用户名: 密码: 验证码:
FeCP配位聚合物在活体分析化学中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
脑研究已经成为了当代科学研究的热点,随着自然科学的不断发展和多学科交叉,对脑的认识和研究的手段也逐步地深入,并取得了长足进展。脑功能相关的神经化学物质的活体分析对认识和了解生理、病理过程中的化学信息以及相关疾病的诊断和治疗有着极为重要的意义,一直是人们关注的热点问题。美国政府更是在2013年10月提出了脑研究的长期计划。脑神经化学是涉及到分析化学和生命科学等多种学科相互交叉的前沿研究领域,分析化学的发展促进了脑神经化学的发展,而脑神经化学的发展也给分析化学提供了更多的机遇和挑战。目前虽然微透析活体取样-在线检测的方法已经比较成熟,在脑神经化学研究中的应用也最多,但随着脑神经科学的发展,对于分析方法的要求也将更加苛刻。脑神经化学过程的分析科学研究中的瓶颈问题在于新型分析体系的提出和建立,而新的分析体系的建立可以通过两种途径来实现:其一是分析方法本身的进一步发展,其二是基于其它学科如材料科学、生物化学等的最新进展所构建的新化学体系以及分析化学新原理和新技术。
     本论文针对上述瓶颈问题,主要探讨可用于活体分析的新型分析体系。通过探讨Fe基无限配位聚合物(FeCP)和聚二甲基硅氧烷(PDMS)型微流控芯片等新材料新技术在活体分析化学中的应用,构建了基于FeCP配位聚合物的葡萄糖活体比色检测法和基于PDMS型微流控芯片的抗坏血酸和Mg2+的活体在线检测法。本论文的主要研究工作如下:
     (1)基于材料化学的最新进展,我们利用具有电化学活性的二羧酸二茂铁(H2FcDC)作为配体,通过其上的羧酸根与不同金属离子M2+/3+之间的配位作用制得了一系列无限配位聚合物(ICPs)。对该系列ICPs材料的形貌及结构进行了表征,最终选取中心离子为Fe3+的FeCP配位聚合物为代表性产物,并对其电化学及化学性能进行了研究。研究发现,FeCP保持了配体H2FcDC的电化学活性,可实现对H2O2的电化学双催化,也就是既可以催化氧化H2O2,也可以催化还原H2O2。同时研究发现FeCP在不同的pH环境下表现出了不同的模拟酶性质,比如在中性pH环境下FeCP可以直接化学歧化H2O2,具备过氧化氢酶的性质;而在酸性pH环境下,FeCP可以在H2O2存在时将过氧化物酶底物TMB催化氧化,具备过氧化物酶的性质。FeCP这一pH依赖的模拟酶性质使其在活体分析的研究中具有很大的潜在应用。
     (2)基于FeCP配位聚合物在不同pH下的不同模拟酶行为,着重研究了FeCP配位聚合物的过氧化氢模拟酶性质并对其进行了应用探讨。实验结果表明,在中性环境下FeCP确实具有过氧化氢酶的性质,可以直接化学歧化H2O2生成H2O和O2。我们推测FeCP这种固有的模拟酶性质可能是来自于其本身的Fe2+/Fe3+活性中心。基于FeCP的这一性质,我们将可以把分子O2两电子还原为H2O2的钴卟啉(CoP)作为氧还原的第一电化学催化剂,和可将生成的H2O2化学歧化为H2O和O2的FeCP作为氧还原的第二化学催化剂,同时掺杂在离子液体(Ionic liquids,IL)型的碳纳米管凝胶中,CoP与FeCP连续的发挥作用,提高了O2的利用率,实现了中性环境下氧气的表观四电子还原。
     (3)基于FeCP配位聚合物在不同pH下的不同模拟酶行为,着重研究了FeCP配位聚合物固有的过氧化物模拟酶性质并对其进行了应用探讨。实验结果表明,在酸性pH值下FeCP确实具有过氧化物酶的性质,并排除了可能来自FeCP泄漏的Fe离子(Fe2+/Fe3+)的干扰。对不同条件下FeCP配位聚合物的过氧化物酶活性进行了考察,得出最优条件为在25mM Tris-HCl和0.1M KCl,pH=4.0的缓冲溶液中,于40oC进行反应。在最优条件下,我们利用H2O2存在下FeCP催化氧化过氧化物酶底物ABTS的显色反应实现了H2O2的比色法检测,进一步的利用葡萄糖氧化酶实现了葡萄糖的比色法检测。实验结果证明基于ABTS显色的比色检测法对葡萄糖具有很好的选择性和线性,并最终实现了鼠脑内葡萄糖的检测。
     (4)通过将PDMS型的微流控芯片与在线微透析采样技术相结合,我们成功的制备了一种简单有效的可用于同时检测鼠脑内抗坏血酸和镁离子的在线电化学检测系统。虽然微透析活体取样-电化学在线检测的方法已经比较成熟,但其中承载电化学传感器的商用微流动电解池的结构却固定统一,不可更改,这极大的限制了其在双组份或多组分脑化学物质检测中的应用。本工作利用微流控芯片结构上的可设计性与灵活性构建了新型的电化学检测器代替商用的微流动电解池,成功地用于了抗坏血酸与镁离子无交叉干扰的同时在线检测。该基于微流控芯片的在线电化学检测系统具有响应好,选择性高,稳定性好和可重复性等优点,因此可用于鼠脑中抗坏血酸与镁离子的连续同时检测。这一结果对实现鼠脑内多组分的检测具有技术上及实验上的借鉴意义,有望发现其在生理和病理研究上的其他应用。
Brain research has become one of the most hottest research fields and along with thedevelopment of natural science and multidisciplinary, it has been studied deeper and knownbetter and as a result, considerable progress has been made. The U.S. government hasproposed a brain research program in October,2013. The in vivo analysis of neurochemicalsrelated to brain function has drawn extensive attention because it plays an important role inknowing the chemical information in physiological and pathological processes and in thediagnosis and treatment of related diseases. The research of neurochemistry is in relation toanalytical chemistry, life sciences and other subjects. The development of analytical chemistryhas promoted the development of neuroscience, which also returns more opportunities andchallenges to analytical chemistry. Although in vivo microdialysis sampling-onlinevoltammetry methods are relatively mature and have been used most for the neurochemistrystudy, however, there still needs more novel analytical approaches due to the fast developmentof neuroscience. In our opinion, the bottlenecks of analytical science in neurochemistry are toestablish new analytical systems, which can be achieved by the two ways: the innovation ofanalytical method and building new chemical systems, analytical chemistry principles andnew technology based on the latest developments in other subjects, such as materials scienceand biochemistry.
     Aiming at the key problems mentioned above, this dissertation focuses on thedevelopment of new in vivo analytical approaches. By exploring the application of Fe-basedinfinite coordination polymer (FeCP) and PDMS-based microfluidic technique, we fabricateda colorimetric method based on the FeCP for detecting the glucose in rat brain and also a newmicrofluidic-based online detecting system for the measurements of ascorbate and Mg2+. Thework undertaken here can be summarized as follows:
     (1) In this work, based on the latest development in materials science, we have prepareda series of electrochemically active infinite coordination polymers (ICPs) by a reaction ofdifferent metal ions with1,1’-ferrocenedicarboxylic acid in an aqueous solution. Themorphologies and structures of the resulting ICPs were characterized and finally FeCP waschosen to be studied further. The electrochemical and chemical properties of FeCP have beeninvestigated carefully and the research finds out FeCP shows bifunctional mediation of H2O2for electrochemical oxidation of H2O2to O2and reduction to H2O. Moreover, FeCP showsdifferent mimetic properties depending on pH. In neutral solution, FeCP exhibits thecatalase-like activity and can catalyze the disproportionation reaction of H2O2, while in acidic solution FeCP has the peroxidase-like activity and can catalytically oxidize the enzymesubstrate TMB. The different mimetic properties of FeCP make it have potential applicationsin the study of in vivo analysis.
     (2) Based on the different mimetic properties in different pH solution, this work focuseson the catalase-like activity and related application of FeCP in neutral solution. The researchproves that FeCP do have the catalase-like activity and can catalyze the disproportionationreaction of H2O2to H2O and O2. We speculate that the couple of Fe2+/Fe3+in FeCP plays akey role in the mimetic property. Based on the catalase-like activityof FeCP, cobalt porphyrin(CoP) is embedded into multiwalled carbon nanotube/ionic liquid (IL) bucky gel to serve asthe first electrocatalyst to reduce O2to H2O2while FeCP is also embedded into the gel as thesecond catalyst to disproportionate H2O2to H2O and O2. The new born O2was reduced againand as a result, the utilization of O2was greatly improved, evoking an apparent4e-reductionof O2into H2O in neutral media.
     (3) Based on the different mimetic properties in different pH solution, this work focuseson the peroxidase-like activity and related application of FeCP in acidic solution. Theresearch finds out that FeCP do have the peroxidase-like activity and has excluded thepossible interference from the leaching solution (Fe2+/Fe3+). The optimal condition for theactivity of FeCP is25mM Tris-HCl and0.1M KCl (pH4.0) and the reaction temperature is40oC. Under the optimal conditions, the FeCP as peroxidase mimetic provides a colorimetricassay for H2O2based on the catalytic oxidation of peroxidase substrate ABTS and moreperfect, an analytical platform for glucose detection was fabricated using glucose oxidase andthe as-prepared FeCP. The colorimetric detection method for glucose has good selectivity andlinearity and thus realized the measurements of glucose in rat brain.
     (4) By integrating microfluidic chip with in vivo microdialysis, we have successfullydeveloped a facile yet effective online electrochemical detecting system for continuous andsimultaneous monitoring of ascorbate and Mg2+in rat brain. Although in vivo microdialysissampling-online voltammetry methods are relatively mature, however, the commerciallyavailable flow cell used in these methods have been limited in the detection of two or morethan two components due to its uniform and unchangeable electrode structure and alignment.This work takes advantage of the designable and flexible cell structures of the microfluidicchip instead of the commercially available flow cell to establish a new system which enablesthe simultaneous measurements of ascorbate and Mg2+to be successfully achieved withoutcrosstalk. The microfluidic chip-based online electrochemical system is very responsive,highly selective, stable, and reproducible and is thus reliable and durable for the continuous and simultaneous measurements of ascorbate and Mg2+in cerebral systems. This study pavesa new avenue to in vivo multiple-neurochemical monitoring in a technically simple andexperimentally designable fashion, which is envisaged to find interesting applications inphysiological and pathological applications.
引文
[1] Verkhratsky A. Astrocytes in (patho)physiology of the nervous system[M]. InNeurotransmitter receptors in astrocytes. Haydon P. G., Parpura V., Eds, Springer, New York,2009:49-67.
    [2] Watson C.J., Venton B.J. and Kennedy R.T. In vivo measurements of neurotransmitters bymicrodialysis sampling[J]. Analytical Chemistry,2006,78(5):1391-1399.
    [3] Del Arco A., Segovia G., Fuxe K., et al. Changes in dialysate concentrations of glutamateand GABA in the brain: an index of volume transmission mediated actions?[J]. Journal ofNeurochemistry,2003,85(1):23-33.
    [4] Kullmann D.M. Spillover and synaptic cross talk mediated by glutamate and GABA in themammalian brain[J]. Volume Transmission Revisited,2000,125:339-351.
    [5] Stuart J.N., Hummon A.B. and Sweedler J.V. Peer reviewed: The chemistry of thought:neurotransmitters in the brain[J]. Analytical Chemistry,2004,76(7):120A-128A.
    [6] Stamford J.A. and Justice J.B. Peer reviewed: probing brain chemistry: voltammetrycomes of age[J]. Analytical Chemistry,1996,68(11):359A-363A.
    [7] Robinson D.L., Hermans A., Seipel A.T., et al. Monitoring rapid chemical communicationin the brain[J]. Chemical Reviews,2008,108(7):2554-2584.
    [8] Khan A.S. and Michael A.C. Invasive consequences of using micro-electrodes andmicrodialysis probes in the brain[J]. TrAC Trends in Analytical Chemistry,2003,22(8):503-508.
    [9] Zhang M. and Mao L. Enzyme-based amperometric biosensors for continuous and on-linemonitoring of cerebral extracellular microdialysate[J]. Frontiers in Bioscience,2005,10:345-352.
    [10] Choi I.-Y., Lee S.-P., Guilfoyle D.N., et al. In vivo NMR studies of neurodegenerativediseases in transgenic and rodent models[J]. Neurochemical Research,2003,28(7):987-1001.
    [11] Girod M., Shi Y., Cheng J.-X., et al. Desorption electrospray ionization imaging massspectrometry of lipids in rat spinal cord[J]. Journal of the American Society for MassSpectrometry,2010,21(7):1177-1189.
    [12] Greco J., Sakaie K., Aminipour S., et al. Magnetic resonance spectroscopy: an in vivotool for monitoring cerebral injury in SIV‐infected macaques[J]. Journal of MedicalPrimatology,2002,31(4‐5):228-236.
    [13] Khandelwal P., Beyer C.E., Lin Q., et al. Studying rat brain neurochemistry usingnanoprobe NMR spectroscopy: a metabonomics approach[J]. Analytical Chemistry,2004,76(14):4123-4127.
    [14] Rex A. and Fink F. Applications of laser-induced fluorescence spectroscopy for thedetermination of NADH in experimental neuroscience[J]. Laser Physics Letters,2006,3(9):452-459.
    [15] Sasaki T., Takeda Y., Taninishi H., et al. Dynamic changes in cortical NADHfluorescence in rat focal ischemia: evaluation of the effects of hypothermia on propagation ofperi-infarct depolarization by temporal and spatial analysis[J]. Neuroscience Letters,2009,449(1):61-65.
    [16] Ungerstedt U. and Pycock C. Functional correlates of dopamine neurotransmission[J].Bulletin der Schweizerischen Akademie der Medizinischen Wissenschaften,1974,30(1-3):44-45.
    [17] Gaddum J. Push-pull cannulae. Journal of Physiology-London[J],1961,155: P1-P28.
    [18] Delgado J., DeFeudis F., Roth R., et al. Dialytrode for long term intracerebral perfusionin awake monkeys[J]. Archives internationales de pharmacodynamie et de therapie,1972,198(1):9-21.
    [19] Zetterstr m T., Vernet L., Ungerstedt U., et al. Purine levels in the intact rat brain.Studies with an implanted perfused hollow fibre[J]. Neuroscience letters,1982,29(2):111-115.
    [20] Nicholson C. Interaction between diffusion and Michaelis-Menten uptake of dopamineafter iontophoresis in striatum[J]. Biophysical Journal,1995,68(5):1699-1715.
    [21] Benveniste H., Drejer J., Schousboe A., et al. Regional cerebral glucose phosphorylationand blood flow after insertion of a microdialysis fiber through the dorsal hippocampus in therat[J]. Journal of Neurochemistry,1987,49(3):729-734.
    [22] Clapp-Lilly K.L., Roberts R.C., Duffy L.K., et al. An ultrastructural analysis of tissuesurrounding a microdialysis probe[J]. Journal of Neuroscience Methods,1999,90(2):129-142.
    [23] Westergren I., Nystr m B., Hamberger A., et al. Intracerebral dialysis and the blood‐brain barrier[J]. Journal of Neurochemistry,1995,64(1):229-234.
    [24] Benveniste H. and Hüttemeier P.C. Microdialysis-theory and application[J]. Progress inNeurobiology,1990,35(3):195-215.
    [25] Larsson C.I. The use of an “internal standard” for control of the recovery inmicrodialysis[J]. Life Sciences,1991,49(13): PL73-PL78.
    [26] Nordstr m C.-H. and Ungerstedt U. Microdialysis: principles and techniques[M].Anaesthesia, Pain, Intensive Care and Emergency APICE. Gullo, A, Springer,2006:61-77.
    [27] Klaus S., Heringlake M. and Bahlmann L. Bench-to-bedside review: microdialysis inintensive care medicine[J]. Critical Care,2004,8(5):363-368.
    [28] Tisdall M.M. and Smith M. Cerebral microdialysis: research technique or clinical tool[J].British Journal of Anaesthesia,2006,97(1):18-25.
    [29] Siddiqui M.M. and Shuaib A. Intracerebral microdialysis and its clinical application: areview[J]. Methods,2001,23(1):83-94.
    [30] Plock N. and Kloft C. Microdialysis-theoretical background and recent implementationin applied life-sciences[J]. European Journal of Pharmaceutical Sciences,2005,25(1):1-24.
    [31] Parkin M.C., Hopwood S.E., Boutelle M.G., et al. Resolving dynamic changes in brainmetabolism using biosensors and on-line microdialysis[J]. TrAC Trends in AnalyticalChemistry,2003,22(8):487-497.
    [32] Rice M.E. Ascorbate regulation and its neuroprotective role in the brain[J]. Trends inNeurosciences,2000,23(5):209-216.
    [33] Rebec G.V. and Christopher Pierce R. A vitamin as neuromodulator: ascorbate releaseinto the extracellular fluid of the brain regulates dopaminergic and glutamatergictransmission[J]. Progress in Neurobiology,1994,43(6):537-565.
    [34] Zhang M., Liu K., Gong K., et al. Continuous on-line monitoring of extracellularascorbate depletion in the rat striatum induced by global ischemia with carbonnanotube-modified glassy carbon electrode integrated into a thin-layer radial flow cell[J].Analytical Chemistry,2005,77(19):6234-6242.
    [35] Zhang Z., Zhao L., Lin Y., et al. Online electrochemical measurements of Ca2+and Mg2+in rat brain based on divalent cation enhancement toward electrocatalytic NADH oxidation[J].Analytical Chemistry,2010,82(23):9885-9891.
    [36] Clapham D.E. Calcium signaling[J]. Cell,1995,80(2):259-268.
    [37] Mattson M.P. Calcium and neurodegeneration[J]. Aging Cell,2007,6(3):337-350.
    [38] Saris N.-E.L., Mervaala E., Karppanen H., et al. Magnesium: an update on physiological,clinical and analytical aspects[J]. Clinica Chimica Acta,2000,294(1):1-26.
    [39] Türkyilmaz C., Türkyilmaz Z., Atalay Y., et al. Magnesium pre-treatment reducesneuronal apoptosis in newborn rats in hypoxia–ischemia[J]. Brain Research,2002,955(1):133-137.
    [40] Killilea D.W. and Ames B.N. Magnesium deficiency accelerates cellular senescence incultured human fibroblasts[J]. Proceedings of the National Academy of Sciences,2008,105(15):5768-5773.
    [41] Slutsky I., Abumaria N., Wu L.-J., et al. Enhancement of learning and memory byelevating brain magnesium[J]. Neuron,2010,65(2):165-177.
    [42] Lin Y., Liu K., Yu P., et al. A facile electrochemical method for simultaneous and on-linemeasurements of glucose and lactate in brain microdialysate with prussian blue as theelectrocatalyst for reduction of hydrogen peroxide[J]. Analytical Chemistry,2007,79(24):9577-9583.
    [43] Lin Y., Zhu N., Yu P., et al. Physiologically relevant online electrochemical method forcontinuous and simultaneous monitoring of striatum glucose and lactate following globalcerebral ischemia/reperfusion[J]. Analytical Chemistry,2009,81(6):2067-2074.
    [44] Verheij M.M. and Cools A.R. Twenty years of dopamine research: individual differencesin the response of accumbal dopamine to environmental and pharmacological challenges[J].European Journal of Pharmacology,2008,585(2):228-244.
    [45] Lin Y., Zhang Z., Zhao L., et al. A non-oxidative electrochemical approach to onlinemeasurements of dopamine release through laccase-catalyzed oxidation and intramolecularcyclization of dopamine[J]. Biosensors and Bioelectronics,2010,25(6):1350-1355.
    [46] Oh M. and Mirkin C.A. Chemically tailorable colloidal particles from infinitecoordination polymers[J]. Nature,2005,438(7068):651-654.
    [47] Sun X., Dong S. and Wang E. Coordination-induced formation of submicrometer-scale,monodisperse, spherical colloids of organic-inorganic hybrid materials at room temperature[J].Journal of the American Chemical Society,2005,127(38):13102-13103.
    [48] Férey G. Hybrid porous solids: past, present, future[J]. Chemical Society Reviews,2008,37(1):191-214.
    [49] Cho S.-H., Ma B., Nguyen S.T., et al. A metal–organic framework material that functionsas an enantioselective catalyst for olefin epoxidation[J]. Chemical Communications,2006,(24):2563-2565.
    [50] Rowsell J.L. and Yaghi O.M. Strategies for hydrogen storage in metal–organicframeworks[J]. Angewandte Chemie International Edition,2005,44(30):4670-4679.
    [51] Bae Y.-S., Farha O.K., Spokoyny A.M., et al. Carborane-based metal–organicframeworks as highly selective sorbents for CO2over methane[J]. Chemical Communications,2008,(35):4135-4137.
    [52] Evans O.R. and Lin W. Crystal engineering of nonlinear optical materials based oninterpenetrated diamondoid coordination networks[J]. Chemistry of Materials,2001,13(8):2705-2712.
    [53] Horcajada P., Serre C., Vallet‐RegíM., et al. Metal–organic frameworks as efficientmaterials for drug delivery[J]. Angewandte Chemie,2006,118(36):6120-6124.
    [54] Robson R. Design and its limitations in the construction of bi-and poly-nuclearcoordination complexes and coordination polymers (aka MOFs): a personal view[J]. DaltonTransactions,2008,(38):5113-5131.
    [55] Hoskins B.F. and Robson R. Infinite polymeric frameworks consisting of threedimensionally linked rod-like segments[J]. Journal of the American Chemical Society,1989,111(15):5962-5964.
    [56] Kurth D.G. and Higuchi M. Transition metal ions: weak links for strong polymers[J]. SoftMatter,2006,2(11):915-927.
    [57] Spokoyny A.M., Kim D., Sumrein A., et al. Infinite coordination polymer nano-andmicroparticle structures[J]. Chemical Society Reviews,2009,38(5):1218-1227.
    [58] Oh M. and Mirkin C.A. Ion exchange as a way of controlling the chemical compositionsof nano-and microparticles made from infinite coordination polymers[J]. Angewandte Chemie,2006,118(33):5618-5620.
    [59] Jung S. and Oh M. Monitoring shape transformation from nanowires to nanocubes andsize-controlled formation of coordination polymer particles[J]. Angewandte ChemieInternational Edition,2008,47(11):2049-2051.
    [60] Farha O.K., Spokoyny A.M., Mulfort K.L., et al. Gas-sorption properties of cobalt(II)–carborane‐based coordination polymers as a function of morphology[J]. Small,2009,5(15):1727-1731.
    [61] Lu W., Chui S.S.-Y., Ng K.-M., et al. A submicrometer wire-to-wheel metamorphism ofhybrid tridentate cyclometalated platinum(II) complexes[J]. Angewandte ChemieInternational Edition,2008,47(24):4568-4572.
    [62] Jeon Y.-M., Heo J. and Mirkin C.A. Dynamic interconversion of amorphousmicroparticles and crystalline rods in salen-based homochiral infinite coordinationpolymers[J]. Journal of the American Chemical Society,2007,129(24):7480-7481.
    [63] Jeon Y.M., Armatas G.S., Kim D., et al. Tr ger's-base-derived infinite coordinationpolymer microparticles[J]. Small,2009,5(1):46-50.
    [64] Rieter W.J., Taylor K.M., An H., et al. Nanoscale metal-organic frameworks as potentialmultimodal contrast enhancing agents[J]. Journal of the American Chemical Society,2006,128(28):9024-9025.
    [65] Imaz I., Maspoch D., Rodriguez-Blanco C., et al. Valence-tautomeric metal-organicnanoparticles[J]. Angewandte Chemie International Edition,2008,47(10):1857-1860.
    [66] Jeon Y.-M., Armatas G.S., Heo J., et al. Amorphous infinite coordination polymermicroparticles: a new class of selective hydrogen storage materials[J]. Advanced Materials,2008,20(11):2105-2110.
    [67] Zhao D., Yuan D. and Zhou H.-C. The current status of hydrogen storage inmetal-organic frameworks[J]. Energy&Environmental Science,2008,1(2):222-235.
    [68] Cho W., Lee H.J. and Oh M. Growth-controlled formation of porous coordinationpolymer particles[J]. Journal of the American Chemical Society,2008,130(50):16943-16946.
    [69] Shen Z., Zhang G., Zhou H., et al. Macroporous lanthanide-organic coorination polymerfoams and their corresponding lanthanide oxides[J]. Advanced Materials,2008,20(5):984-988.
    [70] Manz A., Harrison D.J., Verpoorte E.M., et al. Planar chips technology forminiaturization and integration of separation techniques into monitoring systems: capillaryelectrophoresis on a chip[J]. Journal of Chromatography A,1992,593(1):253-258.
    [71] Whitesides G.M. The origins and the future of microfluidics[J]. Nature,2006,442(7101):368-373.
    [72] Stroock A.D. and Whitesides G.M. Components for integrated poly (dimethylsiloxane)microfluidic systems[J]. Electrophoresis,2002,23(20):3461-3473.
    [73] Whitesides G. and Stroock A. Flexible methods for microfluidics[J]. Phys Today,2001,54(6):42-48.
    [74] Mijatovic D., Eijkel J. and Van Den Berg A. Technologies for nanofluidic systems:top-down vs. bottom-up-a review[J]. Lab on a Chip,2005,5(5):492-500.
    [75] Czaplewski D.A., Kameoka J., Mathers R., et al. Nanofluidic channels with ellipticalcross sections formed using a nonlithographic process[J]. Applied Physics Letters,2003,83(23):4836-4838.
    [76] Hong J.W. and Quake S.R. Integrated nanoliter systems[J]. Nature Biotechnology,2003,21(10):1179-1183.
    [77] Weibel D.B., Kruithof M., Potenta S., et al. Torque-actuated valves for microfluidics[J].Analytical Chemistry,2005,77(15):4726-4733.
    [78] Nguyen N.-T. and Wu Z. Micromixers-a review[J]. Journal of Micromechanics andMicroengineering,2005,15(2): R1-16.
    [79] Günther A., Jhunjhunwala M., Thalmann M., et al. Micromixing of miscible liquids insegmented gas-liquid flow[J]. Langmuir,2005,21(4):1547-1555.
    [80] Garstecki P., Fischbach M.A. and Whitesides G.M. Design for mixing using bubbles inbranched microfluidic channels[J]. Applied physics letters,2005,86(24):244108.
    [81] Laser D.J. and Santiago J.G. A review of micropumps[J]. Journal of Micromechanics andMicroengineering,2004,14(6): R35-R64.
    [82] Anderson J.R., Chiu D.T., Wu H., et al. Fabrication of microfluidic systems in poly(dimethylsiloxane)[J]. Electrophoresis,2000,21:27-40.
    [83] Thorsen T., Maerkl S.J. and Quake S.R. Microfluidic large-scale integration[J]. Science,2002,298(5593):580-584.
    [84] Hansen C.L., Skordalakes E., Berger J.M., et al. A robust and scalable microfluidicmetering method that allows protein crystal growth by free interface diffusion[J]. Proceedingsof the National Academy of Sciences,2002,99(26):16531-16536.
    [85] Shim J.-u., Cristobal G., Link D.R., et al. Using microfluidics to decouple nucleation andgrowth of protein crystals[J]. Crystal Growth and Design,2007,7(11):2192-2194.
    [86] Zheng B., Tice J.D., Roach L.S., et al. A droplet-based, composite PDMS/Glass capillarymicrofluidic system for evaluating protein crystallization conditions by microbatch andvapor-diffusion methods with on-chip X-ray diffraction[J]. Angewandte Chemie InternationalEdition,2004,43(19):2508-2511.
    [87] Ramsey R. and Ramsey J. Generating electrospray from microchip devices usingelectroosmotic pumping[J]. Analytical Chemistry,1997,69(6):1174-1178.
    [88] Dittrich P.S. and Manz A. Lab-on-a-chip: microfluidics in drug discovery[J]. NatureReviews Drug Discovery,2006,5(3):210-218.
    [89] Pihl J., Karlsson M. and Chiu D.T. Microfluidic technologies in drug discovery[J]. DrugDiscovery Today,2005,10(20):1377-1383.
    [90] Sia S.K. and Whitesides G.M. Microfluidic devices fabricated in poly (dimethylsiloxane)for biological studies[J]. Electrophoresis,2003,24(21):3563-3576.
    [91] Wheeler A.R., Throndset W.R., Whelan R.J., et al. Microfluidic device for single-cellanalysis[J]. Analytical Chemistry,2003,75(14):3581-3586.
    [92] Werdich A.A., Lima E.A., Ivanov B., et al. A microfluidic device to confine a singlecardiac myocyte in a sub-nanoliter volume on planar microelectrodes for extracellularpotential recordings[J]. Lab on a Chip,2004,4(4):357-362.
    [93] Dittrich P.S. and Manz A. Single-molecule fluorescence detection in microfluidicchannels-the Holy Grail in μTAS?[J]. Analytical and Bioanalytical Chemistry,2005,382(8):1771-1782.
    [94] Stavis S.M., Edel J.B., Samiee K.T., et al. Single molecule studies of quantum dotconjugates in a submicrometer fluidic channel[J]. Lab on a Chip,2005,5(3):337-343.
    [95] Lee C.-C., Sui G., Elizarov A., et al. Multistep synthesis of a radiolabeled imaging probeusing integrated microfluidics[J]. Science,2005,310(5755):1793-1796.
    [96] Garstecki P., Gitlin I., DiLuzio W., et al. Formation of monodisperse bubbles in amicrofluidic flow-focusing device[J]. Applied Physics Letters,2004,85(13):2649-2651.
    [97] Ga án-Calvo A.M. and Gordillo J.M. Perfectly monodisperse microbubbling by capillaryflow focusing[J]. Physical Review Letters,2001,87(27):274501.
    [98] Thorsen T., Roberts R.W., Arnold F.H., et al. Dynamic pattern formation in avesicle-generating microfluidic device[J]. Physical Review Letters,2001,86(18):4163.
    [99] Link D., Anna S.L., Weitz D., et al. Geometrically mediated breakup of drops inmicrofluidic devices[J]. Physical Review Letters,2004,92(5):054503.
    [100] Anna S.L., Bontoux N. and Stone H.A. Formation of dispersions using “flow focusing”in microchannels[J]. Applied Physics Letters,2003,82(3):364-366.
    [101] Tan Y.-C., Fisher J.S., Lee A.I., et al. Design of microfluidic channel geometries for thecontrol of droplet volume, chemical concentration, and sorting[J]. Lab on a Chip,2004,4(4):292-298.
    [102] Xu S., Nie Z., Seo M., et al. Generation of monodisperse particles by usingmicrofluidics: control over size, shape, and composition[J]. Angewandte Chemie,2005,117(5):734-738.
    [103] Wolfe D.B., Conroy R.S., Garstecki P., et al. Dynamic control ofliquid-core/liquid-cladding optical waveguides[J]. Proceedings of the National Academy ofSciences of the United States of America,2004,101(34):12434-12438.
    [104] Kerbage C. and Eggleton B. Tunable microfluidic optical fiber gratings[J]. AppliedPhysics Letters,2003,82(9):1338-1340.
    [105] Datta A., Eom I.-Y., Dhar A., et al. Microfabrication and characterization of TeflonAF-coated liquid core waveguide channels in silicon[J]. Sensors Journal, IEEE,2003,3(6):788-795.
    [106] Balslev S. and Kristensen A. Microfluidic single-mode laser using high-order Bragggrating and antiguiding segments[J]. Optics Express,2005,13(1):344-351.
    [107] Campbell K., Groisman A., Levy U., et al. A microfluidic2×2optical switch[J].Applied Physics Letters,2004,85(25):6119-6121.
    [108] Vezenov D.V., Mayers B.T., Conroy R.S., et al. A low-threshold, high-efficiencymicrofluidic waveguide laser[J]. Journal of the American Chemical Society,2005,127(25):8952-8953.
    [109] Hung P.J., Lee P.J., Sabounchi P., et al. Continuous perfusion microfluidic cell culturearray for high-throughput cell-based assays[J]. Biotechnology and Bioengineering,2005,89(1):1-8.
    [110] Chung B.G., Flanagan L.A., Rhee S.W., et al. Human neural stem cell growth anddifferentiation in a gradient-generating microfluidic device[J]. Lab on a Chip,2005,5(4):401-406.
    [111] Taylor A.M., Rhee S.W., Tu C.H., et al. Microfluidic multicompartment device forneuroscience research[J]. Langmuir,2003,19(5):1551-1556.
    [112] Walker G.M., Sai J., Richmond A., et al. Effects of flow and diffusion on chemotaxisstudies in a microfabricated gradient generator[J]. Lab on a Chip,2005,5(6):611-618.
    [113] Takayama S., Ostuni E., LeDuc P., et al. Selective chemical treatment of cellularmicrodomains using multiple laminar streams[J]. Chemistry&Biology,2003,10(2):123-130.
    [114] Lu H., Koo L.Y., Wang W.M., et al. Microfluidic shear devices for quantitative analysisof cell adhesion[J]. Analytical Chemistry,2004,76(18):5257-5264.
    [115] McClain M.A., Culbertson C.T., Jacobson S.C., et al. Microfluidic devices for thehigh-throughput chemical analysis of cells[J]. Analytical Chemistry,2003,75(21):5646-5655.
    [116] Cho B.S., Schuster T.G., Zhu X., et al. Passively driven integrated microfluidic systemfor separation of motile sperm[J]. Analytical Chemistry,2003,75(7):1671-1675.
    [117] Walters E.M., Clark S.G., Beebe D.J., et al. Mammalian embryo culture in amicrofluidic device. Germ Cell Protocols,2004:375-381.
    [118] Glasgow I.K., Zeringue H.C., Beebe D.J., et al. Handling individual mammalianembryos using microfluidics[J]. Biomedical Engineering, IEEE Transactions on,2001,48(5):570-578.
    [119] Lucchetta E.M., Lee J.H., Fu L.A., et al. Dynamics of Drosophila embryonic patterningnetwork perturbed in space and time using microfluidics[J]. Nature,2005,434(7037):1134-1138.
    [120] Lee J.N., Park C. and Whitesides G.M. Solvent compatibility ofpoly(dimethylsiloxane)-based microfluidic devices[J]. Analytical Chemistry,2003,75(23):6544-6554.
    [121] Jensen K.F. Silicon-based microchemical systems: characteristics and applications[J].Mrs Bulletin,2006,31(2):101-107.
    [122] L we H. and Ehrfeld W. State-of-the-art in microreaction technology: concepts,manufacturing and applications[J]. Electrochimica Acta,1999,44(21):3679-3689.
    [123] Snyder D.A., Noti C., Seeberger P.H., et al. Modular microreaction systems forhomogeneously and heterogeneously catalyzed chemical synthesis[J]. Helvetica Chimica Acta,2005,88(1):1-9.
    [124] Rolland J.P., Van Dam R.M., Schorzman D.A., et al. Solvent-resistant photocurable“liquid teflon” for microfluidic device fabrication[J]. Journal of the American ChemicalSociety,2004,126(8):2322-2323.
    [125] Auroux P.-A., Koc Y., Manz A., et al. Miniaturised nucleic acid analysis[J]. Lab on aChip,2004,4(6):534-546.
    [126] Breslauer D.N., Lee P.J. and Lee L.P. Microfluidics-based systems biology[J].Molecular Biosystems,2006,2(2):97-112.
    [127] Huh D., Gu W., Kamotani Y., et al. Microfluidics for flow cytometric analysis of cellsand particles[J]. Physiological Measurement,2005,26(3): R73-98.
    [128] Suh R., Takayama S. and Smith G.D. Microfluidic applications for andrology[J]. Journalof Andrology,2005,26(6):664-670.
    [129] Robbins T. The5-choice serial reaction time task: behavioural pharmacology andfunctional neurochemistry[J]. Psychopharmacology,2002,163(3-4):362-380.
    [130] Jones G., Hernandez T., Kendall D., et al. Dopaminergic and serotonergic functionfollowing isolation rearing in rats: study of behavioural responses and postmortem and in vivoneurochemistry[J]. Pharmacology Biochemistry and Behavior,1992,43(1):17-35.
    [131] Anand K. and Carr D.B. The neuroanatomy, neurophysiology, and neurochemistry ofpain, stress, and analgesia in newborns and children[J]. Pediatric Clinics of North America,1989,36(4):795-822.
    [132] Garris P., Ciolkowski E. and Wightman R. Heterogeneity of evoked dopamine overflowwihin the striatal and striatoamygdaloid regions[J]. Neuroscience,1994,59(2):417-427.
    [133] Lu X., Cheng H., Huang P., et al. Hybridization of bioelectrochemically functionalinfinite coordination polymer nanoparticles with carbon nanotubes for highly sensitive andselective in vivo electrochemical monitoring[J]. Analytical Chemistry,2013,85(8):4007-4013.
    [134] Huang P., Mao J., Yang L., et al. Bioelectrochemically active infinite coordinationpolymer nanoparticles: one-pot synthesis and biosensing property[J]. Chemistry-A EuropeanJournal,2011,17(41):11390-11393.
    [135] Mao J., Yang L., Yu P., et al. Electrocatalytic four-electron reduction of oxygen withCopper (II)-based metal-organic frameworks[J]. Electrochemistry Communications,2012,19:29-31.
    [136] Huo J., Wang L., Irran E., et al. Hollow ferrocenyl coordination polymer microsphereswith micropores in shells prepared by Ostwald ripening[J]. Angewandte Chemie InternationalEdition,2010,49(48):9237-9241.
    [137] Zhang L., Gao X., Yang L., et al. Photodecomposition of Ferrocenedicarboxylic Acid inMethanol to Form an Electroactive Infinite Coordination Polymer and Its Application inBioelectrochemistry[J]. ACS applied Materials&Interfaces,2013,5(16):8120-8124.
    [138] Kim J.-D., Hayashi S., Mori T., et al. Fast proton conductor under anhydrous conditionsynthesized from12-phosphotungstic acid and ionic liquid[J]. Electrochimica Acta,2007,53(2):963-967.
    [139] Kim J.-D., Hayashi S., Onoda M., et al. New organic-inorganic crystalline electrolytessynthesized from12-phosphotungstic acid and the ionic liquid [BMIM][TFSI][J].Electrochimica Acta,2008,53(26):7638-7643.
    [140] Yu P., Yan J., Zhao H., et al. Rational functionalization of carbon nanotube/ionic liquidbucky gel with dual tailor-made electrocatalysts for four-electron reduction of oxygen[J]. TheJournal of Physical Chemistry C,2008,112(6):2177-2182.
    [141] Jung S., Cho W., Lee H.J., et al. Self-template-directed formation of coordination‐polymer hexagonal tubes and rings, and their calcination to ZnO Rings[J]. AngewandteChemie,2009,121(8):1487-1490.
    [142] Fan L., Zhang Q., Wang K., et al. Ferrocene functionalized graphene: preparation,characterization and efficient electron transfer toward sensors of H2O2[J]. Journal of MaterialsChemistry,2012,22(13):6165-6170.
    [143] Sun N., Guan L., Shi Z., et al. Ferrocene peapod modified electrodes: preparation,characterization, and mediation of H2O2[J]. Analytical Chemistry,2006,78(17):6050-6057.
    [144] Kim C.K., Kim T., Choi I.Y., et al. Ceria nanoparticles that can protect against ischemicstroke[J]. Angewandte Chemie,2012,124(44):11201-11205.
    [145] Wang X., Zhang Y., Li T., et al. Generation9polyamidoamine dendrimer encapsulatedplatinum nanoparticle mimics catalase size, shape, and catalytic activity[J]. Langmuir,2013,29(17):5262-5270.
    [146] Horn Jr A., Parrilha G.L., Melo K.V., et al. An iron-based cytosolic catalase andsuperoxide dismutase mimic complex[J]. Inorganic Chemistry,2010,49(4):1274-1276.
    [147] Chen Z., Yin J.-J., Zhou Y.-T., et al. Dual enzyme-like activities of iron oxidenanoparticles and their implication for diminishing cytotoxicity[J]. ACS Nano,2012,6(5):4001-4012.
    [148] Wang H., Jiang W., Wang Y., et al. Catalase-like and peroxidase-like catalytic activitiesof silicon nanowire arrays[J]. Langmuir,2012,29(1):3-7.
    [149] Zhang J., Sasaki K., Sutter E., et al. Stabilization of platinum oxygen-reductionelectrocatalysts using gold clusters[J]. Science,2007,315(5809):220-222.
    [150] Stamenkovic V.R., Fowler B., Mun B.S., et al. Improved oxygen reduction activity onPt3Ni (111) via increased surface site availability[J]. Science,2007,315(5811):493-497.
    [151] Kinoshita K. Electrochemical oxygen technology[M], Wiley-Interscience, New York:1992.
    [152] Ye H. and Crooks R.M. Effect of elemental composition of PtPd bimetallicnanoparticles containing an average of180atoms on the kinetics of the electrochemicaloxygen reduction reaction[J]. Journal of the American Chemical Society,2007,129(12):3627-3633.
    [153] Wang C., Daimon H., Lee Y., et al. Synthesis of monodisperse Pt nanocubes and theirenhanced catalysis for oxygen reduction[J]. Journal of the American Chemical Society,2007,129(22):6974-6975.
    [154] Steele B.C. and Heinzel A. Materials for fuel-cell technologies[J]. Nature,2001,414(6861):345-352.
    [155] Maroun F., Ozanam F., Magnussen O., et al. The role of atomic ensembles in thereactivity of bimetallic electrocatalysts[J]. Science,2001,293(5536):1811-1814.
    [156] Fernández J.L., Walsh D.A. and Bard A.J. Thermodynamic guidelines for the design ofbimetallic catalysts for oxygen electroreduction and rapid screening by scanningelectrochemical microscopy. M-Co (M: Pd, Ag, Au)[J]. Journal of the American ChemicalSociety,2005,127(1):357-365.
    [157] Fernández J.L., Raghuveer V., Manthiram A., et al. Pd-Ti and Pd-Co-Au electrocatalystsas a replacement for platinum for oxygen reduction in proton exchange membrane fuelcells[J]. Journal of the American Chemical Society,2005,127(38):13100-13101.
    [158] Chang C.J., Loh Z.-H., Shi C., et al. Targeted proton delivery in the catalyzed reductionof oxygen to water by bimetallic pacman porphyrins[J]. Journal of the American ChemicalSociety,2004,126(32):10013-10020.
    [159] Collman J.P., Denisevich P., Konai Y., et al. Electrode catalysis of the four-electronreduction of oxygen to water by dicobalt face-to-face porphyrins[J]. Journal of the AmericanChemical Society,1980,102(19):6027-6036.
    [160] Collman J.P., Devaraj N.K., Decréau R.A., et al. A cytochrome c oxidase modelcatalyzes oxygen to water reduction under rate-limiting electron flux[J]. Science,2007,315(5818):1565-1568.
    [161] Collman J.P., Fu L., Herrmann P.C., et al. A functional model related to cytochrome coxidase and its electrocatalytic four-electron reduction of O2[J]. Science,1997,275(5302):949-951.
    [162] Collman J.P. and Boulatov R. Electrocatalytic O2reduction by synthetic analogues ofthe heme/Cu site of cytochrome oxidase incorporated in a lipid film[J]. Angewandte ChemieInternational Edition,2002,41(18):3487-3489.
    [163] Aliaga M.E., Andrade-Acu a D., López-Alarcón C., et al. Cu (II)–disulfide complexesdisplay simultaneous superoxide dismutase-and catalase-like activities[J]. Journal ofInorganic Biochemistry,2013,129:119-126.
    [164] Liu Y.L., Zhao X.J., Yang X.X., et al. A nanosized metal-organic framework ofFe-MIL-88NH2as a novel peroxidase mimic used for colorimetric detection of glucose[J].Analyst,2013,138(16):4526-4531.
    [165] Ai L., Li L., Zhang C., et al. MIL-53(Fe): A metal-organic framework with intrinsicperoxidase-like catalytic activity for colorimetric biosensing[J]. Chemistry-A EuropeanJournal,2013,19(45):15105-15108.
    [166] Sustmann R., Korth H.-G., Kobus D., et al. FeIII complexes of1,4,8,11-tetraaza [14]annulenes as catalase mimics[J]. Inorganic Chemistry,2007,46(26):11416-11430.
    [167] Gao L., Zhuang J., Nie L., et al. Intrinsic peroxidase-like activity of ferromagneticnanoparticles[J]. Nature Nanotechnology,2007,2(9):577-583.
    [168] Dong Y.-l., Zhang H.-g., Rahman Z.U., et al. Graphene oxide-Fe3O4magneticnanocomposites with peroxidase-like activity for colorimetric detection of glucose[J].Nanoscale,2012,4(13):3969-3976.
    [169] Su L., Feng J., Zhou X., et al. Colorimetric detection of urine glucose based ZnFe2O4magnetic nanoparticles[J]. Analytical Chemistry,2012,84(13):5753-5758.
    [170] Nelson D.L. and Cox M.M. Lehninger Principles of Biochemistry[M],4th ed., W.H.Freeman&Company, New York,2005:Chapter6.
    [171] Breslow R. Biomimetic chemistry and artificial enzymes: catalysis by design[J].Accounts of Chemical Research,1995,28(3):146-153.
    [172] Wulff G. Enzyme-like catalysis by molecularly imprinted polymers[J]. ChemicalReviews,2002,102(1):1-28.
    [173] Zen J.-M. and Kumar A.S. A mimicking enzyme analogue for chemical sensors[J].Accounts of Chemical Research,2001,34(10):772-780.
    [174] Tao Y., Lin Y., Huang Z., et al. Incorporating graphene oxide and gold nanoclusters: Asynergistic catalyst with surprisingly high peroxidase‐like activity over a broad pH rangeand its application for cancer cell detection[J]. Advanced Materials,2013,25(18):2594-2599.
    [175] Wei H. and Wang E. Fe3O4magnetic nanoparticles as peroxidase mimetics and theirapplications in H2O2and glucose detection[J]. Analytical Chemistry,2008,80(6):2250-2254.
    [176] Ding N., Yan N., Ren C., et al. Colorimetric determination of melamine in dairyproducts by Fe3O4magnetic nanoparticles H2O2ABTS detection System[J]. AnalyticalChemistry,2010,82(13):5897-5899.
    [177] Shi W., Wang Q., Long Y., et al. Carbon nanodots as peroxidase mimetics and theirapplications to glucose detection[J]. Chemical Communications,2011,47(23):6695-6697.
    [178] Jv Y., Li B. and Cao R. Positively-charged gold nanoparticles as peroxidiase mimic andtheir application in hydrogen peroxide and glucose detection[J]. Chemical Communications,2010,46(42):8017-8019.
    [179] Wang X., Qu K., Xu B., et al. Multicolor luminescent carbon nanoparticles: Synthesis,supramolecular assembly with porphyrin, intrinsic peroxidase-like catalytic activity andapplications[J]. Nano Research,2011,4(9):908-920.
    [180] Song Y., Qu K., Zhao C., et al. Graphene oxide: intrinsic peroxidase catalytic activityand its application to glucose detection[J]. Advanced Materials,2010,22(19):2206-2210.
    [181] Cao X. and Wang N. A novel non-enzymatic glucose sensor modified with Fe2O3nanowire arrays[J]. Analyst,2011,136(20):4241-4246.
    [182] Triller M.U., Hsieh W.-Y., Pecoraro V.L., et al. Preparation of highly efficientmanganese catalase mimics[J]. Inorganic Chemistry,2002,41(21):5544-5554.
    [183] Yin J., Cao H. and Lu Y. Self-assembly into magnetic Co3O4complex nanostructures asperoxidase[J]. Journal of Materials Chemistry,2012,22(2):527-534.
    [184] Mu J., Wang Y., Zhao M., et al. Intrinsic peroxidase-like activity and catalase-likeactivity of Co3O4nanoparticles[J]. Chemical Communications,2012,48(19):2540-2542.
    [185] Castillo J., Gáspár S., Leth S., et al. Biosensors for life quality: Design, developmentand applications[J]. Sensors and Actuators B: Chemical,2004,102(2):179-194.
    [186] Hsueh C., Huang Y., Wang C., et al. Degradation of azo dyes using low ironconcentration of Fenton and Fenton-like system[J]. Chemosphere,2005,58(10):1409-1414.
    [187] Glembotski C.C. The role of ascorbic acid in the biosynthesis of the neuroendocrinepeptides α-MSH and TRHa[J]. Annals of the New York Academy of Sciences,1987,498(1):54-62.
    [188] Gegelashvili G. and Schousboe A. Cellular distribution and kinetic properties ofhigh-affinity glutamate transporters[J]. Brain Research Bulletin,1998,45(3):233-238.
    [189] Fordyce D. and Wehner J. Physical activity enhances spatial learning performance withan associated alteration in hippocampal protein kinase C activity in C57BL/6and DBA/2mice[J]. Brain research,1993,619(1):111-119.
    [190] Kontos H.A. Oxygen radicals in cerebral ischemia the2001Willis Lecture[J]. Stroke,2001,32(11):2712-2716.
    [191] O'Rourke B., Backx P.H. and Marban E. Phosphorylation-independent modulation ofL-type calcium channels by magnesium-nucleotide complexes[J]. Science,1992,257(5067):245-248.
    [192] Politi H.C. and Preston R.R. Is it time to rethink the role of Mg2+in membraneexcitability?[J]. Neuroreport,2003,14(5):659-668.
    [193] Kubota T., Tokuno K., Nakagawa J., et al. Na+/Mg2+transporter acts as a Mg2+buffering mechanism in PC12cells[J]. Biochemical and Biophysical ResearchCommunications,2003,303(1):332-336.
    [194] Raftos J.E., Lew V.L. and Flatman P.W. Refinement and evaluation of a model of Mg2+buffering in human red cells[J]. European Journal of Biochemistry,1999,263(3):635-645.
    [195] Vink R. and Nimmo A.J. Novel therapies in development for the treatment of traumaticbrain injury[J]. Expert Opinion on Investigational Drugs,2002,11(10):1375-1386.
    [196] McIntosh T.K., Vink R., Yamakami I., et al. Magnesium protects against neurologicaldeficit after brain injury[J]. Brain Research,1989,482(2):252-260.
    [197] Marinov M.B., Harbaugh K.S., Hoopes P.J., et al. Neuroprotective effects ofpreischemia intraarterial magnesium sulfate in reversible focal cerebral ischemia[J]. Journalof Neurosurgery,1996,85(1):117-124.
    [198] Choi D.W. and Rothman S.M. The role of glutamate neurotoxicity in hypoxic-ischemicneuronal death[J]. Annual Review of Neuroscience,1990,13(1):171-182.
    [199] Bano D. and Nicotera P. Ca2+signals and neuronal death in brain ischemia[J]. Stroke,2007,38(2):674-676.
    [200] Lee J.-M., Zipfel G.J. and Choi D.W. The changing landscape of ischaemic brain injurymechanisms[J]. Nature,1999,399: A7-A14.
    [201] Siesj B.K., Zhao Q., Pahlmark K., et al. Glutamate, calcium, and free radicals asmediators of ischemic brain damage[J]. The Annals of Thoracic Surgery,1995,59(5):1316-1320.
    [202] Lin Y., Yu P., Hao J., et al. Continuous and simultaneous electrochemical measurementsof glucose, lactate and ascorbate in rat brain following brain ischemia[J]. AnalyticalChemistry,2014.
    [203] Gao X., Yu P., Wang Y., et al. Microfluidic chip-based online electrochemical detectingsystem for continuous and simultaneous monitoring of ascorbate and Mg2+in rat brain[J].Analytical Chemistry,2013,85(15):7599-7605.
    [204] Weibel D.B. and Whitesides G.M. Applications of microfluidics in chemical biology[J].Current Opinion in Chemical Biology,2006,10(6):584-591.
    [205] Gross P.G., Kartalov E.P., Scherer A., et al. Applications of microfluidics for neuronalstudies[J]. Journal of the Neurological Sciences,2007,252(2):135-143.
    [206] Zhang X.-B., Wu Z.-Q., Wang K., et al. Gravitational sedimentation induced blooddelamination for continuous plasma separation on a microfluidics chip[J]. AnalyticalChemistry,2012,84(8):3780-3786.
    [207] Hayashi K., Kurita R., Horiuchi T., et al. Selective detection of l-glutamate using amicrofluidic device integrated with an enzyme-modified pre-reactor and an electrochemicaldetector[J]. Biosensors and Bioelectronics,2003,18(10):1249-1255.
    [208] Niwa O., Kurita R., Horiuchi T., et al. Small-volume on-line sensor for continuousmeasurement of γ-aminobutyric acid[J].Analytical Chemistry,1998,70(1):89-93.
    [209] Niwa O., Horiuchi T., Kurita R., et al. On-line electrochemical sensor for selectivecontinuous measurement of acetylcholine in cultured brain tissue[J]. Analytical Chemistry,1998,70(6):1126-1132.
    [210] Chen Z., Chen W., Yuan B., et al. In vitro model on glass surfaces for complexinteractions between different types of cells[J]. Langmuir,2010,26(23):17790-17794.
    [211] Sun K., Song L., Xie Y., et al. Using self-polymerized dopamine to modify theantifouling property of oligo (ethylene glycol) self-assembled monolayers and its applicationin cell patterning[J]. Langmuir,2011,27(10):5709-5712.
    [212] Abgrall P. and Nguyen N.T. Nanofluidic devices and their applications[J]. AnalyticalChemistry,2008,80(7):2326-2341.
    [213] Li J., Hu X. and Lipson R.H. On-chip enrichment and analysis of peptide subsets usinga maleimide-functionalized fluorous affinity biochip and nanostructure initiator massspectrometry[J]. Analytical Chemistry,2013,85(11):5499-5505.
    [214] Zhao X. and Dong T. Multifunctional sample preparation kit and on-chip quantitativenucleic acid sequence-based amplification tests for microbial detection[J]. AnalyticalChemistry,2012,84(20):8541-8548.
    [215] Yakushenko A., Ka telho n E. and Wolfrum B. Parallel on-chip analysis of single vesicleneurotransmitter release[J]. Analytical Chemistry,2013,85(11):5483-5490.
    [216] Date Y., Aota A., Terakado S., et al. Trace-level mercury ion (Hg2+) analysis in aqueoussample based on solid-phase extraction followed by microfluidic immunoassay[J]. AnalyticalChemistry,2012,85(1):434-440.
    [217] Gu S.-Q., Zhang Y.-X., Zhu Y., et al. Multifunctional picoliter droplet manipulationplatform and its application in single cell analysis[J]. Analytical Chemistry,2011,83(19):7570-7576.
    [218] Zhu Y. and Fang Q. Integrated droplet analysis system with electrosprayionization-mass spectrometry using a hydrophilic tongue-based droplet extraction interface[J].Analytical Chemistry,2010,82(19):8361-8366.
    [219] Whitesides G.M., Ostuni E., Takayama S., et al. Soft lithography in biology andbiochemistry[J]. Annual Review of Biomedical Engineering,2001,3(1):335-373.
    [220] Liu K., Lin Y., Xiang L., et al. Comparative study of change in extracellular ascorbicacid in different brain ischemia/reperfusion models with in vivo microdialysis combined withon-line electrochemical detection[J]. Neurochemistry International,2008,52(6):1247-1255.
    [221] Liu K., Lin Y., Yu P., et al. Dynamic regional changes of extracellular ascorbic acidduring global cerebral ischemia: Studied with in vivo microdialysis coupled with on-lineelectrochemical detection[J]. Brain Research,2009,1253:161-168.
    [222] Lin Y., Lu X., Gao X., et al. A New microfluidic chip-based online electrochemicalplatform for extracellular neurochemicals monitoring in rat brain[J]. Electroanalysis,2013,25(4):1010-1016.
    [223] Wang J., Yang S., Guo D., et al. Comparative studies on electrochemical activity ofgraphene nanosheets and carbon nanotubes[J]. Electrochemistry Communications,2009,11(10):1892-1895.
    [224] Zhou H., Zhang Z., Yu P., et al. Noncovalent attachment of NAD+cofactor onto carbonnanotubes for preparation of integrated dehydrogenase-based electrochemical biosensors[J].Langmuir,2010,26(8):6028-6032.
    [225] Saika S., Uenoyama K., Hiroi K., et al. Ascorbic acid phosphate ester and woundhealing in rabbit corneal alkali burns: epithelial basement membrane and stroma[J]. Graefe'sArchive for Clinical and Experimental Ophthalmology,1993,231(4):221-227.
    [226] Yabuki S. and Fujii S.-i. Hydrogen peroxide biosensor based on a polyion complexmembrane containing peroxidase and toluidine blue, and its application to the fabrication of aglucose sensor[J]. Microchimica Acta,2009,164(1-2):173-176.
    [227] Chung Y., Ling Y., Yang C., et al. In vivo monitoring of multiple trace metals in thebrain extracellular fluid of anesthetized rats by microdialysis-membrane desalter-ICPMS[J].Analytical Chemistry,2007,79(23):8900-8910.
    [228] Lee M.-S., Wu Y.-S., Yang D.-Y., et al. Significantly decreased extracellular magnesiumin brains of gerbils subjected to cerebral ischemia[J]. Clinica Chimica Acta,2002,318(1):121-125.
    [229] Yang D.-Y., Lee J.-B., Lin M.-C., et al. The determination of brain magnesium and zinclevels by a dual-probe microdialysis and graphite furnace atomic absorption spectrometry[J].Journal of the American College of Nutrition,2004,23(5):552S-555S.
    [230] Silver I. and Erecińska M. Intracellular and extracellular changes of [Ca2+] in hypoxiaand ischemia in rat brain in vivo[J]. The Journal of General Physiology,1990,95(5):837-866.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700