andEthoxo(meso-tetraphenylporphyrinat)-(ethanol) ruthenium(Ⅲ)-Bisethanol[J]. J. Am. Chem. Soc, 1984, V106(18):5151-5163
    [42] Wong C. P, Venteicher R. F, Horrocks W. D. Lanthanide porphyrin complexes. Potential new class of nuclear magnetic resonance dipolar probe[J]. J. Am. Chem. Soc, 1974, V96 (22):7149-7150
    [43] Horrocks W. D, Wong C. P. Lanthanide porphyrin complexes. Evaluation of nuclear magnetic resonance dipolar probe and shift reagent capabilities[J]. J. Am. Chem. Soc, 1976,V98(23):7157-7162
    [44] Martarano L.A, Wong C. P, Horrocks W. D, et al. Luminescence of yttrium(Ⅲ),lutetium(Ⅲ), and thorium(Ⅳ) porphyrin complexes[J]. J. Phys. Chem, 1976, V80 (21):2389-2393
    [45] Breslow R, Yang J, Yan J.M. Biomimetic hydroxylation of saturated carbons with artificial cytochrome P-450 enzymes - liberating chemistry from the tyranny of functional groups[J]. Tetrahedron, 2002, V58(4):653-659
    [46] Ambroise A, Li J, Yu L, et al. A self-assembled light-harvesting array of seven porphyrins in a wheel and spoke architecture[J]. Org. Lett (Letter), 2000, V2(17):2563-2566
    [47] Qiu W.G, Li Z.F, Bai G.M, et al. Interaction of water-soluble cationic porphyrin with anionic surfactant[J]. Spectrochim. Acta. A, 2007, V68(5):1164-1169
    [48] Chen H, Shao X.B, Jiang X.K, et al. A general approach to L-tyrosine porphyrins[J].Tetrahedron, 2003, V59 (19):3505-3510
    [49] Jonathan F, Hull E, Sauer L. O, et al. Molecular Recognition Manganese Catalysts with Molecular Recognition Functionality for Selective Alkene Epoxidation[J]. Inorg. Chem,2009, V48 (2):488-495
    
    [50] Matano Y, Matsumoto K, Nakao Y, et al. Regioselective a-Metalation of meso-Phosphanylporphyrins. Structure and Optical Properties of Porphyrin Dimers Linked by Peripherally Fused Phosphametallacycles [J]. J. Am. Chem. Soc, 2008,130(14):4588-4589
    
    [51] Ballester P, Oliva A. I, Costa A, et al. DABCO-Induced Self-Assembly of a Trisporphyrin Double-Decker Cage: Thermodynamic Characterization and Guest Recognition[J]. J. Am. Chem. Soc, 2006, V128 (16):5560-5569
    
    [52] Das S, Brudvig G. W, Crabtree R. H. High Turnover Remote Catalytic Oxygenation of Alkyl Groups: How Steric Exclusion of Unbound Substrate Contributes to High Molecular Recognition Selectivity[J]. J. Am. Chem. Soc, 2008, V130 (5):1628-1637
    
    [53] Jacob R, Tate M, Banti Y, et al. Synthesis, Characterization, and ab Initio Theoretical Study of a Molecularly Imprinted Polymer Selective for Biosensor Materials[J]. J. Phys.Chem. A, 2008, V112 (2):322-331
    
    [54] Givelet C, Tinant B, Meervelt L.V, et al. Polyphosphorylated Triphenylenes: Synthesis, Crystal Structure, and Selective Catechol Recognition[J]. J. Org. Chem, 2009, V74(2):652-659
    
    [55] Niu J, Liu Z.H, Fu L, et al. Surface-Imprinted Nanostructured Layer-by-Layer Film for Molecular Recognition of Theophylline Derivatives[J]. Langmuir, 2008, V24 (20): 11988-11994
    
    [56] Mizutani T, Ema T, Tomita T, Et al. Design and Synthesis of a Trifunctional Chiral Porphyrin with C_2 Symmetry as a Chiral Recognition Host for Amino Acid Esters [J]. J.Am. Chem. Soc, 1994, V116 (10):4240-4250
    [57] Rudkevich D. M, Verboom W, Reinhoudt D.N. Capped Biscalix[4]arene-Zn-Porphyrin: Metalloreceptor with a Rigid Cavity[J]. J. Org. Chem, 1995, V60 (20):6585-6587
    [58] Sun D. Y, Tham F. S, Reed C. A, et al. Supramolecular Fullerene-Porphyrin Chemistry. Fullerene Complexation by Metalated "Jaws Porphyrin" Hosts[J]. J. Am. Chem. Soc, 2002,V124(23):6604-6612
    [59] Zhang Y, Yang R. H, Liu F, et al. Fluorescent Sensor for Imidazole Derivatives Based on Monomer-Dimer Equilibrium of a Zinc Porphyrin Complex in a Polymeric Film[J], Anal.Chem, 2004, V76 (24):7336-7345
    [60] Mita H, Ohyama T, Tanaka Y, et al. Formation of a Complex of 5,10,15,20-Tetrakis(N-methylpyridinium-4-yl)-21H,23H-porphyrin with G-Quadruplex DNA[J]. Biochemistry, 2006, V45 (22):6765-6772
    
    [61] Chang C. J, Loh Z. H, Deng Y.Q, et al. The Pacman Effect: A Supramolecular Strategy for Controlling the Excited-State Dynamics of Pillared Cofacial Bisporphyrins[J]. Inorg.Chem, 2003, V42 (25):8262-8269
    
    [62] Angelini N, Micali N, Mineo P, et al. Uncharged Water-Soluble Co(Ⅱ)-Porphyrin: A Receptor for Aromatic α-Amino Acids[J]. J. Phys. Chem. B, 2005, V109 (39): 18645-18651
    
    [63] Oliveri C. G, Ulmann P. A., Wiester M. J, et al. Heteroligated Supramolecular Coordination Complexes Formed via the Halide-Induced Ligand Rearrangement Reaction [J]. Acc. Chem. Res, 2008, V41 (12): 1618-1629
    
    [64] Saha S, Flood A. H, Stoddart J. F, et al. A Redox-Driven Multicomponent Molecular Shuttle[J]. J. Am. Chem. Soc, 2007, V129 (40):12159-12171
    
    [65] Li Z. T, Hou J. L, Li C. Peptide Mimics by Linear Arylamides: A Structural and Functional Diversity Test [J]. Acc. Chem. Res, 2008, V41 (10): 1343-1353
    
    [66] Fallon G. D, Lee M. A. P, Langford S. J, et al. Metalloporphyrin Molecular Sieves Based on Tin(Ⅳ)porphyrin Phenolates[J]. Org. Lett, 2002, V4 (11):1895-1898
    
    [67] Sedghi G, Sawada K, Esdaile L. J, et al. Single Molecule Conductance of Porphyrin Wires with Ultralow Attenuation[J]. J. Am. Chem. Soc, 2008, V130 (27):8582- 8583
    
    [68] Anariba F, Schmidt I, Muresan A. Z, et al. Metal-Molecule Interactions Upon Deposition of Copper Overlayers on Reactively Functionalized Porphyrin Monolayers on Si(100) [J]. Langmuir, 2008, V24 (13):6698-6704
    [69] Yoon Z.S, Cho D.G, Kim K. S, et al. Nonlinear optical properties as a guide to aromaticity in congeneric pentapyrrolic expanded porphyrins: pentaphyrin, sapphyrin,isosmaragdyrin, and orangarin [J]. J. Am. Chem. Soc, 2008, V130 (22):6930-6931
    [70] Flechtner K, Kretschmann A, Steinruck H. P, et al. NO-Induced Reversible Switching of the Electronic Interaction between a Porphyrin-Coordinated Cobalt Ion and a Silver Surface[J]. J. Am. Chem. Soc, 2007, V129 (40):12110-12111
    [71] Takechi K, Shiga T, Motohiro T, et al. Solar cells using iodine-doped polythiophene- porphyrin polymer films[J]. Solar. Energy. Mater. Sol. Cells, 2006, V90 (12):1322-1330.
    [72] Li Y, Cao L. F, Tian H. Fluoride ion-triggered dual fluorescence switch based on naphthalimides winged zinc porphyrin[J]. J. Org. Chem, 2006, V71 (21):8279-8282
    [73] Li J. Z, Tang T, Li F, et al. The synthesis and characterization of novel liquid crystalline, meso-tetra[4-(3,4,5-trialkoxybenzoate)phenyl]porphyrins[J]. Dyes Pigments, 2008, V77 (2):395-401
    [74] Cho S, Yoon M. C, Kim C. H, et al. Perturbation of Electronic States and Energy Relaxation Dynamics in a Series of Phenylene Bridged Zn(Ⅱ) Porphyrin Dimers[J]. J. Phys.Chem. C, 2007, V111 (40):14881-14888
    [75] Liu Z. M, Yasseri A. A, Lindsey J. S, et al. Molecular Memories That Survive Silicon Device Processing and Real-World Operation [J]. Science, 2003, V302(5650):1543-1545
    [76] Wu Z. Q, Shao X. B, Li C. et al. Hydrogen-Bonding-Driven Preorganized Zinc Porphyrin Receptors for Efficient Complexation of C_(60), C_(70), and C_(60) Derivatives[J]. J. Am. Chem. Soc, 2005, V127(49):17460-17468
    [77] Tsuchiya S. J. Intramolecular Electron Transfer of Diporphyrins Comprised of Electron-Deficient Porphyrin and Electron-Rich Porphyrin with Photocontrolled Isomerization [J]. J. Am. Chem. Soc, 1999, V121 (1):48-53
    [78] Li X.Y, Tanasova M, Vasileiou C, et al. Fluorinated Porphyrin Tweezer: A Powerful Reporter of Absolute Configuration for erythro and threo Diols, Amino Alcohols, and Diamines [J]. J. Am. Chem. Soc, 2008, V130(6): 1885-1893
    [79] Yang Q. F, Olmsted C, Borhan B. Absolute Stereochemical Determination of Chiral Carboxylic Acids[J]. Org. Lett, 2002, V4 (20):3423-3426
    [80] Proni G, Pescitelli G, Huang X. F, et al. Magnesium Tetraarylporphyrin Tweezer: a CD-Sensitive Host for Absolute Configurational Assignments of a-Chiral Carboxylic Acids [J]. J. Am. Chem. Soc, 2003, V125 (42): 12914-12927
    
    [81] Borovkov V. V, Lintuluoto J. M, Hembury G. A, et al. Supramolecular Chirogenesis in Zinc Porphyrins: Interaction with Bidentate Ligands, Formation of Tweezer Structures, and the Origin of Enhanced Optical Activity [J]. J. Org. Chem, 2003, V68 (19):7176-7192
    
    [82] Wu J, Fang F, Lu W.Y, et al. Dynamic [2] Catenanes Based on a Hydrogen Bonding-Mediated Bis-Zinc Porphyrin Foldamer Tweezer: A Case Study [J]. J. Org. Chem,2007, V72 (8):2897-2905
    
    [83] Kurtán T, Nesnas N, Koehn F. E, et al. Chiral Recognition by CD-Sensitive Dimeric Zinc Porphyrin Host. 2. Structural Studies of Host-Guest Complexes with Chiral Alcohol and Monoamine Conjugates[J]. J. Am. Chem. Soc, 2001, V123 (25):5974-5982
    
    [84] Oliveri C. G, Nguyen S. T, Mirkin C. A. A Highly Modular and Convergent Approach for the Synthesis of Stimulant-Responsive Heteroligated Cofacial Porphyrin Tweezer Complexes[J]. Inorg. Chem, 2008, V47 (7):2755-2763
    
    [85] Huang X. F, Fujioka N, Pescitelli G, et al. Absolute Configurational Assignments of Secondary Amines by CD-Sensitive Dimeric Zinc Porphyrin Host [J]. J. Am. Chem. Soc,2002,V124(35):10320-10335
    
    [86] Kubo Y, Sugasaki A, Ikeda M, et al. Cooperative C_(60) Binding to a Porphyrin Tetramer Arranged around a p-Terphenyl Axis in 1:2 Host-Guest Stoichiometry[J]. Org. Lett, 2002,V4 (6):925-928
    
    [87] Marois J. S, Morin J. F. Synthesis and Surface Self-Assembly of [3]Rotaxane-Porphyrin Conjugates: Toward the Development of a Supramolecular Surface Tweezer for C_(60)[J].Langmuir, 2008, V24 (19):10865-10873
    
    [88] Oliveri C. G, Gianneschi N. C, Nguyen S. T, et al. Supramolecular Allosteric Cofacial Porphyrin Complexes[J]. J. Am. Chem. Soc, 2006, V128 (50): 16286-16296
    
    [89] Borovkov V. V, Lintuluoto J. M, Inoue Y. Supramolecular Chirogenesis in Zinc Porphyrins: Mechanism, Role of Guest Structure, and Application for the Absolute Configuration Determination[J]. J. Am. Chem. Soc, 2001, V123 (13):2979-2989
    
    [90] Borovkov V. V, Hembury G. A, Yamamoto N, et al. Supramolecular Chirogenesis in Zinc Porphyrins: Investigation of Zinc-Freebase Bis-Porphyrin, New Mechanistic Insights, Extension of Sensing Abilities, and Solvent Effect [J]. J. Phys. Chem. A, 2003, V107 (41):8677-8686
    
    [91] Gervaldo M, Fungo F, Durantini E. N, et al. Carboxyphenyl Metalloporphyrins as Photosensitizers of Semiconductor Film Electrodes. A Study of the Effect of Different Central Metals [J]. J. Phys. Chem. B, 2005, V109:20953-20962
    [92] Bedioui F, Griveau S, Nyokong T, et al. Tuning the redox properties of metalloporphyrin- and metallophthalocyanine-based molecular electrodes for the highest electrocatalytic activity in the oxidation of thiols[J]. Phys. Chem. Chem. Phys, 2007,V9:3383-3396
    [93] Peeters K, Wael K. D, Bogaert D, et al. The electrochemical detection of 4-chlorophenol at gold electrodes modified with different phthalocyanines[J]. Sensors Actuat B-Chem,2008,V128(2):494-499
    [94] Groves J. T, Nemo T. E, Myers R. S Hydroxylation and epoxidation catalyzed by iron-porphine complexes. Oxygen transfer from iodosylbenzen[J]. J. Am. Chem. Soc,1979, V101 (4): 1032-1033
    [95] Lai T. S, Zhang R, Cheung K.K, et al. Aerobic enantioselective alkene epoxidation by a chiral trans-dioxo(D4-porphyrinato)ruthenium(Ⅵ) complex[J]. Chem. Commun, 1998,V15:1583-1584
    [96] Tsuchiya S. Novel Synthetic Method of Phenol from Benzene Catalysed by Perfluorinated Hemin[J]. Chem. Lett, 1989, V18 (2):263-265
    [97] Rosenthal J, Pistorio B. J, Chng L. L, et al. Aerobic Catalytic Photooxidation of Olefins by an Electron-Deficient Pacman Bisiron(Ⅲ) μ-Oxo Porphyrin[J]. J. Org.Chem, 2005, V70(5): 1885-1888
    [98] Rosenthal J, Luckett T. D, Hodgkiss J. M, et al. Photocatalytic Oxidation of Hydrocarbons by a Bis-iron(Ⅲ)-μ-oxo Pacman Porphyrin Using O_2 and Visible Light [J]. J. Am. Chem. Soc, 2006, V128 (20):6546-6547
    [99] Chan Y. H, Schuckman A. E, Pérez L. M, et al. Synthesis and Characterization of a Thiol-Tethered Tripyridyl Porphyrin on Au(111) [J]. J. Phys. Chem. C, 2008, V112 (15):6110-6118
    
    [100] Bearinger J. P, Stone G, Hiddessen A. L, et al. Phototocatalytic Lithography of Poly(propylene sulfide) Block Copolymers: Toward High-Throughput Nanolithography for Biomolecular Arraying Applications [J]. Langmuir, 2009, V25 (2):1238-1244
    [101] Wang Z. C, Li Z. Y, Medforth C. J, er al. Self-Assembly and Self-Metallization of Porphyrin Nanosheets [J]. J. Am. Chem. Soc, 2007, V129 (9):2440-2441
    
    [102] Rochford J, Galoppini E. Zinc(Ⅱ) Tetraarylporphyrins Anchored to TiO_2, ZnO, and ZrO_2 Nanoparticle Films through Rigid-Rod Linkers[J]. Langmuir, 2008, V24 (10):5366-5374
    
    [103] Kim W, Park J, Jo H, et al. Visible Light Photocatalysts Based on Homogeneous and Heterogenized Tin Porphyrins[J]. J. Phys. Chem. C, 2008, V112 (2):491-499
    
    [104] Huijser A, Suijkerbuijk B. M, Robertus J. M et al. Efficient Exciton Transport in Layers of Self-Assembled Porphyrin Derivatives [J]. J. Am. Chem. Soc, 2008, V130(8):2485-2492
    
    [105] Jang J. Hee, Jeon K. S, Oh S, et al. Synthesis of Sn-Porphyrin-Intercalated Trititanate Nanofibers: Optoelectronic Properties and Photocatalytic Activities [J]. Chem. Mater,2007, V19 (8): 1984-1991
    
    [106] Yamada Y, Nakamura T, Yano K. Optical Response of Mesoporous Synthetic Opals to the Adsorption of Chemical Species[J]. Langmuir, 2008, V24 (6):2779-2784
    
    [107] Ghosh S. K, Patra R. Rath S. P. Remarkably Bent, Ethane-Linked, Diiron(Ⅲ) μ-Oxobisporphyrin: Synthesis, Structure, Conformational Switching, and Photocatalytic Oxidation[J]. Inorg. Chem, 2008, V47 (22): 10196-10198
    
    [108] Henao F, Aldrete J S. Retroperitoneal hematomas of traumatic origin[J]. Surgery, gynecology & obstetrics, 1985, V161(2):106-l 16.
    [109] Sol V, Chaleix V, Champavier Y, et al. Glycosyl bis-porphyrin conjugates: Synthesis and potential application in PDT[J]. Bioorgan. Med. Chem, 2006, V14(23):7745-7760
    [110] Anette W, Kristian B, Olav K, et al. Photodynamic Therapy Targets the mTOR Signaling Network in Vitro and in Vivo[J]. Mol. Pharmaceutics, 2009, V6 (1):255-264
    
    [111] Kazuyuki I, Masahiko S, Yoshitaka S, et al. Control of Photobleaching in Photodynamic Therapy Using the Photodecarbonylation Reaction of Ruthenium Phthalocyanine Complexes via Stepwise Two-Photon Excitation[J]. J. Phys. Chem, B,2008,V112(10):3138-3143
    
    [112] Khdair A, Gerard B, Handa H, et al. Surfactant-Polymer Nanoparticles Enhance the Effectiveness of Anticancer Photodynamic Therapy[J]. Mol. Pharmaceutics, 2008, V5 (5):795-807
    [113] Lanzo I, Russo N, Sicilia E. First-Principle Time-Dependent Study of Magnesium-Containing Porphyrin-Like Compounds Potentially Useful for Their Application in Photodynamic Therapy[J]. J. Phys. Chem. B, 2008, V112 (13):4123-4130
    
    [114] Stefflova K, Li H, Chen J, et al. Peptide-Based Pharmacomodulation of a Cancer-Targeted Optical Imaging and Photodynamic Therapy Agent[J]. Bioconjugate Chem, 2007, V18 (2):379-388
    
    [115] Li G. L, Slansky A, Dobhal M. P, et al. Chlorophyll-a Analogues Conjugated with Aminobenzyl-DTPA as Potential Bifunctional Agents for Magnetic Resonance Imaging[J]. Bioconjugate Chem, 2005, V16 (1):32-42
    
    [116] Chen Y. H, Potter W. R, Missert J. R, J et al. Comparative in Vitro and in Vivo Studies on Long-Wavelength Photosensitizers Derived from Bacteriopurpurinimide and Bacteriochlorin p6: Fused Imide Ring Enhances the in Vivo PDT Efficacy[J].Bioconjugate Chem, 2007, V18 (5):1460-1473
    
    [117] O'Neal W. G, Roberts W. P, Ghosh I, et al. Studies in Chlorin Chemistry. 3. A Practical Synthesis of C,D-Ring Symmetric Chlorins of Potential Utility in Photodynamic Therapy[J]. J. Org. Chem, 2006, V71 (9):3472-3480
    
    [118] Batinic-Haberle I, Ndengele M. M, Cuzzocrea S. et al. Lipophilicity is a critical parameter that dominates the efficacy of metalloporphyrins in blocking the development of morphine antinociceptive tolerance through peroxynitrite-mediated pathways[J]. Free. Radical. Bio. Med, 2009, V46:212-219
    
    [119] Reboucas J. S, DeFreitas-Silva G, Spasojevic I. Et al. Impact of electrostatics in redox modulation of oxidative stress by Mn porphyrins: Protection of SOD-deficient Escherichia coli via alternative mechanism where Mn porphyrin acts as a Mn carrier[J]. Free. Radical.Bio. Med, 2008, V45:201-210
    
    [120] Ferrer-Sueta G, Hannibal L, Batinic-Haberle I, et al. Reduction of manganese porphyrins by flavoenzymes and submitochondrial particles: A catalytic cycle for the reduction of peroxynitrite[J]. Free. Radical. Bio. Med, 2006, V41:503-512
    
    [121] Batini-Haberle I, Spasojevi I, Hambright P, et al. Relationship among Redox Potentials,Proton Dissociation Constants of Pyrrolic Nitrogens, and in Vivo and in Vitro Superoxide Dismutating Activities of Manganese(Ⅲ) and Iron(Ⅲ) Water-Soluble Porphyrins[J]. Inorg.Chem, 1999, V38(19):4011-4022
    
    [122] Reboucas J. S, Spasojevic I, Tjahjono D. H, et al. Redox modulation of oxidative stress by Mn porphyrin-based therapeutics: The effect of charge distribution[J]. Dalton Trans, 2008,V9:1233-1242
    [123]Batinic-Haberle I,Spasojevic I,Stevens R.D.et al.Manganese(Ⅲ)meso-tetrakis(ortho-N-alkylpyridyl)porphyrins.Synthesis,characterization,and catalysis of O_2 dismutation[J].Dalton Trans,2002,V13:2689-2696
    [124]凡素华,王科志.钌配合物基太阳能电池光敏剂分子设计的最新研究进展[J].无机化学学报,2008,V24(8):1206-1212
    [125]Nazerruddin M K,Zakeeruddin S M,Lagref J J,et al.Stepwise assembly of amphiphilic ruthenium sensitizers and their applications in dye-sensitized solar cell[J].Coord.Chem.Rev,2004,V248(13-14):1317-1328
    [126]Hasobe T,Hattori S,Kamat P.V,et al.Organization of supramolecular assemblies of fullerene,porphyrin and fluorescein dye derivatives on TiO_2 nanoparticles for light energy conversion[J].Chem.Phys,2005,V319(1-3):243-252
    [127]Wienke J,Schaafsma T.J,Goossens A.Visible Light Sensitization of Titanium Dioxide with Self-Organized Porphyrins:Organic P-I-N Solar Cells[J].J.Phys.Chem.B,1999,V103(14):2702-2708
    [128]Eu S.H,Hayashi S,Umeyama Tu,et al.Quinoxaline-Fused Porphyrins for Dye-Sensitized Solar Cells[J].J.Phys.Chem.C,2008,V112(11):4396-4405
    [129]Hayashi S,Tanaka M,Hayashi H,et al.Naphthyl-Fused π-Elongated Porphyrins for Dye-Sensitized TiO_2 Cells[J].J.Phys.Chem.C,2008,V112(39):15576-15585
    [130]Jin N,Ibrahim M,Spiro T.G,et al.Trans-dioxo Manganese(V) Porphyrins[J].J Am Chem Soc,2007,V129(41):12416.
    [131]Liu X,Liu J.H,Pan J.X,et al.Synthesis,electrochemical,and photophysical studies of multicomponent systems based on porphyrin and ruthenium(Ⅱ) polypyridine complexes[J].Tetrahedron,2007,V63(39):9195-9205
    [132]Johansson E.M.J,Karlsson P.G,Hedlund M,et al.Photovoltaic and Interfacial Properties of Heterojunctions Containing Dye-Sensitized Dense TiO2 and Tri-arylamine Derivatives[J].Chem.Mater,2007,V19(8):2071-2078
    [133]Kira A,Tanaka M,Umeyama T,et al.Hydrogen-Bonding Effects on Film Structure and Photoelectrochemical Properties of Porphyrin and Fullerene Composites on Nanostructured TiO_2 Electrodes[J].J.Phys.Chem.C,2007,V111(36):13618-13626
    [134]Wang X.F,Koyama Y,Wada Y,et al.A dye-sensitized solar cell using pheophytin-carotenoid adduct:Enhancement of photocurrent by electron and singlet-energy transfer and by suppression of singlet-triplet annihilation due to the presence of the carotenoid moiety[J]. Chem. Phys. Lett, 2007, V439(1-3):115-120
    [135] Cai J. H, Huang J.W, Zhao P. Et al. Photodegradation of 1,5-dihydroxynaphthalene catalyzed by meso-tetra (4-sulfonatophenyl)porphyrin in aerated aqueous solution[J]. J. Mol. Catal. A: Chem, 2008, V292:49-53
    [136]Wang H. R, Song Y. J, Medforth C. J, et al. Interfacial Synthesis of Dendritic Platinum Nanoshells Templated on Benzene Nanodroplets Stabilized in Water by a Photocatalytic Lipoporphyrin [J]. J. Am. Chem. Soc, 2006, V128 (29):9284-9285
    
    [137]Wang H. R, Song Y. J, Wang Z. C, et al. Silica-Metal Core-Shells and Metal Shells Synthesized by Porphyrin-Assisted Photocatalysis [J]. Chem. Mater, 2008, V20 (24): 7434-7439
    
    [138] Gao Y. N, Zhang X. M, Ma C. Q, et al. Morphology-Controlled Self-Assembled Nanostructures of 5,15-Di[4-(5-acetylsulfanylpentyloxy)phenyl]porphyrin Derivatives.Effect of Metal-Ligand Coordination Bonding on Tuning the Intermolecular Interaction [J].J. Am. Chem. Soc, 2008, V130 (50): 17044-17052
    
    [139] Ou Z. P, Wenbo E, Zhu W. H, et al. Effect of Axial Ligands and Macrocyclic Structure on Redox Potentials and Electron-Transfer Mechanisms of Sn(Ⅳ) Porphyrins[J]. Inorg.Chem, 2007, V46 (25): 10840-10849
    
    [140] Funes M. D, Caminos D. A, Alvarez M. G, et al. Photodynamic Properties and Photoantimicrobial Action of Electrochemically Generated Porphyrin Polymeric Films.Environ[J]. Sci. Technol, 2009, V43 (3):902-908
    
    [141] Mele G, Garcìa-Lòpez E, Palmisano L, et al. Photocatalytic Degradation of 4-Nitrophenol in Aqueous Suspension by Using Polycrystalline TiO_2 Impregnated with Lanthanide Double-Decker Phthalocyanine Complexes[J]. J. Phys. Chem. C, 2007, V111(17):6581-6588
    
    [142] Chang M. Y, Hsieh Y. H, Cheng T. C, Photocatalytic degradation of 2,4-dichlorophenol wastewater using porphyrin/TiO_2 complexes activated by visible light[J]. Thin Solid Films,In Press, 2009
    [143] Granados-Oliveros G, Páez-Mozo E. A, Ortega F. M. Degradation of atrazine using metalloporphyrins supported on TiO_2 under visible light irradiation[J]. Appl. Catal. B:Environ, In Press, 2009
    [144] Li D, Dong W. J, Sun S. M, et al. Photocatalytic Degradation of Acid Chrome Blue K with Porphyrin-Sensitized TiO_2 under Visible Light[J]. J. Phys. Chem. C, 2008, V112 (38): 14878-14882
    [145] Rochford J, Chu D, Hagfeldt A, Et al. Tetrachelate Porphyrin Chromophores for Metal Oxide Semiconductor Sensitization: Effect of the Spacer Length and Anchoring Group Position[J]. J. Am. Chem. Soc, 2007, V129(15):4655-4665
    [146] Mele G, Sole R. D, Vasapollo G, et al. 4-Nitrophenol photodegradation TRMC, XPS, and EPR characterizations of polycrystalline TiO_2 porphyrin impregnated powders and their catalytic activity for 4-Nntrophenol photodegradation in aqueous suspension[J]. J.Phys. Chem. B, 2005, V109 (25):12347-12352
    [147] Mele G, Sole R.D, Vasapollo G, et al. Polycrystalline TiO_2 impregnated with cardanol-based porphyrins for the photocatalytic degradation of 4-nitrophenol[J]. Green Chem, 2004, V6(12):604-608.
    [148] Mele G, Sole R. D, Vasapollo G, et al. Photocatalytic degradation of 4-nitrophenol in aqueous suspension by using polycrystalline TiO_2 impregnated with functionalized Cu(Ⅱ)-porphyrin or Cu(Ⅱ)-phthalocyanine[J]. J. Catal, 2003, V217 (2):334-342
    [149] Mele G, Sole R.D, Vasapollo G, et al. TiO_2-based photocatalysts impregnated with metallo-porphyrins employed for degradation of 4-nitrophenol in aqueous solutions: role of metal and macrocycle [J]. Res. Chem. Intermed, 2007, V33 (3-5):433-448
    [150] Mele G, Garca-Lpez E, Palmisano L, et al. Hotocatalytic Degradation of 4-Nitrophenol in Aqueous Suspension by Using Polycrystalline TiO_2 Impregnated with Lanthanide Double-Decker Phthalocyanine Complexes[J]. J. Phys. Chem. C, 2007, V111(17):6581-6588
    [151] Hilal H. S, Majjad L. Z, Zaatar N. A. El-Hamouz. Dye-effect in TiO_2 catalyzed contaminantphoto-degradation: Sensitization vs. charge-transfer formalism[J]. Solid. State.Sci,2007,V9:9-15
    [152] Choy W. K, Chu W. Destruction of o-Chloroaniline in UV/TiO_2 Reaction with Photosensitizing Additives[J]. Ind. Eng. Chem. Res, 2005, V44(22):8184-8189
    [153] Toshiyuki O, Akio A, Satoshi H, et al. Solar photocatalysis, photodegradation of a commercial detergent in aqueous TiO_2 dispersions under sunlight irradiation[J]. Sol.Energy, 2004, V77(5):525-532
    [154] Chen F, Deng Z. G, Li X. P, et al. Visible light detoxification by 2,9,16,23-tetracarboxyl phthalocyanine copper modified amorphous titania[J]. Chem. Phys.L, 2005,V415(1-3):85-88
    [155] Ranjit K.T, Willner I, Bossmann S, et al. Iron(Ⅲ) Phthalocyanine-Modified Titanium Dioxide: A Novel Photocatalyst for the Enhanced Photodegradation of Organic Pollutants[J]. J. Phys. Chem. B, 1998, V102(47):9397-9403
    [156] Michikazu H, Takeshi K, Mutsuko K, et al. Cu_2O as a photocatalyst for overall water splitting under visible light irradiation[J]. Chem. Commun (Cambridge), 1998,V3:357-358
    [157] Reddy E. P, Sun B, Smirniotis P. G. Transition Metal Modified TiO_2-Loaded MCM-41 Catalysts for Visible- and UV-Light Driven Photodegradation of Aqueous Organic Pollutants[J]. J.Phys. Chem. B, 2004, V108(44):17198-17205
    [158] Zhao J. C, Chen C. C, Ma W. H. Photocatalytic degradation of organic pollutants under visible light irradiation[J]. Top. Catal, 2005, V35(3-4):269-278
    [159] Gaya U. I, Abdullah A. H. Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide: A review of fundamentals, progress and problems[J]. J.Photochem. Photobiol. C: Photochem. Rev, 2008, V9(1):1-12
    [1]Marvel C.S,Tanenbaum A.L.The Preparation of 1,4-dihalogen derivatives of butane[J].J.Am.Chem.Soc,1922,V44(11):2645-2650
    [2]Mele G,Sole R.D,Vasapollo G,et al.4-Nitrophenol photodegradation TRMC,XPS,and EPR characterizations of polycrystalline TiO_2 porphyrin impregnated powders and their catalytic activity for 4-Nntrophenol photodegradation in aqueous suspension[J].J.Phys.Chem.B,2005,V109(25):12347-12352
    [3]Mele G,Sole R.D,Vasapollo G,et al.Polycrystalline TiO_2 impregnated with cardanol-based porphyrins for the photocatalytic degradation of 4-nitrophenol[J].Green Chem,2004,V6(12):604-608.
    [4]Mele G,Sole R.D,Vasapollo G,et al.TiO_2-based photocatalysts impregnated with metallo-porphyrins employed for degradation of 4-nitrophenol in aqueous solutions:role of metal and macrocycle[J].Res.Chem.Intermed,2007,V33(3-5):433-448
    [5]Mele G,Garca-Lpez E,Palmisano L,et al.Hotocatalytic Degradation of 4-Nitrophenol in Aqueous Suspension by Using Polycrystalline TiO_2 Impregnated with Lanthanide Double-Decker Phthalocyanine ComplexesJ[J].Phys.Chem.C,2007,V111(17):6581-6588
    [6]Mele G,Sole R.D,Vasapollo G,et al.Photocatalytic degradation of 4-nitrophenol in aqueous suspension by using polycrystalline TiO_2 impregnated with functionalized Cu(Ⅱ)-porphyrin or Cu(Ⅱ)-phthalocyanine[J].J.Catal,2003,V217(2):334-342
    [1]Lindsey J.S,Schreiman I.C,Hsu H.C,et al.Rothemund and Adler-Longo reactions revisited:synthesis of tetraphenylporphyrins under equilibrium conditions[J].J.Org.Chem,1987,V52(5):827-836
    [2]Mele G,Sole R.D,Vasapollo G,et al.Polycrystalline TiO_2 impregnated with cardanol-based porphyrins for the photocatalytic degradation of 4-nitrophenol[J].Green Chem,2004,V6(12):604-608.
    [3]Mele G,Sole R.D,Vasapollo G,et al.TiO_2-based photocatalysts impregnated with metallo-porphyrins employed for degradation of 4-nitrophenol in aqueous solutions:role of metal and macrocycle[J].Res,Chem,Intermed,2007,V33(3-5):433-448
    [4]Lee C.H,Lindsey J.S.One-flask synthesis of meso-substituted dipyrromethanes and their application in the synthesis of trans-substituted porphyrin building blocks[J].Tetrahedron,1994,V50(39):11427-11440
    [5]Mele G,Sole R.D,Vasapollo G,et al.Photocatalytic degradation of 4-nitrophenol in aqueous suspension by using polycrystalline TiO_2 impregnated with functionalized Cu(Ⅱ)-porphyrin or Cu(Ⅱ)-phthalocyanine[J].J.Catal,2003,V217(2):334-342
    [1]Ou Z.P,Wenbo E,Zhu W.H,Et al.Effect of Axial Ligands and Macrocyclic Structure on Redox Potentials and Electron-Transfer Mechanisms of Sn(Ⅳ) Porphyrins[J].Inorg.Chem,2007,V46(25):10840-10849
    [2]Poddutoori P.K,Poddutoori P,Maiya B.G.,et al.Redox Control of Photoinduced Electron Transfer in Axial Terpyridoxy Porphyrin Complexes[J].Inorg.Chem,2008,V47(17),7512-7522
    [3]Crossley M.J,Thordarson P,Wu R.A.S.Efficient formation of lipophilic dihydroxotin(Ⅳ) porphyrins and bis-porphyrins[J].J.Chem.Soc.Perkin Trans,2001,V1:2294-2302
    [4]Kim W,Park J,Jo H.J,et al.Visible Light Photocatalysts Based on Homogeneous and Heterogenized Tin Porphyrins[J].J.Phys.Chem.C,2008,V112(2):491-499
    [5]Arnold D.P,Blok J.The coordination chemistry of tin porphyrin complexes[J].Coordin.Chem.Rev,2004,248(3-4):299-319
    [1]Polo E,Amadelli R,Carassiti V,et al.Photocatalytic oxygenation of hydrocarbons on titania/iron-porphyrin hybrid catalysts[J].Stud.Surf.Sci.Catal(Heterogeneous Catalysis and Fine Chemicals Ⅲ),1993,V78:409-416
    [2]Molinari,A,Amadelli R,Antolini L,et al.Phororedox and photocatalytic processes on Fe(Ⅲ)-porphyrin surface modified nanocrystalline TiO_2[J].J.Mol.Catal.A:Chem,2000,V158(2):521-531
    [3]Campbell W.M,Burrell A.K,Officer D.L,et al.Porphyrins as light harvesters in the dye-sensitised TiO_2 solar cell[J].Coordin.Chem.Rev,2004,V248(13-14):1363-1379
    [4]Fethi B,Sophie G,Tebello N,et al.Tuning the redox properties of metalloporphyrin-and metallophthalocyanine-based molecular electrodes for the highest electrocatalytic activity in the oxidation of thiols[J].Phys.Chem.Chem.Phys,2007,V9(26):3383-3396.
    [5]Nyokong T,Bediouib F.Self-assembled monolayers and electropolymerized thin films of phthalocyanines as molecular materials for electroanalysis[J].Journal of Porphyrins and Phthalocyanines Microreview J.Porphyrins Phthalocyanines,2006,V10:1101-1115
    [6] Kim W, Park J, Jo H. J, et al. Visible Light Photocatalysts Based on Homogeneous and Heterogenized Tin Porphyrins[J]. J. Phys. Chem, C 2008, V112(2):491-499
    [7] Zhao J. C, Chen C. C, Ma W. H. Photocatalytic degradation of organic pollutants under visible light irradiation[J]. Top. Catal, 2005, V35(3-4):269-278
    [8] Mele G, Sole R. D, Vasapollo G, et al. Photocatalytic degradation of 4-nitrophenol in aqueous suspension by using polycrystalline TiO_2 impregnated with functionalized Cu(Ⅱ)-porphyrin or Cu(Ⅱ)-phthalocyanine[J]. J. Catal, 2003, V217 (2):334-342
    [9] Mele G, Sole R. D, Vasapollo G, et al. 4-Nitrophenol photodegradation TRMC, XPS, and EPR characterizations of polycrystalline TiO_2 porphyrin impregnated powders and their catalytic activity for 4-Nntrophenol photodegradation in aqueous suspension[J]. J. Phys.Chem. B, 2005, V109 (25):12347-12352
    [10] Couselo N, Einschlag G, Fernando S, et al. Tungsten-Doped TiO_2 vs Pure TiO_2 Photocatalysts: Effects on Photobleaching Kinetics and Mechanism[J]. J. Phys. Chem. C,2008, V112(4): 1094-1100
    [11] Karapire C, Zafer C, Siddik L. Studies on photophysical and electrochemical properties of synthesized hydroxy perylenediimides in nanostructured titania thin films[J]. Synthetic.Met, 2004, V145(1): 51-60.
    [12] Nazeeruddin M. K, Zakeeruddin S. M, Lagref J. J, et al. Stepwise assembly of amphiphilic ruthenium sensitizers and their applications in dye-sensitized solar cell[J].Coord. Chem. Rev, 2004, V248(13-14): 1317-1328.
    [13] O'Regan B, Graetzel M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal titanium dioxide films[J]. Nature (London, United Kingdom), 1991,V353(6346):737-740
    [14] Nazeeruddin M. K, Kay A, Rodicio I, et al. Conversion of light to electricity by cis-X2bis(2.2'-bipyridyl-4,4'-dicarboxylate)ruthenium(Ⅱ) charge-transfer sensitizers (X =Cl~-, Br~- I~-, CN~-, and SCN~-) on nanocrystalline titanium dioxide electrodes [J]. J. Am. Chem.Soc, 1993,V115(14):6382-90.
    [15] Villarreal T. L, Bogdanoff P, Salvador P, et al. Photocatalytic oxidation on nanostructured chalcogenide modified titanium dioxide[J]. Solar Energy Mater. Solar Cells, 2004, V83(4):347-362
    [16] Iesce M. R, Graziano M. L, Cermola F, et al. Effects of sensitizers on the photodegradation of the systemic fungicide triadimenol[J]. Chemosphere, 2003,V51(2): 163-166
    [17] Ranjit K. T, Willner I, Bossman S, et al. Iron(Ⅲ) Phthalocyanine-Modified Titanium Dioxide: A Novel Photocatalyst for the Enhanced Photodegradation of Organic Pollutants[J]. J. Phys. Chem. B, 1998, V102(47):9397-9403
    [18] Mele G, Garca-Lpez E, Palmisano L, et al. Hotocatalytic Degradation of 4-Nitrophenol in Aqueous Suspension by Using Polycrystalline TiO_2 Impregnated with Lanthanide Double-Decker Phthalocyanine Complexes[J]. J. Phys. Chem. C, 2007, V111(17):6581-6588
    [19] McCarthy J. R, Weissleder R. Model systems for fluorescence and singlet oxygen quenching by metalloporphyrins[J]. Chem. Med. Chem, 2007, 2(3):360-365

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700