用户名: 密码: 验证码:
细胞周期蛋白cyclinD1/CDK4在小鼠海马CA1区突触可塑性及铅诱导的神经元死亡过程中的作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文应用免疫荧光、免疫沉淀、海马脑片场电位记录等技术研究了细胞周期蛋白cyclinD1/CDK4在不同发育期小鼠海马CA1区突触可塑性中的不同作用,以及cyclinD1/CDK4/p—Rb信号参与了铅诱导的培养海马神经元死亡过程,并探讨了其可能涉及的上游信号通路。
     技术和方法:脑片场电位技术,免疫荧光,免疫沉淀,原代海马神经元培养
     实验结果:
     1)细胞周期蛋白cyclinD1/CDK4在不同发育期小鼠海马CA1区突触可塑性中的不同作用
     在本研究中,我们发现在出生10天的小鼠海马CA1区,CDK4在锥体细胞的核中和胞质中都有分布,但核中分布较多;而在28天的小鼠海马CA1区,CDK4主要定位于胞质,甚至在树突中也有分布。用CDK4抑制剂处理的出生8-15天及21-35天的小鼠海马脑片中,都发现短时程突触可塑性(STP)的削弱。然而,在CDK4抑制剂处理的出生21-35天的小鼠海马脑片上,双脉冲异化(PPF)却没有明显改变。在小鼠海马CA1区用强直刺激诱导的长时程增强(LTP)没有受到CDK4抑制剂的影响。我们还发现,在分别用CDK4抑制剂预处理两个不同发育阶段的小鼠海马脑片上,由代谢型谷氨酸一型受体的激动剂或低频双脉冲刺激诱导的长时程抑制(mGiuR-LTD)都受到了损伤。但是在21-35天的小鼠海马上,CDK4抑制剂引起的mGluR-LTD的损伤,没有在8-15天的小鼠海马脑片上引起的损伤显著。我们的这些结果表明:cyclinD1-CDK4复合物的表达和活化参与了小鼠海马CA1区短时程突触可塑性和代谢型谷氨酸受体依赖的LTD的维持过程,并且提出,在发育的不同阶段,cyclinD1-CDK4在小鼠海马CA1区突触传递功能中可能起不同的作用。
     2)细胞周期蛋白cyclinD1/CDK4及其下游的p-Rb参与了铅诱导的培养海马神经元死亡过程,并且可能是通过PI3K/AKT通道介导的
     铅的神经毒性其中一个重要的表现就是会导致神经元死亡。并且铅是如何导致神经元死亡的机制目前还不清楚。我们应用免疫荧光以及免疫沉淀等方法在原代培养的大鼠海马神经元上,研究了铅暴露引起的神经元死亡过程中,细胞周期蛋白cyclinD1/CDK4,它的下游底物pRb,以及其特定的上游信号phosphoinositide 3-kinase(PI3K)/AKT通路的作用。结果表明,铅暴露处理原代培养海马神经元会导致剂量依赖的神经元死亡。抑制CDK4的活性,会显著的降低铅诱导的这种类型的神经元死亡,但是这种保护作用是不完全的。另外,铅暴露处理后,cyclinD1的表达水平和pRb/p107的磷酸化水平与对照组相比都显著升高。这种升高能够持续48小时,并且在72h后会恢复到对照组的水平。为了明确CDK4在神经元内的分布和表达,我们采用CDK4与神经元标记物微管相关蛋白-2(MAP-2)双标记的方法。在对照组中,在神经元的胞质和胞核均有CDK4存在;在用铅离子孵育的神经元中,CDK4只分布于胞核中。并且多数CDK4和p-Rb阳性细胞与TUNEL阳性细胞共分布。加入PI3K的抑制剂LY294002(30μM)或wortmannin(100nm)能够显著的提高神经元的存活率。另外,阻断PI3K/AKT信号通路的活性后,抑制了铅暴露诱导的cyclinD1的表达水平和部分p-Rb/p107的表达水平的升高。
     以上结果表明,cyclinD1/CDK4/pRb信号通路参与了铅诱导的神经元死亡过程,并且铅离子通过激活PI3K/AKT通路从而诱导cyclinD1和部分p-Rb的表达。
In this paper, using immunofluorescence, western blot, immunohistochemical techniques and electrophysiology techniques of brain slices and cultured hippocampal neurons, we studied the roles of CDK4/cyclinD1 in synaptic pasticity during the postnatal development in mice hippocampus area CA1 and lead evoked cultured hippocampal neuronal death. Moreover, we investigated the possible upstream signal pathway involved.
     Techniques: field potential recording in brain slices, western blot and immunohistochemistry
     Results:
     1) The different roles of cyclinD1-CDK4 in STP and mGluR-LTD during thepostnatal development in mice hippocampus area CA1
     The expression and translocation of cyclinD1-CDK4 in post-mitotic neurons indicate that they may have supplementary functions in differentiated neurons that might be associated with neuronal plasticity. In the present study, our findings showed that the expression of CDK4 was localized mostly in nuclei and cytoplasm of pyramidal cells of CA1 at postnatal day 10 (P10); whereas at P28 staining of CDK4 could be detected predominantly in the cytoplasm but not nuclei. Basal synaptic transmission was normal in the presence of CDK4 inhibitor. Short-term synaptic plasticity (STP) was impaired in CDK4 inhibitor pre-treated slices both from neonatal (P8-15) and adolescent (P21-35) animals; however there was no significant change in paired-pulse facilitation (PPF) in slices pre-incubated with the CDK4 inhibitor from adolescent animals. By the treatment of CDK4 inhibitor, the induction or the maintenance of Long-term potentiation (LTP) in response to a strong tetanus and NMDA receptor-dependent long-term depression (LTD) were normal in hippocampus. However, long-term depression (LTD) induced either by group I metabotropic glutamate receptors (mGluRs) agonist or by paired-pulse low-frequency stimulation (PP-LFS) was impaired in CDK4 inhibitor pretreated slices both from neonatal and adolescent animals. But the effects of the CDK4 inhibitor at slices from adolescent animals were not as robust as at slices from neonatal animals. Our results indicated that the activation of cyclinD1-CDK4 is required for short-term synaptic plasticity and mGluR-dependent LTD, and suggested that this cyclin-dependent kinase may have different roles during the postnatal development in mice hippocampus area CA1.
     2) Involvement of cyclinD1/CDK4 and pRb mediated by PI3K/AKT pathway activation in Pb2+-induced neuronal death in cultured hippocampal neurons
     The present study sought to examine the obligate nature of cyclinD1CDK4, phosphorylation of its substrate retinoblastoma protein (pRb) and its select upstream signal phosphoinositide 3-kinase (PI3K)/AKT pathway in the death of primary cultured rat hippocampal neurons evoked by Pb~(2+). Our data showed that lead treatment of primary hippocampal cultures results in dose-dependent cell death. Inhibition of CDK4 prevented Pb2+-induced neuronal death significantly but incomplete. In addition, we demonstrated that the levels of cyclinD1 and pRb/p107 were increased during Pb2+ treatment. These elevated expression persisted up to 48h, returning to control levels after 72h. We also presented pharmacological and morphological evidences that cyclinD1/CDK4 and pRb/p107 were required for such kind of neuronal death. Addition of the PI3K inhibitor LY294002(30μM) or wortmannin (100nM) significantly rescued the cultured hippocampal neurons from death caused by Pb2+. And that Pb2+-elicited phospho-AKT (Ser473) participated in the induction of cyclinD1 and partial pRb/p107 expression. These results provide evidences that cell cycle elements play a required role in death of neurons evoked by Pb~(2+) and suggest that certain signaling elements upstream of cyclinD1/CDK4 are modified and/or required for this form of neuronal death.
引文
Adams,J.P.,Anderson,A.E.,Varga,A.W.,Dineley,K.T.,Cook,R.G.,Pfaffinger,P.J.,and Sweatt,J.D.(2000).The A-type potassium channel Kv4.2 is a substrate for the mitogen-activated protein kinase ERK.Journal of neurochemistry 75,2277-2287.
    Adams,J.P.,and Sweatt,J.D.(2002).Molecular psychology:roles for the ERK MAP kinase cascade in memory.Annual review of pharmacology and toxicology 42,135-163.
    Alcorta,D.A.,Crews,C.M.,Sweet,L.J.,Bankston,L.,Jones,S.W.,and Erikson,R.L.(1989).Sequence and expression of chicken and mouse rsk:homologs of Xenopus laevis ribosomal S6 kinase.Molecular and cellular biology 9,3850-3859.
    Alessi,D.R.,Cuenda,A.,Cohen,P.,Dudley,D.T.,and Saltiel,A.R.(1995).PD 098059 is a specific inhibitor of the activation of mitogen-activated protein kinase kinase in vitro and in vivo.The Journal of biological chemistry 270,27489-27494.
    Andersen, P. (1999). Neurobiology. A spine to remember. Nature 399,19-21.
    Angers, A., Fioravante, D., Chin, J., Cleary, L. I, Bean, A. J., and Byrne, J. H. (2002). Serotonin stimulates phosphorylation of Aplysia synapsin and alters its subcellular distribution in sensory neurons. J Neurosci 22, 5412-5422.
    Arthur, J. S., and Cohen, P. (2000). MSK1 is required for CREB phosphorylation in response to mitogens in mouse embryonic stem cells. FEBS letters 482,44-48.
    Athos, J., Impey, S., Pineda, V. V., Chen, X., and Storm, D. R. (2002). Hippocampal CRE-mediated gene expression is required for contextual memory formation. Nature neuroscience 5,1119-1120.
    Atkins, C. M., Selcher, J. C, Petraitis, J. J., Trzaskos, J. M, and Sweatt, J. D. (1998). The MAPK cascade is required for mammalian associative learning. Nature neuroscience 1, 602-609.
    Bailey, C. H., Kaang, B. K., Chen, M., Martin, K. C, Lim, C.'S., Casadio, A., and Kandel, E. R. (1997). Mutation in the phosphorylation sites of MAP kinase blocks learning-related internalization of apCAM in Aplysia sensory neurons. Neuron 18,913 -924.
    Bain, J., McLauchlan, H., Elliott, M., and Cohen, P. (2003). The specificities of protein kinase inhibitors: an update. The Biochemical journal 371,199-204.
    Balschun, D., Wolfer, D. P., Gass, P., Mantamadiotis, T., Welzl, H., Schutz, G, Frey, J. U., and Lipp, H. P. (2003). Does cAMP response element-binding protein have a pivotal role in hippocampal synaptic plasticity and hippocampus-dependent memory? J Neurosci 23, 6304-6314.
    Berman, D. E., Hazvi, S., Rosenblum, K., Seger, R., and Dudai, Y. (1998). Specific and differential activation of mitogen-activated protein kinase cascades by unfamiliar taste in the insular cortex of the behaving rat. J Neurosci 18,10037-10044. Blum, S., Moore, A. N., Adams, F., and Dash, P. K. (1999). A mitogen-activated protein kinase cascade in the CA1/CA2 subfield of the dorsal hippocampus is essential for long-term spatial memory. J Neurosci 19, 3535-3544.
    Bolshakov, V. Y., Carboni, L, Cobb, M. H., Siegelbaum, S. A., and Belardetti, F. (2000). Dual MAP kinase pathways mediate opposing forms of long-term plasticity at CA3-CA1 synapses. Nature neuroscience 3,1107-1112.
    Boulton, T. G, Nye, S. H., Robbins, D. J., Ip, N. Y, Radziejewska, E., Morgenbesser, S. D., DePinho, R. A., Panayotatos, N., Cobb, M. H., and Yancopoulos, G. D. (1991). ERKs: a family of protein-serine/threonine kinases that are activated and tyrosine phosphorylated in response to insulin and NGF. Cell 65, 663-675.
    Bruning, J. C, Gillette, J. A., Zhao, Y., Bjorbaeck, C, Kotzka, J., Knebel, B., Avci, H., Hanstein, B., Lingohr, P., Moller, D. E., Krone, W., Kahn, C, R., and Muller-Wieland, D. (2000). Ribosomal subunit kinase-2 is required for growth factor-stimulated transcription of the c-Fos gene. Proceedings of the National Academy of Sciences of the United States of America 97,2462-2467.
    Chen, H. J., Rojas-Soto, M., Oguni, A., and Kennedy, M. B. (1998). A synaptic Ras-GTPase activating protein (pl35 SynGAP) inhibited by CaM kinase II. Neuron 20,895-904.
    Coogan, A. N., O'Leary, D. M, and O'Connor, J. J. (1999). P42/44 MAP kinase inhibitor PD98059 attenuates multiple forms of synaptic plasticity in rat dentate gyrus in vitro. Journal of neurophysiology 81,103-110.
    Cuenda, A., Rouse, J., Doza, Y. N., Meier, R., Cohen, P., Gallagher, T. F., Young, P. R., and Lee, J. C. (1995). SB 203580 is a specific inhibitor of a MAP kinase homologue which is stimulated by cellular stresses and interleukin-1. FEBS letters 364, 229-233.
    Davies, S. P., Reddy, H., Caivano, M., and Cohen, P. (2000). Specificity and mechanism of action of some commonly used protein kinase inhibitors. The Biochemical journal 351, 95-105.
    Davis, R. J. (1995). Transcriptional regulation by MAP kinases. Molecular reproduction and development 42,459-467.
    Davis, S., Vanhoutte, P., Pages, C, Caboche, J., and Laroche, S. (2000). The MAPK/ERK cascade targets both Elk-1 and cAMP response element-binding protein to control long-term potentiation-dependent gene expression in the dentate gyrus in vivo. J Neurosci 20, 4563-4572.
    Di Cristo, G, Berardi, N., Cancedda, L., Pizzorusso, T, Putignano, E., Ratto, G. M., and Maffei, L. (2001). Requirement of ERK activation for visual cortical plasticity. Science (New York, N.Y 292, 2337-2340.
    
    Downward, J. (1996). Control of ras activation. Cancer surveys 27, 87-100.
    Dudek, S. M., and Fields, R. D. (2001). Mitogen-activated protein kinase/extracellular signal-regulated kinase activation in somatodendritic compartments: roles of action potentials, frequency, and mode of calcium entry. J Neurosci 21, RC122.
    Dudley, D. T, Pang, L., Decker, S. J., Bridges, A. J., and Saltiel, A. R. (1995). A synthetic inhibitor of the mitogen-activated protein kinase cascade. Proceedings of the National Academy of Sciences of the United States of America 92,7686-7689.
    Dufresne, S. D., Bjorbaek, C, El-Haschimi, K., Zhao, Y, Aschenbach, W. G, Moller, D. E., and Goodyear, L. J. (2001). Altered extracellular signal-regulated kinase signaling and glycogen metabolism in skeletal muscle from p90 ribosomal S6 kinase 2 knockout mice. Molecular and cellular biology 21, 81-87.
    English, J. D., and Sweatt, J. D. (1996). Activation of p42 mitogen-activated protein kinase in hippocampal long term potentiation. The Journal of biological chemistry 271, 24329-24332.
    English, J. D., and Sweatt, J. D. (1997). A requirement for the mitogen-activated protein kinase cascade in hippocampal long term potentiation. The Journal of biological chemistry 272,19103-19106.
    Eyers, P. A., Craxton, M., Morrice, N., Cohen, P., and Goedert, M. (1998). Conversion of SB 203580-insensitive MAP kinase family members to drug-sensitive forms by a singleamino-acid substitution. Chemistry & biology 5, 321-328.
    Farnsworth, C. L, Freshney, N. W., Rosen, L. B., Ghosh, A., Greenberg, M. E., and Feig, L. A. (1995). Calcium activation of Ras mediated by neuronal exchange factor Ras-GRF. Nature 376, 524-527.
    Fiore, R. S., Murphy, T. H., Sanghera, J. S., Pelech, S. L., and Baraban, J. M. (1993). Activation of p42 mitogen-activated protein kinase by glutamate receptor stimulation in rat primary cortical cultures. Journal of neurochemistry 61,1626-1633.
    Frantz, B., Klatt, T., Pang, M., Parsons, J., Rolando, A., Williams, H., Tocci, M. J., O'Keefe, S. J., and O'Neill, E. A. (1998). The activation state of p38 mitogen-activated protein kinase determines the efficiency of ATP competition for pyridinylimidazole inhibitor binding. Biochemistry 37,13846-13853.
    Freshney, N. W., Rawlinson, L., Guesdon, F., Jones, E., Cowley, S., Hsuan, J., and Saklatvala, J. (1994). Interleukin-1 activates a novel protein kinase cascade that results in the phosphorylation of Hsp27. Cell 78,1039-1049.
    Goldin, M., and Segal, M. (2003). Protein kinase C and ERK involvement in dendritic spine plasticity in cultured rodent hippocampal neurons. The European journal of neuroscience 17,2529-2539.
    Goshe, M. B., Conrads, T. P., Panisko, E. A., Angell, N. H., Veenstra, T. D., and Smith, R. D. (2001). Phosphoprotein isotope-coded affinity tag approach for isolating and quantitating phosphopeptides in proteome-wide analyses. Analytical chemistry 73, 2578-2586.
    Grewal, S. S., Horgan, A. M., York, R. D., Withers, G. S., Banker, G. A., and Stork, P. J. (2000). Neuronal calcium activates a Rap1 and B-Raf signaling pathway via the cyclic adenosine monophosphate-dependent protein kinase. The Journal of biological chemistry 275,3722-3728.
    Grewal, S. S., York, R. D., and Stork, P. J. (1999). Extracellular-signal-regulated kinase signalling in neurons. Current opinion in neurobiology 9,544-553.
    Guzowski, J. F., Lyford, G. I., Stevenson, G. D., Houston, F. P., McGaugh, J. L, Worley, P. R, and Barnes, C. A. (2000). Inhibition of activity-dependent arc protein expression in the rat hippocampus impairs the maintenance of long-term potentiation and the consolidation of long-term memory. J Neurosci 20,3993-4001.
    Han, J., Lee, J. D., Bibbs, L., and Ulevitch, R. J. (1994). A MAP kinase targeted by endotoxin and hyperosmolarity in mammalian cells. Science (New York, N.Y 265,808-811.
    Hardingham, G. E., Arnold, F. J., and Bading, H. (2001). A calcium microdomain near NMDA receptors: on switch for ERK-dependent synapse-to-nucleus communication. Nature neuroscience 4, 565-566.
    Hayashi, Y, Shi, S. H., Esteban, J. A., Piccini, A., Poncer, J. C, and Malinow, R. (2000). Driving AMPA receptors into synapses by LTP and CaMKII: requirement for GluR1 and PDZ domain interaction. Science (New York, N.Y 287,2262-2267.
    
    Hebert, A. E., and Dash, P. K. (2002). Extracellular signal-regulated kinase activity in the . entorhinal cortex is necessary for long-term spatial memory. Learning & memory (Cold Spring Harbor, N.Y 9,156-166.
    Huang, Y. Y, Martin, K. C, and Kandel, E. R. (2000). Both protein kinase A and mitogen-activated protein kinase are required in the amygdala for the macromolecular synthesis-dependent late phase of long-term potentiation. J Neurosci 20,6317-6325.
    Husi, H., Ward, M. A., Choudhary, J. S., Blackstock, W. P., and Grant, S. G. (2000). Proteomic analysis of NMDA receptor-adhesion protein signaling complexes. Nature neuroscience 3,661-669.
    Impey, S., Obrietan, K., Wong, S. T., Poser, S., Yano, S., Wayman, G, Deloulme, J. C, Chan, G, and Storm, D. R. (1998). Cross talk between ERK and PKA is required for Ca2+ stimulation of CREB-dependent transcription and ERK nuclear translocation. Neuron 21, 869-883.
    Kanterewicz, B. I., Urban, N. N., McMahon, D. B., Norman, E. D., Giffen, L. J., Favata, M. R, Scherle, P. A., Trzskos, J. M., Barrionuevo, G, and Klann, E. (2000). The extracellular signal-regulated kinase cascade is required for NMDA receptor-independent LTP in area CA1 but not area CA3 of the hippocampus. J Neurosci 20,3057-3066.
    Kawasaki, H., Fujii, H., Gotoh, Y, Morooka, T, Shimohama, S., Nishida, E., and Hirano, T. (1999). Requirement for mitogen-activated protein kinase in cerebellar long term depression. The Journal of biological chemistry 274,13498-13502.
    Kelleher, R. J., 3rd, Govindarajan, A., Jung, H. Y, Kang, H., and Tonegawa, S. (2004). Translational control by MAPK signaling in long-term synaptic plasticity and memory. Cell 116,467-479.
    Kim, J. H., Lee, H. K., Takamiya, K., and Huganir, R. L. (2003). The role of synaptic GTPase-activating protein in neuronal development and synaptic plasticity. J Neurosci 23, 1119-1124.
    Kim, J. H., Liao, D., Lau, L. F., and Huganir, R. L. (1998). SynGAP: a synaptic RasGAP that associates with the PSD-95/SAP90 protein family. Neuron 20,683-691.
    Komiyama, N. H., Watabe, A. M., Carlisle, H. J., Porter, K., Charlesworth, P., Monti, J., Strathdee, D. J., O'Carroll, C. M., Martin, S. J., Morris, R. G, O'Dell, T. J., and Grant, S. G. (2002). SynGAP regulates ERK/MAPK signaling, synaptic plasticity, and learning in the complex with postsynaptic density 95 and NMDA receptor. J Neurosci 22, 9721-9732.
    Kumar, S., McDonnell, P. C, Gum, R. J., Hand, A. T., Lee, J. C., and Young, P. R. (1997). Novel homologues of CSBP/p38 MAP kinase: activation, substrate specificity and sensitivity to inhibition by pyridinyl imidazoles. Biochemical and biophysical research communications 235,533-538.
    Kurino, M., Fukunaga, K., Ushio, Y., and Miyamoto, E. (1995). Activation of mitogen-activated protein kinase in cultured rat hippocampal neurons by stimulation of glutamate receptors. Journal of neurochemistry 65,1282-1289.
    Lee, S. H., Park, J., Che, Y, Han, P. L., and Lee, J. K. (2000). Constitutive activity and differential localization of p38alpha and p38beta MAPKs in adult mouse brain. Journal of neuroscience research 60,623-631.
    Lenormand, P., Sardet, C, Pages, G, L'Allemain, G, Brunet, A., and Pouyssegur, J. (1993). Growth factors induce nuclear translocation of MAP kinases (p42mapk and p44mapk) but not of their activator MAP kinase kinase (p45mapkk) in fibroblasts. The Journal of cell biology 122,1079-1088.
    Lisman, J., Schulman, H., and Cline, H. (2002). The molecular basis of CaMKII function in synaptic and behavioural memory. Nature reviews 3,175-190.
    Lonze, B. E., and Ginty, D. D. (2002). Function and regulation of CREB family transcription factors in the nervous system. Neuron 35,605-623.
    Lu, W., Man, H., Ju, W., Trimble, W. S., MacDonald, J. F., and Wang, Y. T. (2001). Activation of synaptic NMDA receptors induces membrane insertion of new AMPA receptors and LTP in cultured hippocampal neurons. Neuron 29, 243-254.
    Malenka, R. C, and Nicoll, R. A. (1999). Long-term potentiation-a decade of progress? Science (New York, N.Y 285,1870-1874.
    Man, H. Y, Wang, Q., Lu, W. Y, Ju, W., Ahmadian, G, Liu, L, D'Souza, S., Wong, T. P., Taghibiglou, C, Lu, J., Becker, L. E., Pei, L., Liu, F., Wymann, M. P., MacDonald, J. R, and Wang, Y. T. (2003). Activation of PI3-kinase is required for AMPA receptor insertion during LTP of mEPSCs in cultured hippocampal neurons. Neuron 38,611-624.
    Mann, M., Ong, S. E., Gronborg, M., Steen, H., Jensen, 0. N., and Pandey, A. (2002). Analysis of protein phosphorylation using mass spectrometry: deciphering the phosphoproteome. Trends in biotechnology 20,261-268.
    Manning, B. D., and Cantley, L. C. (2002). Hitting the target: emerging technologies in the search for kinase substrates. Sci STKE 2002, PE49.
    Margolis, B., and Skolnik, E. Y. (1994). Activation of Ras by receptor tyrosine kinases. J Am Soc Nephrol 5,1288-1299.
    Marshall, C. J. (1995). Specificity of receptor tyrosine kinase signaling: transient versus sustained extracellular signal-regulated kinase activation. Cell 80,179-185.
    Morice, C, Nothias, R, Konig, S., Vernier, P., Baccarini, M., Vincent, J. D., and Barnier, J. V. (1999). Raf-1 and B-Raf proteins have similar regional distributions but differential subcellular localization in adult rat brain. The European journal of neuroscience 11, 1995-2006.
    Morozov, A., Muzzio, I. A., Bourtchouladze, R., Van-Strien, N., Lapidus, K., Yin, D., Winder, D. G., Adams, J. P., Sweatt, J. D., and Kandel, E. R. (2003). Rap1 couples cAMP signaling to a distinct pool of p42/44MAPK regulating excitability, synaptic plasticity, learning, and memory. Neuron 39,309-325.
    Nakielny, S., Cohen, P., Wu, J., and Sturgill, T. (1992). MAP kinase activator from insulin-stimulated skeletal muscle is a protein threonine/tyrosine kinase. The EMBO journal 11,2123-2129.
    Oda, Y, Nagasu, T., and Chait, B. T. (2001). Enrichment analysis of phosphorylated proteins as a tool for probing the phosphoproteome. Nature biotechnology 19,379-382.
    Ohno, M., Frankland, P. W, Chen, A. P, Costa, R. M., and Silva, A. J. (2001). Inducible, pharmacogenetic approaches to the study of learning and memory. Nature neuroscience 4,1238-1243.
    Opazo, P., Watabe, A. M., Grant, S. G, and O'Dell, T. J. (2003). Phosphatidylinositol 3-kinase regulates the induction of long-term potentiation through extracellular signal-related kinase-independent mechanisms. J Neurosci 23,3679-3688.
    Pak, D. T., Yang, S., Rudolph-Correia, S., Kim, E., and Sheng, M. (2001). Regulation of dendritic spine morphology by SPAR, a PSD-95-associated RapGAP. Neuron 31, 289-303.
    Patterson, S. L., Pittenger, C., Morozov, A., Martin, K. C, Scanlin, H., Drake, C, and Kandel, E. R. (2001). Some forms of cAMP-mediated long-lasting potentiation are associated with release of BDNF and nuclear translocation of phospho-MAP kinase. Neuron 32, 123-140.
    Pearson, G, Robinson, F., Beers Gibson, T., Xu, B. E., Karandikar, M., Berman, K., and Cobb, M. H. (2001). Mitogen-activated protein (MAP) kinase pathways: regulation and physiological functions. Endocrine reviews 22,153-183.
    Rongo, C. (2002). A fresh look at the role of CaMKII in hippocampal synaptic plasticity and memory. Bioessays 24,223-233.
    Rosen, L. B., Ginty, D. D., Weber, M. J., and Greenberg, M. E. (1994). Membrane depolarization and calcium influx stimulate MEK and MAP kinase via activation of Ras. Neuron 12, 1207-1221.
    Rosenblum, K., Futter, M., Voss, K., Erent, M., Skehel, P. A., French, P., Obosi, L, Jones, M. W., and Bliss, T. V. (2002). The role of extracellular regulated kinases I/1I in late-phase long-term potentiation. J Neurosci 22,5432-5441.
    Rouse, J., Cohen, P., Trigon, S., Morange, M., Alonso-Llamazares, A., Zamanillo, D., Hunt, T., and Nebreda, A. R. (1994). A novel kinase cascade triggered by stress and heat shock that stimulates MAPKAP kinase-2 and phosphorylation of the small heat shock proteins. Cell 78,1027-1037.
    Roy, B. C, Kohu, K., Matsuura, K., Yanai, H., and Akiyama, T. (2002). SPAL, a Rap-specific GTPase activating protein, is present in the NMDA receptor-PSD-95 complex in the hippocampus. Genes Cells 7,607-617.
    Sanna, P. P., Cammalleri, M., Berton, F., Simpson, C, Lutjens, R., Bloom, F. E., and Francesconi, W. (2002). Phosphatidylinositol 3-kinase is required for the expression but not for the induction or the maintenance of long-term potentiation in the hippocampal CA1 region. J Neurosci 22, 3359-3365.
    
    Sassone-Corsi, P., Mizzen, C. A., Cheung, P., Crosio, C, Monaco, L., Jacquot, S., Hanauer, A., and Allis, C. D. (1999). Requirement of Rsk-2 for epidermal growth factor-activated phosphorylation of histone H3. Science (New York, N.Y 285,886-891.
    Schafe, G. E., Atkins, C. M., Swank, M. W., Bauer, E. P., Sweatt, J. D., and LeDoux, J. E. (2000). Activation of ERK/MAP kinase in the amygdala is required for memory consolidation of pavlovian fear conditioning. J Neurosci 20,8177-8187.
    Selcher, J. C, Atkins, C. M., Trzaskos, J. M., Paylor, R., and Sweatt, J. D. (1999). A necessity for MAP kinase activation in mammalian spatial learning. Learning & memory (Cold Spring Harbor, N.Y 6,478-490.
    Selcher, J. C, Weeber, E. J., Christian, J., Nekrasova, T., Landreth, G. E., and Sweatt, J. D. (2003). A role for ERK MAP kinase in physiologic temporal integration in hippocampal area CA1. Learning & memory (Cold Spring Harbor, N.Y 10,26-39.
    Shaywitz, A. J., and Greenberg, M. E. (1999). CREB: a stimulus-induced transcription factor activated by a diverse array of extracellular signals. Annual review of biochemistry 68, 821-861.
    Shi, S., Hayashi, Y., Esteban, J. A., and Malinow, R. (2001). Subunit-specific rules governing AMPA receptor trafficking to synapses in hippocampal pyramidal neurons. Cell 105, 331-343.
    Suzuki, T., Mitake, S., and Murata, S. (1999). Presence of up-stream and downstream components of a mitogen-activated protein kinase pathway in the PSD of the rat forebrain. Brain research 840,36-44.
    Suzuki, T., Okumura-Noji, K., and Nishida, E. (1995). ERK2-type mitogen-activated protein kinase (MAPK) and its substrates in postsynaptic density fractions from the rat brain. Neuroscience research 22,277-285.
    Tibbies, L. A., and Woodgett, J. R. (1999). The stress-activated protein kinase pathways. Cell Mol Life Sci 55,1230-1254.
    Toni, N., Buchs, P. A., Nikonenko, I., Bron, C. R., and Muller, D. (1999). LTP promotes formation of multiple spine synapses between a single axon terminal and a dendrite. Nature 402,421-425.
    Traverse, S., Gomez, N., Paterson, H., Marshall, C, and Cohen, P. (1992). Sustained activation of the mitogen-activated protein (MAP) kinase cascade may be required for differentiation of PC12 cells. Comparison of the effects of nerve growth factor and epidermal growth factor. The Biochemical journal 288 (Pt 2), 351-355.
    Trivier, E., De Cesare, D., Jacquot, S., Pannetier, S., Zackai, E., Young, I., Mandel, J. L, Sassone-Corsi, P., and Hanauer, A. (1996). Mutations in the kinase Rsk-2 associated with Coffin-Lowry syndrome. Nature 384,567-570.
    Walikonis, R. S., Jensen, 0. N., Mann, M., Provance, D. W., Jr., Mercer, J. A., and Kennedy, M. B. (2000). Identification of proteins in the postsynaptic density fraction by mass spectrometry. J Neurosci 20,4069-4080.
    West, A. E., Griffith, E. C, and Greenberg, M. E. (2002). Regulation of transcription factors by neuronal activity. Nature reviews 3,921 -931.
    Wiggin, G. R., Soloaga, A., Foster, J. M., Murray-Tait, V., Cohen, P., and Arthur, J. S. (2002). MSK1 and MSK2 are required for the mitogen- and stress-induced phosphorylation of CREB and ATF1 in fibroblasts. Molecular and cellular biology 22, 2871-2881.
    Wu, G. Y., Deisseroth, K., and Tsien, R. W. (2001a). Activity-dependent CREB phosphorylation: convergence of a fast, sensitive calmodulin kinase pathway and a slow, less sensitive mitogen-activated protein kinase pathway. Proceedings of the National Academy of Sciences of the United States of America 98,2808-2813.
    Wu, G. Y., Deisseroth, K., and Tsien, R. W. (2001b). Spaced stimuli stabilize MAPK pathway activation and its effects on dendritic morphology. Nature neuroscience 4,151-158.
    Xia, Z., Dudek, H., Miranti, C. K., and Greenberg, M. E. (1996). Calcium influx via the NMDA receptor induces immediate early gene transcription by a MAP kinase/ERK-dependent mechanism. J Neurosci 16, 5425-5436.
    Xing, J., Ginty, D. D., and Greenberg, M. E. (1996). Coupling of the RAS-MAPK pathway to gene activation by RSK2, a growth factor-regulated CREB kinase. Science (New York, N.Y 273, 959-963.
    Xing, J., Kornhauser, J. M., Xia, Z., Thiele, E. A., and Greenberg, M. E. (1998). Nerve growth factor activates extracellular signal-regulated kinase and p38 mitogen-activated protein kinase pathways to stimulate CREB serine 133 phosphorylation. Molecular and cellular biology 18,1946-1955.
    Ying, S. W., Futter, M., Rosenblum, K., Webber, M. J., Hunt, S. P., Bliss, T. V., and Bramham, C. R. (2002). Brain-derived neurotrophic factor induces long-term potentiation in intact adult hippocampus: requirement for ERK activation coupled to CREB and upregulation of Arc synthesis. J Neurosci 22,1532-1540.
    York, R. D., Yao, H., Dillon, T., Ellig, C. L., Eckert, S. P., McCleskey, E. W., and Stork, P. J. (1998). Rap1 mediates sustained MAP kinase activation induced by nerve growth factor. Nature 392, 622-626.
    Young, P. R., McLaughlin, M. M., Kumar, S., Kassis, S., Doyle, M. L., McNulty, D., Gallagher, T. F., Fisher, S., McDonnell, P. C, Carr, S. A., Huddleston, M. J., Seibel, G, Porter, T. G, Livi, G. P., Adams, J. L., and Lee, J. C. (1997). Pyridinyl imidazole inhibitors of p38 mitogen-activated protein kinase bind in the ATP site. The Journal of biological chemistry 272,12116-12121.
    Yuan, L. L, Adams, J. P., Swank, M., Sweatt, J. D., and Johnston, D. (2002). Protein kinase modulation of dendritic K+ channels in hippocampus involves a mitogen-activated protein kinase pathway. J Neurosci 22, 4860-4868.
    Yun, H. Y, Dawson, V. L., and Dawson, T. M. (1999). Glutamate-stimulated calcium activation of Ras/Erk pathway mediated by nitric oxide. Diabetes research and clinical practice 45, 113-115.
    Zeniou, M, Ding, T., Trivier, E., and Hanauer, A. (2002). Expression analysis of RSK gene family members: the RSK2 gene, mutated in Coffin-Lowry syndrome, is prominently expressed in brain structures essential for cognitive function and learning. Human molecular genetics 11,2929-2940.
    Zhen, X., Du, W., Romano, A. G, Friedman, E., and Harvey, J. A. (2001). The p38 mitogen-activated protein kinase is involved in associative learning in rabbits. J Neurosci 21, 5513-5519.
    Zhou, H., Watts, J. D., and Aebersold, R. (2001). A systematic approach to the analysis of protein phosphorylation. Nature biotechnology 19,375-378.
    Zhu, J. J., Qin, Y, Zhao, M., Van Aelst, L., and Malinow, R. (2002). Ras and Rap control AMPA receptor trafficking during synaptic plasticity. Cell 110,443-455.
    Agah,R.,Kirshenbaum,L.A.,Abdellatif,M.,Truong,L.D.,Chakraborty,S.,Michael,L.H.,and Schneider,M.D.(1997).Adenoviral delivery of E2F-1 directs cell cycle reentry and p53-independent apoptosis in postmitotic adult myocardium in vivo.J Clin Invest 100,2722-2728.
    Agarwal,M.L.,Taylor,W.R.,Chernov,M.V.,Chernova,O.B.,and Stark,G.R.(1998).The p53 network.J Biol Chem 273,1-4.
    Aloyz,R.S.,Bamji,S.X.,Pozniak,C.D.,Toma,J.G.,Atwal,J.,Kaplan,D.R.,and Miller,F.D.(1998).p53 is essential for developmental neuron death as regulated by the TrkA and p75 neurotrophin receptors.J Cell Biol 143,1691-1703.
    Arendt,T.,Rodel,L.,Gartner,U.,and Holzer,M.(1996).Expression of the cyclin-dependent kinase inhibitor p16 in Alzheimer's disease.Neuroreport 7,3047-3049.
    Belloni,M.,Uberti,D.,Rizzini,C.,Ferrari-Toninelli,G.,Rizzonelli,P.,Jiricny,J.,Spano,P.,and Memo,M.(1999).Distribution and kainate-mediated induction of the DNA mismatch repair protein MSH2 in rat brain.Neuroscience 94,1323-1331.
    Berry,M.D.(1999).N8-acetyl spermidine protects rat cerebellar granule cells from low K+-induced apoptosis.J Neurosci Res 55,341-351.
    Busser,J.,Geldmacher,D.S.,and Herrup,K.(1998).Ectopic cell cycle proteins predict the sites of neuronal cell death in Alzheimer's disease brain.J Neurosci 18,2801-2807.
    Chopp,M.,Li,Y.,Zhang,Z.G.,and Freytag,S.O.(1992).p53 expression in brain after middle cerebral artery occlusion in the rat.Biochem Biophys Res Commun 182,1201-1207.
    Copani,A.,Condorelli,F.,Caruso,A.,Vancheri,C.,Sala,A.,Giuffrida Stella,A.M.,Canonico,P.L.,Nicoletti,F.,and Sortino,M.A.(1999).Mitotic signaling by beta-amyloid causes neuronal death.Faseb J 13,2225-2234.
    Copani,A.,Uberti,D.,Sortino,M.A.,Bruno,V.,Nicoletti,F.,and Memo,M.(2001).Activation of cell-cycle-associated proteins in neuronal death:a mandatory or dispensable path?Trends Neurosci 24,25-31.
    Crumrine,R.C.,Thomas,A.L.,and Morgan,P.F.(1994).Attenuation of p53 expression protects against focal ischemic damage in transgenic mice.J Cereb Blood Flow Metab 14,887-891.
    Davies, A. M., and Rosenthal, A. (1994). Neurons from mouse embryos with a null mutation in the tumour suppressor gene p53 undergo normal cell death in the absence of neurotrophins. Neurosci Lett 182,112-114.
    de la Monte, S. M., Sohn, Y. K., and Wands, J. R. (1997). Correlates of p53- and Fas (CD95)-mediated apoptosis in Alzheimer's disease. J Neurol Sci 152,73-83.
    DeGregori, J., Leone, G, Miron, A., Jakoi, L, and Nevins, J. R. (1997). Distinct roles for E2F proteins in cell growth control and apoptosis. Proc Natl Acad Sci USA 94,7245-7250.
    Del Sal, G, Murphy, M., Ruaro, E., Lazarevic, D., Levine, A. J., and Schneider, C. (1996). Cyclin D1 and p21/wafl are both involved in p53 growth suppression. Oncogene 12, 177-185.
    
    Evan, G, and Littlewood, T. (1998). A matter of life and cell death. Science 281,1317-1322.
    Feddersen, R. M., Clark, H. B., Yunis, W. S., and Orr, H. T. (1995). In vivo viability of postmitotic Purkinje neurons requires pRb family member function. Mol Cell Neurosci 6, 153-167.
    
    Forloni, G, Bugiani, 0., Tagliavini, F., and Salmona, M. (1996). Apoptosis-mediated neurotoxicity induced by beta-amyloid and PrP fragments. Mol Chem Neuropathol 28, 163-171.
    
    Freeman, R. S., Estus, S., and Johnson, E. M., Jr. (1994). Analysis of cell cycle-related gene expression in postmitotic neurons: selective induction of Cyclin D1 during programmed cell death. Neuron 12, 343-355.
    
    Giardina, S. F., Cheung, N. S., Reid, M. T., and Beart, P. M. (1998). Kainate-induced apoptosis in cultured murine cerebellar granule cells elevates expression of the cell cycle gene cyclin D1. J Neurochem 71, 1325-1328.
    
    Giovanni, A., Keramaris, E., Morris, E. J., Hou, S. T., O'Hare, M., Dyson, N., Robertson, G. S., Slack, R. S., and Park, D. S. (2000). E2F1 mediates death of B-amyloid-treated cortical neurons in a manner independent of p53 and dependent on Bax and caspase 3. J Biol Chem 275,11553-11560.
    
    Giovanni, A., Wirtz-Brugger, F., Keramaris, E., Slack, R., and Park, D. S. (1999). Involvement of cell cycle elements, cyclin-dependent kinases, pRb, and E2F x DP, in B-amyloid-induced neuronal death. J Biol Chem 11 A, 19011-19016.
    Grilli, M., and Memo, M. (1999). Possible role of NF-kappaB and p53 in the glutamate-induced pro-apoptotic neuronal pathway. Cell Death Differ 6,22-27.
    Hayashi, T., Warita, H., Abe, K., and Itoyama, Y. (1999). Expression of cyclin-dependent kinase 5 and its activator p35 in rat brain after middle cerebral artery occlusion. Neurosci Lett 265,37-40.
    Hubscher, U., Nasheuer, H. P., and Syvaoja, J. E. (2000). Eukaryotic DNA polymerases, a growing family. Trends Biochem Sci 25,143-147.
    Hughes, P. E., Alexi, T., Yoshida, T., Schreiber, S. S., and Knusel, B. (1996). Excitotoxic lesion of rat brain with quinolinic acid induces expression of p53 messenger RNA and protein and p53-inducible genes Bax and Gadd-45 in brain areas showing DNA fragmentation. Neuroscience 74,1143-1160.
    Jin, K., Chen, J., Kawaguchi, K., Zhu, R. L., Stetler, R. A., Simon, R. P., and Graham, S. H. (1996). Focal ischemia induces expression of the DNA damage-inducible gene GADD45 in the rat brain. Neuroreport 7,1797-1802.
    Jordan, J., Galindo, M. F., Prehn, J. H., Weichselbaum, R. R., Beckett, M., Ghadge, G. D., Roos, R. P., Leiden, J. M., and Miller, R. J. (1997). p53 expression induces apoptosis in hippocampal pyramidal neuron cultures. J Neurosci 17,1397-1405.
    Kitamura, Y., Shimohama, S., Kamoshima, W., Matsuoka, Y., Nomura, Y, and Taniguchi, T. (1997). Changes of p53 in the brains of patients with Alzheimer's disease. Biochem Biophys Res Commun 232,418-421.
    Lan, J., Henshall, D. C, Simon, R. P., and Chen, J. (2000). Formation of the base modification 8-hydroxyl-2'-deoxyguanosine and DNA fragmentation following seizures induced by systemic kainic acid in the rat. J Neurochem 74, 302-309.
    Liu, W. K., Williams, R. T., Hall, F. L., Dickson, D. W., and Yen, S. H. (1995). Detection of a Cdc2-related kinase associated with Alzheimer paired helical filaments. Am J Pathol 146, 228-238.
    Macleod, K. F., Hu, Y, and Jacks, T. (1996). Loss of Rb activates both p53-dependent and independent cell death pathways in the developing mouse nervous system. Embo J 15, 6178-6188.
    Martinou, I., Fernandez, P. A., Missotten, M., White, E., Allet, B., Sadoul, R., and Martinou, J. C. (1995). Viral proteins E1B19K and p35 protect sympathetic neurons from cell death induced by NGF deprivation. J Cell Biol 128, 201-208.
    McGahan, L., Hakim, A. M., and Robertson, G. S. (1998). Hippocampal Myc and p53 expression following transient global ischemia. Brain Res Mol Brain Res 56,133-145.
    McShea, A., Harris, P. L., Webster, K. R., Wahl, A. F., and Smith, M. A. (1997). Abnormal expression of the cell cycle regulators P16 and CDK4 in Alzheimer's disease. Am J Pathol 150,1933-1939.
    Migheli, A., Piva, R., Casolino, S., Atzori, C, Dlouhy, S. R., and Ghetti, B. (1999). A cell cycle alteration precedes apoptosis of granule cell precursors in the weaver mouse cerebellum. Am J Pathol 155,365-373.
    Morrison, R. S., Wenzel, H. J., Kinoshita, Y., Robbins, C. A., Donehower, L. A., and Schwartzkroin, P. A. (1996). Loss of the p53 tumor suppressor gene protects neurons from kainate-induced cell death. J Neurosci 16,1337-1345.
    Nagy, Z., Esiri, M. M., and Smith, A. D. (1997). Expression of cell division markers in the hippocampus in Alzheimer's disease and other neurodegenerative conditions. Acta Neuropathol (Berl) 93, 294-300.
    Nagy, Z., Esiri, M. M., and Smith, A. D. (1998). The cell division cycle and the pathophysiology of Alzheimer's disease. Neuroscience 87,731-739.
    Nagy, Z. S., and Esiri, M. M (1997). Apoptosis-related protein expression in the hippocampus in Alzheimer's disease. Neurobiol Aging 18,565-571.
    Oren, M. (1999). Regulation of the p53 tumor suppressor protein. J Biol Chem 274, 36031-36034.
    Osheroff, W. P., Jung, H. K., Beard, W. A., Wilson, S. H., and Kunkel, T. A. (1999). The fidelity of DNA polymerase beta during distributive and processive DNA synthesis. J Biol Chem 274, 3642-3650.
    Padmanabhan, J., Park, D. S., Greene, L. A., and Shelanski, M. L. (1999). Role of cell cycle regulatory proteins in cerebellar granule neuron apoptosis. J Neurosci 19, 8747-8756.
    Park, D. S., Levine, B., Ferrari, G, and Greene, L. A. (1997a). Cyclin dependent kinase inhibitors and dominant negative cyclin dependent kinase 4 and 6 promote survival of NGF-deprived sympathetic neurons. J Neurosci 17, 8975-8983.
    Park, D. S., Morris, E. J., Greene, L. A., and Geller, H. M. (1997b). G1/S cell cycle blockers and inhibitors of cyclin-dependent kinases suppress camptothecin-induced neuronal apoptosis. J Neurosci 17,1256-1270.
    Park, D. S., Morris, E. J., Stefanis, L., Troy, C. M., Shelanski, M. L., Geller, H. M., and Greene, L. A. (1998). Multiple pathways of neuronal death induced by DNA-damaging agents, NGF deprivation, and oxidative stress. J Neurosci 18, 830-840.
    Sadoul, R., Quiquerez, A. L, Martinou, I., Fernandez, P. A., and Martinou, J. C. (1996). p53 protein in sympathetic neurons: cytoplasmic localization and no apparent function in apoptosis. J Neurosci Res 43,594-601.
    Seidl, R., Fang-Kircher, S., Bidmon, B., Cairns, N., and Lubec, G. (1999). Apoptosis-associated proteins p53 and APO-1/Fas (CD95) in brains of adult patients with Down syndrome. Neurosci Lett 260,9-12.
    Selkoe, D. J. (1999). Translating cell biology into therapeutic advances in Alzheimer's disease. Nature 399, A23-31.
    Smith, M. L., Kontny, H. U., Bortnick, R., and Fornace, A. J., Jr. (1997). The p53-regulated cyclin G gene promotes cell growth: p53 downstream effectors cyclin G and Gadd45 exert different effects on cisplatin chemosensitivity. Exp Cell Res 230, 61-68.
    Timsit, S., Rivera, S., Ouaghi, P., Guischard, F., Tremblay, E., Ben-Ari, Y., and Khrestchatisky, M. (1999). Increased cyclin D1 in vulnerable neurons in the hippocampus after ischaemia and epilepsy: a modulator of in vivo programmed cell death? Eur J Neurosci 11, 263-278.
    Tomasevic, G., Kamme, F., and Wieloch, T. (1998). Changes in proliferating cell nuclear antigen, a protein involved in DNA repair, in vulnerable hippocampal neurons following global cerebral ischemia. Brain Res Mol Brain Res 60,168-176.
    Tomasevic, G., Shamloo, M., Israeli, D., and Wieloch, T. (1999). Activation of p53 and its target genes p21(WAF1/Cip1) and PAG608/Wig-l in ischemic preconditioning. Brain Res Mol Brain Res 70,304-313.
    Uberti, D., Belloni, M., Grilli, M., Spano, P., and Memo, M. (1998). Induction of tumour-suppressor phosphoprotein p53 in the apoptosis of cultured rat cerebellar neurones triggered by excitatory amino acids. Eur J Neurosci 10,246-254.
    Uberti, D., Grilli, ML, and Memo, M. (2000). Contribution of NF-kappaB and p53 in the glutamate-induced apoptosis. Int J Dev Neurosci 18,447-454.
    Van Etten, R. A. (1999). Cycling, stressed-out and nervous: cellular functions of c-Abl. Trends Cell Biol 9,179-186.
    van Lookeren Campagne, M., and Gill, R. (1998). Increased expression of cyclin G1 and p21WAF1/CIP1 in neurons following transient forebrain ischemia: comparison with early DNA damage. J Neurosci Res 53,279-296.
    Vincent, I., Jicha, G., Rosado, M., and Dickson, D. W. (1997). Aberrant expression of mitotic cdc2/cyclin Bl kinase in degenerating neurons of Alzheimer's disease brain. J Neurosci 17, 3588-3598.
    Wood, K. A., and Youle, R. J. (1995). The role of free radicals and p53 in neuron apoptosis in vivo. J Neurosci 15, 5851-5857.
    Adonaylo,V.N.,and Oteiza,P.I.(1999).Pb2+ promotes lipid oxidation and alterations in membrane physical properties.Toxicology 132,19-32.
    Ballatori,N.(2002).Transport of toxic metals by molecular mimicry.Environmental health perspectives 110 Suppl 5,689-694.
    Bellinger,D.C.(2004).Lead.Pediatrics 113,1016-1022.
    Bellinger,D.C.,Stiles,K.M.,and Needleman,H.L.(1992).Low-level lead exposure,intelligence and academic achievement:a long-term follow-up study.Pediatrics 90,855-861.
    Benes,C.H.,Wu,N.,Elia,A.E.,Dharia,T.,Cantley,L.C.,and Soltoff,S.P.(2005).The C2domain of PKCdelta is a phosphotyrosine binding domain.Cell 121,271-280.
    Bhattacharya,A.,Shukla,R.,Bornschein,R.L.,Dietrich,K.N.,and Keith,R.(1990).Lead effects on postural balance of children.Environmental health perspectives 89,35-42.
    Bhattacharya,A.,Shukla,R.,Dietrich,K.,Bornschein,R.,and Berger,O.(1995).Effect of early lead exposure on children's postural balance.Developmental medicine and child neurology 37,861-878.
    Bouton,C.M.,Frelin,L.P.,Forde,C.E.,Arnold Godwin,H.,and Pevsner,J.(2001a).Synaptotagmin I is a molecular target for lead.Journal of neurochemistry 76,1724-1735.
    Bouton,C.M.,Hossain,M.A.,Frelin,L.P.,Laterra,J.,and Pevsner,J.(2001b).Microarray analysis of differential gene expression in lead-exposed astrocytes.Toxicology and applied pharmacology 176,34-53.
    Breen,K.C.,and Regan,C.M.(1988).Lead stimulates Golgi sialyltransferase at times coincident with the embryonic to adult conversion of the neural cell adhesion molecule (N-CAM).Toxicology 49,71-76.
    Bridges,C.C.,and Zalups,R.K.(2005).Molecular and ionic mimicry and the transport of toxic metals.Toxicology and applied pharmacology 204,274-308.
    Canfield,R.L.,Henderson,C.R.,Jr.,Cory-Slechta,D.A.,Cox,C.,Jusko,T.A.,and Lanphear,B.P.(2003).Intellectual impairment in children with blood lead concentrations below 10 microg per deciliter. The New England journal of medicine 348, 1517-1526.
    Chattopadhyaya, R., Meador, W. E., Means, A. R., and Quiocho, F. A. (1992). Calmodulin structure refined at 1.7 A resolution. Journal of molecular biology 228,1177-1192.
    Chou, J. J., Li, S., Klee, C. B., and Bax, A. (2001). Solution structure of Ca(2+)-calmodulin reveals flexible hand-like properties of its domains. Nature structural biology 8, 990-997.
    Cloues, R. K., Cibulsky, S. M., and Sather, W. A. (2000). Ion interactions in the high-affinity binding locus of a voltage-gated Ca(2+) channel. The Journal of general physiology 116, 569-586.
    Counter, S. A., and Buchanan, L. H. (2002). Neuro-ototoxicity in andean adults with chronic lead and noise exposure. Journal of occupational and environmental medicine / American College of Occupational and Environmental Medicine 44, 30-38.
    Dai, X., Ruan, D., Chen, J., Wang, M., and Cai, L. (2001). The effects of lead on transient outward currents of acutely dissociated rat dorsal root ganglia. Brain research 904, 327-340.
    Davey, F. D., and Breen, K. C. (1998). Stimulation of sialyltransferase by subchronic low-level lead exposure in the developing nervous system. A potential mechanism of teratogen action. Toxicology and applied pharmacology 151,16-21.
    Dietrich, K. N., Berger, O. G, Succop, P. A., Hammond, P. B., and Bornschein, R. L. (1993). The developmental consequences of low to moderate prenatal and postnatal lead exposure: intellectual attainment in the Cincinnati Lead Study Cohort following school entry. Neurotoxicology, and teratology 15, 37-44.
    Dietrich, K. N., Ris, M. D., Succop, P. A., Berger, O. G, and Bornschein, R. L. (2001). Early exposure to lead and juvenile delinquency. Neurotoxicology and teratology 23,511 -518.
    Ellis, C. D., Wang, F., MacDiarmid, C. W, Clark, S., Lyons, T., and Eide, D. J. (2004). Zinc and the Msc2 zinc transporter protein are required for endoplasmic reticulum function. The Journal of cell biology 166, 325-335.
    Fujiwara, Y., Yamamoto, C, and Kaji, T. (2000). Proteoglycans synthesized by cultured bovine aortic smooth muscle cells after exposure to lead: lead selectively inhibits the synthesis of versican, a large chondroitin sulfate proteoglycan. Toxicology 154,9-19.
    Garza, A., Vega, R., and Soto, E. (2006). Cellular mechanisms of lead neurotoxicity. Med Sci Monit 12, RA57-65.
    Ghering, A. B., Jenkins, L. M., Schenck, B. L., Deo, S., Mayer, R. A., Pikaart, M. J., Omichinski, J. G, and Godwin, H. A. (2005). Spectroscopic and functional determination of the interaction of Pb2+ with GATA proteins. Journal of the American Chemical Society 127, 3751-3759.
    Godwin, H. A. (2001). The biological chemistry of lead. Current opinion in chemical biology 5, 223-227.
    Gunshin, H., Mackenzie, B., Berger, U. V., Gunshin, Y., Romero, M. F., Boron, W. F., Nussberger, S., Gollan, J. L, and Hediger, M. A. (1997). Cloning and characterization of a mammalian proton-coupled metal-ion transporter. Nature 388,482-488.
    Habermann, E., Crowell, K., and Janicki, P. (1983). Lead and other metals can substitute for Ca2+ in calmodulin. Archives of toxicology 54,61-70.
    Hanas, J. S., Rodgers, J. S., Bantle, J. A., and Cheng, Y. G. (1999). Lead inhibition of DNA-binding mechanism of Cys(2)His(2) zinc finger proteins. Molecular pharmacology 56,982-988.
    Hashemzadeh-Gargari, H., and Guilarte, T. R. (1999). Divalent cations modulate N-methyl-D-aspartate receptor function at the glycine site. The Journal of pharmacology and experimental therapeutics 290, 1356-1362.
    He, L., Poblenz, A. T., Medrano, C. J., and Fox, D. A. (2000). Lead and calcium produce rod photoreceptor cell apoptosis by opening the mitochondrial permeability transition pore. The Journal of biological chemistry 275, 12175-12184.
    Hechtenberg, S., and Beyersmann, D. (1991). Inhibition of sarcoplasmic reticulum Ca(2+)-ATPase activity by cadmium, lead and mercury. Enzyme 45,109-115.
    Huang, M., Krepkiy, D., Hu, W., and Petering, D. H. (2004). Zn-, Cd-, and Pb-transcription factor IIIA: properties, DNA binding, and comparison with TFIIIA-finger 3 metal complexes. Journal of inorganic biochemistry 98,775-785.
    Kern, M., Wisniewski, M., Cabell, L., and Audesirk, G. (2000). Inorganic lead and calcium interact positively in activation of calmodulin. Neurotoxicology 21,353-363.
    Konecki, J., Blazejowski, J., Slowinski, J., and Helewski, K. (2000). Influence of chronic cadmium exposure during pregnancy on DNA synthesis in different organs of rat offspring. Med Sci Monit 6,1077-1081.
    Kuboniwa, H., Tjandra, N., Grzesiek, S., Ren, H., Klee, C. B., and Bax, A. (1995). Solution structure of calcium-free calmodulin. Nature structural biology 2,768-776.
    Lane, T. W., Saito, M. A., George, G. N., Pickering, I. J., Prince, R. C., and Morel, F. M. (2005). Biochemistry: a cadmium enzyme from a marine diatom. Nature 435,42.
    Lewit-Bentley, A., and Rety, S. (2000). EF-hand calcium-binding proteins. Current opinion in structural biology 10,637-643.
    Lidsky, T. I., and Schneider, J. S. (2003). Lead neurotoxicity in children: basic mechanisms and clinical correlates. Brain 126, 5-19.
    Liu, T., Golden, J. W., and Giedroc, D. P. (2005). A zinc(II)/lead(II)/cadmium(H)-inducible operon from the Cyanobacterium anabaena is regulated by AztR, an alpha3N ArsR/SmtB metalloregulator. Biochemistry 44,8673-8683.
    Long, G. J., Rosen, J. F., and Schanne, F. A. (1994). Lead activation of protein kinase C from rat brain. Determination of free calcium, lead, and zinc by 19F NMR. The Journal of biological chemistry 269, 834-837.
    Madeja, M, Musshoff, U., Binding, N., Witting, U., and Speckmann, E. J. (1997). Effects of Pb2+ on delayed-rectifier potassium channels in acutely isolated hippocampal neurons. Journal of neurophysiology 78,2649-2654.
    Magyar, J. S., Weng, T. C, Stern, C. M, Dye, D. F., Rous, B. W., Payne, J. C., Bridgewater, B. M., Mijovilovich, A., Parkin, G., Zaleski, J. M., Penner-Hahn, J. E., and Godwin, H. A. (2005). Reexamination of lead(II) coordination preferences in sulfur-rich sites: implications for a critical mechanism of lead poisoning. Journal of the American Chemical Society 127, 9495-9505.
    Mameli, O., Caria, M. A., Melis, F., Solinas, A., Tavera, C, Ibba, A., Tocco, M., Flore, C, and Sanna Randaccio, F. (2001). Neurotoxic effect of lead at low concentrations. Brain research bulletin 55,269-275.
    Manalis, R. S., Cooper, G. P., and Pomeroy, S. L. (1984). Effects of lead on neuromuscular transmission in the frog. Brain research 294,95-109.
    Markovac, J., and Goldstein, G. W. (1988). Picomolar concentrations of lead stimulate brain protein kinase C. Nature 334,71 -73.
    Mazzolini, M., Traverso, S., and Marchetti, C. (2001). Multiple pathways of Pb(2+) permeation in rat cerebellar granule neurones. Journal of neurochemistry 79,407-416.
    McNeill, D. R., Narayana, A., Wong, H. K., and Wilson, D. M., 3rd (2004). Inhibition of Apel nuclease activity by lead, iron, and cadmium. Environmental health perspectives 112, 799-804.
    Mielke, H. W., Anderson, J. C, Berry, K. J., Mielke, P. W, Chaney, R. L., and Leech, M. (1983). Lead concentrations in inner-city soils as a factor in the child lead problem. American journal of public health 73,1366-1369.
    Mike, A., Pereira, E. F., and Albuquerque, E. X. (2000). Ca(2+)-sensitive inhibition by Pb(2+) of alpha7-containing nicotinic acetylcholine receptors in hippocampal neurons. Brain research 873,112-123.
    Nagata, K., Huang, C. S., Song, J. H., and Narahashi, T. (1997). Lead modulation of the neuronal nicotinic acetylcholine receptor in PC12 cells. Brain research 754,21-27.
    Needleman, H. L., Riess, J. A., Tobin, M. J., Biesecker, G. E., and Greenhouse, J. B. (1996). Bone lead levels and delinquent behavior. Jama 275,363-369.
    Needleman, H. L., Schell, A., Bellinger, D., Leviton, A., and Allred, E. N. (1990). The long-term effects of exposure to low doses of lead in childhood. An 11-year follow-up report. The New England journal of medicine 322, 83-88.
    Nunes-Tavares, N., Valverde, R. H., Araujo, G. M., and Hasson-Voloch, A. (2005). Toxicity induced by Hg2+ on choline acetyltransferase activity from E. electricus (L.) electrocytes: the protective effect of 2,3 dimercapto-propanol (BAL). Med Sci Monit 11, BR100-105.
    Opler, M. G., Brown, A. S., Graziano, J., Desai, ML, Zheng, W., Schaefer, C, Factor-Litvak, P., and Susser, E. S. (2004). Prenatal lead exposure, delta-aminolevulinic acid, and schizophrenia. Environmental health perspectives 112, 548-552.
    Parr, D. R., and Harris, E. J. (1976). The effect of lead on the calcium-handling capacity of rat heart mitochondria. The Biochemical journal 158, 289-294.
    Peng, S., Hajela, R. K., and Atchison, W. D. (2002). Characteristics of block by Pb2+ of function of human neuronal L-, N-, and R-type Ca2+ channels transiently expressed in human embryonic kidney 293 cells. Molecular pharmacology 62,1418-1430.
    Qian, Y., Harris, E. D., Zheng, Y., and Tiffany-Castiglioni, E. (2000). Lead targets GRP78, a molecular chaperone, in C6 rat glioma cells. Toxicology and applied pharmacology 163, 260-266.
    Qian, Y, and Tiffany-Castiglioni, E. (2003). Lead-induced endoplasmic reticulum (ER) stress responses in the nervous system. Neurochemical research 28,153-162.
    Qian, Y, Zheng, Y, Ramos, K. S., and Tiffany-Castiglioni, E. (2005). GRP78 compartmentalized redistribution in Pb-treated glia: role of GRP78 in lead-induced oxidative stress. Neurotoxicology 26, 267-275.
    Rizo, J., and Sudhof, T. C. (1998). C2-domains, structure and function of a universal Ca2+-binding domain. The Journal of biological chemistry 273, 15879-15882.
    Saimi, Y, and Kung, C. (2002). Calmodulin as an ion channel subunit. Annual review of physiology 64,289-311.
    Sather, W. A., and McCleskey, E. W. (2003). Permeation and selectivity in calcium channels. Annual review of physiology 65,133-159.
    Semczuk, M., and Semczuk-Sikora, A. (2001). New data on toxic metal intoxication (Cd, Pb, and Hg in particular) and Mg status during pregnancy. Med Sci Monit 7,332-340.
    Shao, X, Davletov, B. A., Sutton, R. B., Sudhof, T. C, and Rizo, J. (1996). Bipartite Ca2+-binding motif in C2 domains of synaptotagmin and protein kinase C. Science (New York, N. Y273,248-251.
    Shao, X., Fernandez, I, Sudhof, T. C, and Rizo, J. (1998). Solution structures of the Ca2+-free and Ca2+-bound C2A domain of synaptotagmin I: does Ca2+ induce a conformational change? Biochemistry 37,16106-16115.
    Simons, T. J. (1986). The role of anion transport in the passive movement of lead across the human red cell membrane. The Journal of physiology 378,287-312.
    Simons, T. J. (1995). The affinity of human erythrocyte porphobilinogen synthase for Zn2+ and Pb2+. European journal of biochemistry / FEBS 234, 178-183.
    Stiles, K. M., and Bellinger, D. C. (1993). Neuropsychological correlates of low-level lead exposure in school-age children: a prospective study. Neurotoxicology and teratology 15, 27-35.
    Stretesky, P. B., and Lynch, M. J. (2001). The relationship between lead exposure and homicide. Archives of pediatrics & adolescent medicine 155,579-582.
    Sudhof, T. C. (2002). Synaptotagmins: why so many? The Journal of biological chemistry 277, 7629-7632.
    Suszkiw, J. B. (2004). Presynaptic disruption of transmitter release by lead. Neurotoxicology 25, 599-604.
    Tomsig, J. L., and Suszkiw, J. B. (1995). Multisite interactions between Pb2+ and protein kinase C and its role in norepinephrine release from bovine adrenal chromaffin cells. Journal of neurochemistry 64, 2667-2673.
    Tong, S., von Schirnding, Y. E., and Prapamontol, T. (2000). Environmental lead exposure: a public health problem of global dimensions. Bulletin of the World Health Organization 78,1068-1077.
    Ujihara, H., Sasa, M., and Ban, T. (1995). Selective blockade of P-type calcium channels by lead in cultured hippocampal neurons. Japanese journal of pharmacology 67,267-269.
    Vetter, S. W., and Leclerc, E. (2003). Novel aspects of calmodulin target recognition and activation. European journal of biochemistry / FEBS 270,404-414.
    Villeda-Hernandez, J., Barroso-Moguel, R., Mendez-Armenta, M., Nava-Ruiz, C., Huerta-Romero, R., and Rios, C. (2001). Enhanced brain regional lipid peroxidation in developing rats exposed to low level lead acetate. Brain research bulletin 55,247-251.
    Wakefield, J. (2002). The lead effect? Environmental health perspectives 110, A574-580.
    Walkowiak, J., Altmann, L., Kramer, U., Sveinsson, K., Turfeld, M., Weishoff-Houben, M., and Winneke, G. (1998). Cognitive and sensorimotor functions in 6-year-old children in relation to lead and mercury levels: adjustment for intelligence and contrast sensitivity in computerized testing. Neurotoxicology and teratology 20,511 -521.
    Werner, C., Krebs, B., Keith, G., and Dirheimer, G. (1976). Specific cleavages of pure tRNAs by plumbous ions. Biochimica et biophysica acta 432,161-175.
    Wilson, M. A., and Brunger, A. T. (2003). Domain flexibility in the 1.75 A resolution structure of Pb2+-calmodulin. Acta crystallographica 59,1782-1792.
    Winter, D., Polacek, N., Halama, I., Streicher, B., and Barta, A. (1997). Lead-catalysed specific cleavage of ribosomal RNAs. Nucleic acids research 25,1817-1824.
    Arendt, T., Rodel, L., Gartner, U., and Holzer, M. (1996). Expression of the cyclin-dependent kinase inhibitor p16 in Alzheimer's disease. Neuroreport 7,3047-3049.
    Atwood, H. L., and Wojtowicz, J. M. (1999). Silent synapses in neural plasticity: current evidence. Learn Mem 6,542-571.
    Bolshakov, V. Y., and Siegelbaum, S. A. (1994). Postsynaptic induction and presynaptic expression of hippocampal long-term depression. Science 264,1148-1152.
    Braunewell, K. H., and Manahan-Vaughan, D. (2001). Long-term depression: a cellular basis for learning? Rev Neurosci 12,121-140.
    Busser, J., Geldmacher, D. S., and Herrup, K. (1998). Ectopic cell cycle proteins predict the sites of neuronal cell death in Alzheimer's disease brain. J Neurosci 18,2801-2807.
    Cabezas, C, and Buno, W. (2006). Distinct transmitter release properties determine differences in short-term plasticity at functional and silent synapses. J Neurophysiol 95,3024-3034.
    Chopp, M., Li, Y., Zhang, Z. G., and Freytag, S. O. (1992). p53 expression in brain after middle cerebral artery occlusion in the rat. Biochem Biophys Res Commun 182,1201-1207.
    Crumrine, R. C, Thomas, A. L, and Morgan, P. F. (1994). Attenuation of p53 expression protects against focal ischemic damage in transgenic mice. J Cereb Blood Flow Metab 14,887-891.
    Datta, S. R., Brunet, A., and Greenberg, M. E. (1999). Cellular survival: a play in three Akts. Genes Dev 13,2905-2927.
    Eriksson, P. S., Perfilieva, E., Bjork-Eriksson, T., Alborn, A. M., Nordborg, C., Peterson, D. A., and Gage, F. H. (1998). Neurogenesis in the adult human hippocampus. Nat Med 4, 1313-1317.
    Faber, D. S., Lin, J. W., and Korn, H. (1991). Silent synaptic connections and their modifiability. Ann N Y Acad Sci 627,151-164.
    Feinmark, S. J., Begum, R., Tsvetkov, E., Goussakov, I., Funk, C. D., Siegelbaum, S. A., and Bolshakov, V. Y. (2003). 12-lipoxygenase metabolites of arachidonic acid mediate metabotropic glutamate receptor-dependent long-term depression at hippocampal CA3-CA1 synapses. J Neurosci 23,11427-11435.
    Fischer, S. J., McDonald, E. S., Gross, L., and Windebank, A. J. (2001). Alterations in cell cycle regulation underlie cisplatin induced apoptosis of dorsal root ganglion neurons in vivo. Neurobiol Dis 8, 1027-1035.
    Fitzjohn, S. M., Kingston, A. E., Lodge, D., and Collingridge, G. L. (1999). DHPG-induced LTD in area CA1 of juvenile rat hippocampus; characterisation and sensitivity to novel mGlu receptor antagonists. Neuropharmacology 38,1577-1583.
    Fitzjohn, S. M, Palmer, M. J., May, J. E., Neeson, A., Morris, S. A., and Collingridge, G. L. (2001). A characterisation of long-term depression induced by metabotropic glutamate receptor activation in the rat hippocampus in vitro. J Physiol 537,421-430.
    Freeman, R. S., Estus, S., and Johnson, E. M., Jr. (1994). Analysis of cell cycle-related gene expression in postmitotic neurons: selective induction of Cyclin D1 during programmed cell death. Neuron 12,343-355.
    Gao, N., Flynn, D. C, Zhang, Z., Zhong, X. S., Walker, V., Liu, K. J., Shi, X., and Jiang, B. H. (2004). G1 cell cycle progression and the expression of G1 cyclins are regulated by PI3K/AKT/mTOR/p70S6Kl signaling in human ovarian cancer cells. Am JPhysiol Cell Physiol 287, C281-291.
    Gao, N., Zhang, Z., Jiang, B. H., and Shi, X. (2003). Role of PI3K/AKT/mTOR signaling in the cell cycle progression of human prostate cancer. Biochem Biophys Res Commun 310, 1124-1132.
    Giovanni, A., Keramaris, E., Morris, E. J., Hou, S. T., O'Hare, M., Dyson, N., Robertson, G. S., Slack, R. S., and Park, D. S. (2000). E2F1 mediates death of B-amyloid-treated cortical neurons in a manner independent of p53 and dependent on Bax and caspase 3. J Biol Chem 275, 11553-11560.
    Gould, E., McEwen, B. S., Tanapat, P., Galea, L. A., and Fuchs, E. (1997). Neurogenesis in the dentate gyrus of the adult tree shrew is regulated by psychosocial stress and NMDA receptor activation. J Neurosci 17,2492-2498.
    Gould, E., Reeves, A. J., Fallah, M., Tanapat, P., Gross, C. G, and Fuchs, E. (1999a). Hippocampal neurogenesis in adult Old World primates. Proc Natl Acad Sci U S A 96, 5263-5267.
    Gould, E., Tanapat, P., Hastings, N. B., and Shors, T. J. (1999b). Neurogenesis in adulthood: a possible role in learning. Trends Cogn Sci 3,186-192.
    Gould, E., Tanapat, P., McEwen, B. S., Flugge, G, and Fuchs, E. (1998). Proliferation of granule cell precursors in the dentate gyrus of adult monkeys is diminished by stress. Proc Natl Acad Sci U S A 95, 3168-3171.
    Guttridge, D. C, Albanese, C, Reuther, J. Y., Pestell, R. G, and Baldwin, A. S., Jr. (1999). NF-kappaB controls cell growth and differentiation through transcriptional regulation of cyclin D1. Mol Cell Biol 19,5785-5799.
    Hou, L., and Klann, E. (2004). Activation of the phosphoinositide 3-kinase-Akt-mammalian target of rapamycin signaling pathway is required for metabotropic glutamate receptor-dependent long-term depression. J Neurosci 24, 6352-6361.
    Huber, K. M., Kayser, M. S., and Bear, M. F. (2000). Role for rapid dendritic protein synthesis in hippocampal mGluR-dependent long-term depression. Science 288,1254-1257.
    Ino, H., and Chiba, T. (2001). Cyclin-dependent kinase 4 and cyclin D1 are required for excitotoxin-induced neuronal cell death in vivo. J Neurosci 21,6086-6094.
    Kaffman, A., Herskowitz, I., Tjian, R., and O'Shea, E. K. (1994). Phosphorylation of the transcription factor PHO4 by a cyclin-CDK complex, PHO80-PHO85. Science 263, 1153-1156.
    Kastner, A., Moyse, E., Bauer, S., Jourdan, F., and Brun, G. (2000). Unusual regulation of cyclin D1 and cyclin-dependent kinases cdk2 and cdk4 during in vivo mitotic stimulation of olfactory neuron progenitors in adult mouse. J Neurochem 74,2343-2349.
    Kornack, D. R., and Rakic, P. (1999). Continuation of neurogenesis in the hippocampus of the adult macaque monkey. Proc Natl Acad Sci U S A 96, 5768-5773.
    Massague, J., Blain, S. W., and Lo, R. S. (2000). TGFbeta signaling in growth control, cancer, and heritable disorders. Cell 103, 295-309.
    Mawal-Dewan, M., Sen, P. C, Abdel-Ghany, M., Shalloway, D., and Racker, E. (1992). Phosphorylation of tau protein by purified p34cdc28 and a related protein kinase from neurofilaments. J Biol Chem 267,19705-19709.
    McShea, A., Harris, P. L, Webster, K. R., Wahl, A. F., and Smith, M. A. (1997). Abnormal expression of the cell cycle regulators P16 and CDK4 in Alzheimer's disease. Am J Pathol 150,1933-1939.
    Migheli, A., Piva, R., Casolino, S., Atzori, C, Dlouhy, S. R., and Ghetti, B. (1999). A cell cycle alteration precedes apoptosis of granule cell precursors in the weaver mouse cerebellum. Am J Pathol 155,365-373.
    Mulkey, R. M., and Malenka, R. C. (1992). Mechanisms underlying induction of homosynaptic long-term depression in area CA1 of the hippocampus. Neuron 9,967-975.
    Nagy, Z., Esiri, M. M., and Smith, A. D. (1997). Expression of cell division markers in the hippocampus in Alzheimer's disease and other neurodegenerative conditions. Acta Neuropathol (Berl) 93,294-300.
    Nagy, Z., Esiri, M. M., and Smith, A. D. (1998). The cell division cycle and the pathophysiology of Alzheimer's disease. Neuroscience 87,731-739.
    Ning, D., and Xu, X. (2004). alr0117, a two-component histidine kinase gene, is involved in heterocyst development in Anabaena sp. PCC 7120. Microbiology 150,447-453.
    Nosyreva, E. D., and Huber, K. M. (2005). Developmental switch in synaptic mechanisms of hippocampal metabotropic glutamate receptor-dependent long-term depression. J Neurosci 25, 2992-3001.
    Oliet, S. H., Malenka, R. C, and Nicoll, R. A. (1997). Two distinct forms of long-term depression coexist in CA1 hippocampal pyramidal cells. Neuron 18,969-982.
    Park, D. S., Levine, B., Ferrari, G, and Greene, L. A. (1997). Cyclin dependent kinase inhibitors and dominant negative cyclin dependent kinase 4 and 6 promote survival of NGF-deprived sympathetic neurons. J Neurosci 17,8975-8983.
    Park, D. S., Morris, E. J., Stefanis, L., Troy, C. M., Shelanski, M. L, Geller, H. M., and Greene, L. A. (1998). Multiple pathways of neuronal death induced by DNA-damaging agents, NGF deprivation, and oxidative stress. J Neurosci 18,830-840.
    Radu, A., Neubauer, V., Akagi, T., Hanafusa, H., and Georgescu, M. M. (2003). PTEN induces cell cycle arrest by decreasing the level and nuclear localization of cyclin D1. Mol Cell 5/0/23,6139-6149.
    Rammes, G, Palmer, M., Eder, M., Dodt, H. U., Zieglgansberger, W., and Collingridge, G. L. (2003). Activation of mGlu receptors induces LTD without affecting postsynaptic sensitivity of CA1 neurons in rat hippocampal slices. J Physiol 546,455-460.
    Rickert, P., Seghezzi, W., Shanahan, F., Cho, H., and Lees, E. (1996). Cyclin C/CDK8 is a novel CTD kinase associated with RNA polymerase II. Oncogene 12,2631-2640.
    Rosenmund, C., Sigler, A., Augustin, I., Reim, K., Brose, N., and Rhee, J. S. (2002). Differential control of vesicle priming and short-term plasticity by Munc13 isoforms. Neuron 33, 411-424.
    Roy, R., Adamczewski, J. P., Seroz, T., Vermeulen, W., Tassan, J. P., Schaeffer, L., Nigg, E. A., Hoeijmakers, J. H., and Egly, J. M. (1994). The MO15 cell cycle kinase is associated with the TFIIH transcription-DNA repair factor. Cell 79,1093-1101.
    Sanna, P. P., Cammalleri, M., Berton, F., Simpson, C, Lutjens, R., Bloom, F. E., and Francesconi, W. (2002). Phospfiatidylinositol 3-kinase is required for the expression but not for the induction or the maintenance of long-term potentiation in the hippocampal CA1 region. J Neurosci 22,3359-3365.
    Schmetsdorf, S., Gartner, U., and Arendt, T. (2005). Expression of cell cycle-related proteins in developing and adult mouse hippocampus. Int J Dev Neurosci 23,101-112.
    Schnabel, R., Kilpatrick, I. C, and Collingridge, G. L. (1999). An investigation into signal transduction mechanisms involved in DHPG-induced LTD in the CA1 region of the hippocampus. Neuropharmacology 38, 1585-1596.
    Sherr, C. J. (1996). Cancer cell cycles. Science 274,1672-1677.
    Sherr, C. J., and Roberts, J. M. (1999). CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev 13,1501-1512.
    Sumrejkanchanakij, P. (2003). [Prevention of cyclin D1 nuclear localization in terminally differentiated neurons]. Kokubyo GakkaiZasshi 70,131-139.
    Sumrejkanchanakij, P., Tamamori-Adachi, M., Matsunaga, Y., Eto, K., and Ikeda, M. A. (2003). Role of cyclin D1 cytoplasmic sequestration in the survival of postmitotic neurons. Oncogene 22, 8723-8730.
    Tamamori-Adachi, M., Ito, H., Sumrejkanchanakij, P., Adachi, S., Hiroe, M., Shimizu, M., Kawauchi, J., Sunamori, M., Marumo, F., Kitajima, S., and Ikeda, M. A. (2003). Critical role of cyclin D1 nuclear import in cardiomyocyte proliferation. Circ Res 92, e12-19.
    Timsit, S., Rivera, S., Ouaghi, P., Guischard, R, Tremblay, E., Ben-Ari, Y., and Khrestchatisky, M. (1999). Increased cyclin D1 in vulnerable neurons in the hippocampus after ischaemia and epilepsy: a modulator of in vivo programmed cell death? Eur J Neurosci 11,263-278.
    Tomasevic, G, Kamme, R, and Wieloch, T. (1998). Changes in proliferating cell nuclear antigen, a protein involved in DNA repair, in vulnerable hippocampal neurons following global cerebral ischemia. Brain Res Mol Brain Res 60,168-176.
    van Lookeren Campagne, M., and Gill, R. (1998). Increased expression of cyclin G1 and p21WAF1/CIP1 in neurons following transient forebrain ischemia: comparison with early DNA damage. J Neurosci Res 53,279-296.
    Vincent, I., Jicha, G, Rosado, M., and Dickson, D. W. (1997). Aberrant expression of mitotic cdc2/cyclin B1 kinase in degenerating neurons of Alzheimer's disease brain. J Neurosci 17,3588-3598.
    Watabe, A. M., Carlisle, H. J., and O'Dell, T. J. (2002). Postsynaptic induction and presynaptic expression of group 1 mGluR-dependent LTD in the hippocampal CA1 region. J Neurophysiol 87, 1395-1403.
    Welsh, C. R, Roovers, K., Villanueva, J., Liu, Y, Schwartz, M. A., and Assoian, R. K. (2001). Timing of cyclin D1 expression within G1 phase is controlled by Rho. Nat Cell Biol 3, 950-957.
    Zakharenko, S. S., Zablow, L., and Siegelbaum, S. A. (2002). Altered presynaptic vesicle release and cycling during mGluR-dependent LTD. Neuron 35,1099-1110.
    Basha,M.R.,Wei,W.,Brydie,M.,Razmiafshari,M.,and Zawia,N.H.(2003).Lead-induced developmental perturbations in hippocampal Sp1 DNA-binding are prevented by zinc supplementation:in vivo evidence for Pb and Zn competition.Int J Dev Neurosci 21,1-12.
    Bellinger,D.,and Dietrich,K.N.(1994).Low-level lead exposure and cognitive function in children.Pediatr Ann 23,600-605.
    Blattner,C.,Sparks,A.,and Lane,D.(1999).Transcription factor E2F-1 is upregulated in response to DNA damage in a manner analogous to that of p53.Molecular and cellular biology 19,3704-3713.
    Bolin,C.M.,Basha,R.,Cox,D.,Zawia,N.H.,Maloney,B.,Lahiri,D.K.,and Cardozo-Pelaez,F.(2006).Exposure to lead and the developmental origin of oxidative DNA damage in the aging brain.Faseb J 20,788-790.
    Brennan,P.,Babbage,J.W.,Burgering,B.M.,Groner,B.,Reif,K.,and Cantrell,D.A.(1997).Phosphatidylinositol 3-kinase couples the interleukin-2 receptor to the cell cycle regulator E2F.Immunity 7,679-689.
    Brown,J.R.,Nigh,E.,Lee,R.J.,Ye,H.,Thompson,M.A.,Saudou,F.,Pestell,R.G.,and Greenberg,M.E.(1998).Fos family members induce cell cycle entry by activating cyclin D1.Molecular and cellular biology 18,5609-5619.
    Chen,B.,Pan,H.,Zhu,L.,Deng,Y.,and Pollard,J.W.(2005).Progesterone inhibits the estrogen-induced phosphoinositide 3-kinase-->AKT-->GSK-3beta-->cyclin D1-->pRB pathway to block uterine epithelial cell proliferation.Molecular endocrinology (Baltimore, Md 19,1978-1990.
    Chetty, C. S., Reddy, G. R., Murthy, K. S., Johnson, J., Sajwan, K., and Desaiah, D. (2001). Perinatal lead exposure alters the expression of neuronal nitric oxide synthase in rat brain. Int J Toxicol 20,113-120.
    Cheung, Z. H., and Ip, N. Y. (2004). Cdk5: mediator of neuronal death and survival. Neuroscience letters 361,47-51.
    Choi, D. W. (1988). Glutamate neurotoxicity and diseases of the nervous system. Neuron 1, 623-634.
    Chopp, M., Li, Y., Zhang, Z. G, and Freytag, S. O. (1992). p53 expression in brain after middle cerebral artery occlusion in the rat. Biochem Biophys Res Commun 182,1201-1207.
    Copani, A., Condorelli, F., Caruso, A., Vancheri, C, Sala, A., Giuffrida Stella, A. M., Canonico, P. L, Nicoletti, F., and Sortino, M. A. (1999). Mitotic signaling by beta-amyloid causes neuronal death. Faseb J 13, 2225-2234.
    Cordova, F. M., Rodrigues, A. L., Giacomelli, M. B., Oliveira, C. S., Posser, T., Dunkley, P. R., and Leal, R. B. (2004). Lead stimulates ERKl/2 and p38MAPK phosphorylation in the hippocampus of immature rats. Brain research 998,65-72.
    Crumrine, R. C., Thomas, A. L., and Morgan, P. F. (1994). Attenuation of p53 expression protects against focal ischemic damage in transgenic mice. J Cereb Blood Flow Metab 14,887-891.
    Estus, S., Zaks, W. J., Freeman, R. S., Gruda, M., Bravo, R., and Johnson, E. M., Jr. (1994). Altered gene expression in neurons during programmed cell death: identification of c-jun as necessary for neuronal apoptosis. The, Journal of cell biology 127, 1717-1727.
    Farinelli, S. E., and Greene, L. A. (1996). Cell cycle blockers mimosine, ciclopirox, and deferoxamine prevent the death of PC12 cells and postmitotic sympathetic neurons after removal of trophic support. J Neurosci 16,1150-1162.
    Fox, D. A., Campbell, M. L, and Blocker, Y. S. (1997). Functional alterations and apoptotic cell death in the retina following developmental or adult lead exposure. Neurotoxicology 18, 645-664.
    Fox, D. A., He, L, Poblenz, A. T., Medrano, C. J., Blocker, Y. S., and Srivastava, D. (1998). Lead-induced alterations in retinal cGMP phosphodiesterase trigger calcium overload, mitochondrial dysfunction and rod photoreceptor apoptosis. Toxicol Lett 102-103, 359-361.
    Franklin, J. L., and Johnson, E. M., Jr. (1992). Suppression of programmed neuronal death by sustained elevation of cytoplasmic calcium. Trends in neurosciences 15,501-508.
    Freeman, R. S., Estus, S., and Johnson, E. M., Jr. (1994). Analysis of cell cycle-related gene expression in postmitotic neurons: selective induction of Cyclin D1 during programmed cell death. Neuron 12,343-355.
    Gao, N., Flynn, D. C, Zhang, Z., Zhong, X. S., Walker, V., Liu, K. J., Shi, X., and Jiang, B. H. (2004). G1 cell cycle progression and the expression of G1 cyclins are regulated by PI3K/AKT/mTOR/p70S6K1 signaling in human ovarian cancer cells. American journal of physiology 287, C281-291.
    Garza, A., Vega, R., and Soto, E. (2006). Cellular mechanisms of lead neurotoxicity. Med Sci Monit 12, RA57-65.
    Gavazzo, P., Gazzoli, A., Mazzolini, M, and Marchetti, C. (2001). Lead inhibition of NMDA channels in native and recombinant receptors. Neuroreport 12,3121-3125.
    Gill, J. S., and Windebank, A. J. (1998). Cisplatin-induced apoptosis in rat dorsal root ganglion neurons is associated with attempted entry into the cell cycle. The Journal of clinical investigation 101,2842-2850.
    Giovanni, A., Keramaris, E., Morris, E. J., Hou, S. T., O'Hare, M., Dyson, N., Robertson, G. S., Slack, R. S., and Park, D. S. (2000). E2F1 mediates death of B-amyloid-treated cortical neurons in a manner independent of p53 and dependent on Bax and caspase 3. The Journal of biological chemistry 275,11553-11560.
    Giovanni, A., Wirtz-Brugger, F., Keramaris, E., Slack, R., and Park, D. S. (1999). Involvement of cell cycle elements, cyclin-dependent kinases, pRb, and E2F x DP, in B-amyloid-induced neuronal death. The Journal of biological chemistry 274, 19011-19016.
    Griffin, R. J., Moloney, A., Kelliher, M., Johnston, J. A., Ravid, R., Dockery, P., O'Connor, R., and O'Neill, C. (2005). Activation of Akt/PKB, increased phosphorylation of Akt substrates and loss and altered distribution of Akt and PTEN are features of Alzheimer's disease pathology. Journal of neurochemistry 93,105-117.
    Guilarte, T. R. (1997). Glutamatergic system and developmental lead neurotoxicity. Neurotoxicology 18, 665-672.
    Guity, P., McCabe, M. J., Jr., Pitts, D. K., Santini, R. P., and Pounds, J. G. (2002). Protein kinase C does not mediate the inhibitory action of lead on vitamin D3-dependent production of osteocalcin in osteoblastic bone cells. Toxicology and applied pharmacology 178, 109-116.
    He, L., Perkins, G. A., Poblenz, A. T., Harris, J. B., Hung, M., Ellisman, M. H., and Fox, D. A. (2003). Bcl-xL Overexpression blocks bax-mediated mitochondrial contact site formation and apoptosis in rod photoreceptors of lead-exposed mice. Proc Natl Acad Sci U S A 100,1022-1027.
    He, L., Poblenz, A. T., Medrano, C. J., and Fox, D. A. (2000). Lead and calcium produce rod photoreceptor cell apoptosis by opening the mitochondrial permeability transition pore. J Biol Chem 275, 12175-12184.
    Hou, S. T., Xie, X., Baggley, A., Park, D. S., Chen, G., and Walker, T. (2002). Activation of the Rb/E2F1 pathway by the nonproliferative p38 MAPK during Fas (AP01/CD95)-mediated neuronal apoptosis. The Journal of biological chemistry 277, 48764-48770.
    Jacks, T., Fazeli, A., Schmitt, E. M., Bronson, R. T., Goodell, M. A., and Weinberg, R. A. (1992). Effects of an Rb mutation in the mouse. Nature 359,295-300.
    Kranenburg, O., van der Eb, A. J., and Zantema, A. (1996). Cyclin D1 is an essential mediator of apoptotic neuronal cell death. Embo J 15,46-54.
    Leal, R. B., Cordova, F. M., Herd, L., Bobrovskaya, L, and Dunkley, P. R. (2002). Lead-stimulated p38MAPK-dependent Hsp27 phosphorylation. Toxicology and applied pharmacology 178,44-51.
    Lee, E. Y., Chang, C. Y, Hu, N., Wang, Y. C, Lai, C. C., Herrup, K., Lee, W. H., and Bradley, A. (1992). Mice deficient for Rb are nonviable and show defects in neurogenesis and haematopoiesis. Nature 359,288-294.
    Liang, J., and Slingerland, J. M. (2003). Multiple roles of the PI3K/PKB (Akt) pathway in cell cycle progression. Cell cycle (Georgetown, Tex 2,339-345.
    Lin, Y. W., Chuang, S. M., and Yang, J. L. (2003). Persistent activation of ERK1/2 by lead acetate increases nucleotide excision repair synthesis and confers anti-cytotoxicity and anti-mutagenicity. Carcinogenesis 24,53-61.
    Loikkanen, J., Chvalova, K., Naarala, J., Vahakangas, K. H., and Savolainen, K. M. (2003a). Pb2+-induced toxicity is associated with p53-independent apoptosis and enhanced by glutamate in GT1-7 neurons. Toxicology letters 144,235-246.
    Loikkanen, J., Naarala, J., Vahakangas, K. H., and Savolainen, K. M. (2003b). Glutamate increases toxicity of inorganic lead in GT1-7 neurons: partial protection induced by flunarizine. Arch Toxicol 77,663-671.
    MacManus, J. P., Koch, C. J., Jian, M., Walker, T., and Zurakowski, B. (1999). Decreased brain infarct following focal ischemia in mice lacking the transcription factor E2F1. Neuroreport 10,2711-2714.
    Mielke, K., and Herdegen, T. (2000). JNK and p38 stresskinases-degenerative effectors of signal-transduction-cascades in the nervous system. Progress in neurobiology 61,45-60.
    Migheli, A., Piva, R., Casolino, S., Atzori, C., Dlouhy, S. R., and Ghetti, B. (1999). A cell cycle alteration precedes apoptosis of granule cell precursors in the weaver mouse cerebellum. Am J Pathol 155, 365-373.
    Muise-Helmericks, R. C, Grimes, H. L., Bellacosa, A., Malstrom, S. E., Tsichlis, P. N., and Rosen, N. (1998). Cyclin D expression is controlled post-transcriptionally via a phosphatidylinositol 3-kinase/Akt-dependent pathway. The Journal of biological chemistry 273, 29864-29.872.
    Neuman, E., Ladha, M. H., Lin, N., Upton, T. M., Miller, S. J., DiRenzo, J., Pestell, R. G, Hinds, P. W., Dowdy, S. F., Brown, M., and Ewen, M. E. (1997). Cyclin D1 stimulation of estrogen receptor transcriptional activity independent of cdk4. Molecular and cellular biology 17, 5338-5347.
    Nihei, M. K., McGlothan, J. L, Toscano, C. D., and Guilarte, T. R. (2001). Low level Pb(2+) exposure affects hippocampal protein kinase C gamma gene and protein expression in rats. Neuroscience letters 298,212-216.
    Norman, B. H., Shih, C, Toth, J. E., Ray, J. E., Dodge, J. A., Johnson, D. W., Rutherford, P. G., Schultz, R. M., Worzalla, J. F., and Vlahos, C. J. (1996). Studies on the mechanism of phosphatidylinositol 3-kinase inhibition by wortmannin and related analogs. Journal of medicinal chemistry 39,1106-1111.
    Oberto, A., Marks, N., Evans, H. L., and Guidotti, A. (1996). Lead (Pb+2) promotes apoptosis in newborn rat cerebellar neurons: pathological implications. J Pharmacol Exp Ther 279, 435-442.
    Padmanabhan, J., Park, D. S., Greene, L. A., and Shelanski, M. L. (1999). Role of cell cycle regulatory proteins in cerebellar granule neuron apoptosis. J Neurosci 19,8747-8756.
    Park, D. S., Farinelli, S. E., and Greene, L. A. (1996). Inhibitors of cyclin-dependent kinases promote survival of post-mitotic neuronally differentiated PC12 cells and sympathetic neurons. The Journal of biological chemistry 271, 8161-8169.
    Park, D. S., Levine, B., Ferrari, G, and Greene, L. A. (1997a). Cyclin dependent kinase inhibitors and dominant negative cyclin dependent kinase 4 and 6 promote survival of NGF-deprived sympathetic neurons. J Neurosci 17,8975-8983.
    Park, D. S., Morris, E. J., Bremner, R., Keramaris, E., Padmanabhan, J., Rosenbaum, M., Shelanski, M. L., Geller, H. M., and Greene, L. A. (2000). Involvement of retinoblastoma family members and E2F/DP complexes in the death of neurons evoked by DNA damage. J Neurosci 20,3104-3114.
    Park, D. S., Morris, E. J., Greene, L. A., and Geller, H. M. (1997b). G1/S cell cycle blockers and inhibitors of cyclin-dependent kinases suppress camptothecin-induced neuronal apoptosis. J Neurosci 17,1256-1270.
    Park, D. S., Morris, E. J., Padmanabhan, J., Shelanski, M. L, Geller, H. M., and Greene, L. A. (1998a). Cyclin-dependent kinases participate in death of neurons evoked by DNA-damaging agents. The Journal of cell biology 143,457-467.
    Park, D. S., Morris, E. J., Stefanis, L, Troy, C. M., Shelanski, M. L, Geller, H. M., and Greene, L. A. (1998b). Multiple pathways of neuronal death induced by DNA-damaging agents, NGF deprivation, and oxidative stress. J Neurosci 18,830-840.
    Pettmann, B., and Henderson, C. E. (1998). Neuronal cell death. Neuron 20,633-647.
    Poluha, W., Poluha, D. K., Chang, B., Crosbie, N. E., Schonhoff, C. M., Kilpatrick, D. L, and Ross, A. H. (1996). The cyclin-dependent kinase inhibitor p21 (WAF1) is required for survival of differentiating neuroblastoma cells. Molecular and cellular biology 16, 1335-1341.
    Powis, G, Bonjouklian, R., Berggren, M. M., Gallegos, A., Abraham, R., Ashendel, C., Zalkow, L., Matter, W. F., Dodge, J., Grindey, G, and et al. (1994). Wortmannin, a potent and selective inhibitor of phosphatidylinositol-3-kinase. Cancer research 54, 2419-2423.
    Qin, X. Q., Livingston, D. M., Kaelin, W. G, Jr., and Adams, P. D. (1994). Deregulated transcription factor E2F-1 expression leads to S-phase entry and p53-mediated apoptosis. Proceedings of the National Academy of Sciences of the United States of America 91, 10918-10922.
    Rashidian, J., Iyirhiaro, G., Aleyasin, H., Rios, M., Vincent, I., Callaghan, S., Bland, R. J., Slack, R. S., During, M. J., and Park, D. S. (2005). Multiple cyclin-dependent kinases signals are critical mediators of ischemia/hypoxic neuronal death in vitro and in vivo. Proceedings of the National Academy of Sciences of the United States of America 102, 14080-14085.
    Reddy, G. R., and Zawia, N. H. (2000). Lead exposure alters Egr-1 DNA-binding in the neonatal rat brain. Int J Dev Neurosci 18, 791-795.
    Regan, C. M. (1989). Lead-impaired neurodevelopment. Mechanisms and threshold values in the rodent. Neurotoxicol Teratol 11, 533-537.
    Saito, M., Guidotti, A., Berg, M. J., and Marks, N. (1998). The semisynthetic glycosphingolipid LIGA20 potently protects neurons against apoptosis. Ann N Y Acad Sci 845,253-262.
    Saleh, A. M., Vijayasarathy, C., Masoud, L, Kumar, L, Shahin, A., and Kambal, A. (2003). Paraoxon induces apoptosis in EL4 cells via activation of mitochondrial pathways. Toxicology and applied pharmacology 190, 47-57.
    Savolainen, K. M., Loikkanen, J., Eerikainen, S., and Naarala, J. (1998a). Glutamate-stimulated ROS production in neuronal cultures: interactions with lead and the cholinergic system. Neumtoxicology 19,669-674.
    Savolainen, K. M., Loikkanen, J., Eerikainen, S., and Naarala, J. (1998b). Interactions of excitatory neurotransmitters and xenobiotics in excitotoxicity and oxidative stress: glutamate and lead. Toxicology letters 102-103, 363-367.
    Schlingensiepen, K. H., Wollnik, F., Kunst, M., Schlingensiepen, R., Herdegen, T., and Brysch, W. (1994). The role of Jun transcription factor expression and phosphorylation in neuronal differentiation, neuronal cell death, and plastic adaptations in vivo. Cellular and molecular neurobiology 14,487-505.
    Scortegagna, M., and Hanbauer, I. (1997). The effect of lead exposure and serum deprivation on mesencephalic primary cultures. Neumtoxicology 18,331-339.
    Sharifi, A. M., Baniasadi, S., Jorjani, M., Rahimi, F., and Bakhshayesh, M. (2002). Investigation of acute lead poisoning on apoptosis in rat hippocampus in vivo. Neurosci Lett 329, 45-48.
    Sieg, D. J., and Billings, R. E. (1997). Lead/cytokine-mediated oxidative DNA damage in cultured mouse hepatocytes. Toxicology and applied pharmacology 142,106-115.
    Silbergeld, E. K. (1992). Mechanisms of lead neurotoxicity, or looking beyond the lamppost. Faseb J 6,3201-3206.
    Smeyne, R. J., Vendrell, M, Hayward, M., Baker, S. J., Miao, G. G, Schilling, K., Robertson, L. M., Curran, T., and Morgan, J. I. (1993). Continuous c-fos expression precedes programmed cell death in vivo. Nature 363,166-169.
    Tiffany-Castiglioni, E., Hong, S., Qian, Y., Tang, Y., and Donnelly, K. C. (2006). In vitro models for assessing neurotoxicity of mixtures. Neurotoxicology 27, 835-839.
    Timsit, S., and Menn, B. (2007). Cerebral ischemia, cell cycle elements and Cdk5. Biotechnology journal 2,958-966.
    Timsit, S., Rivera, S., Ouaghi, P., Guischard, R, Tremblay, E., Ben-Ari, Y., and Khrestchatisky, M. (1999). Increased cyclin D1 in vulnerable neurons in the hippocampus after ischaemia and epilepsy: a modulator of in vivo programmed cell death? Eur J Neurosci 11, 263-278.
    Tomasevic, G., Kamme, R, and Wieloch, T. (1998). Changes in proliferating cell nuclear antigen, a protein involved in DNA repair, in vulnerable hippocampal neurons following global cerebral ischemia. Brain Res Mol Brain Res 60,168-176.
    Trimarchi, J. M, and Lees, J. A. (2002). Sibling rivalry in the E2F family. Nature reviews 3, 11-20.
    van Lookeren Campagne, M., and Gill, R. (1998). Increased expression of cyclin G1 and p21WAF1/CIP1 in neurons following transient forebrain ischemia: comparison with early DNA damage. J Neurosci Res 53,279-296.
    Weishaupt, J. H., Neusch, C, and Bahr, M. (2003). Cyclin-dependent kinase 5 (CDK5) and neuronal cell death. Cell and tissue research 312,1-8.
    White, L. D., Cory-Slechta, D. A., Gilbert, M. E., Tiffany-Castiglioni, E., Zawia, N, H., Virgolini, M., Rossi-George, A., Lasley, S. M., Qian, Y. C, and Basha, M. R. (2007). New and evolving concepts in the neurotoxicology of lead. Toxicology and applied pharmacology 225,1-27.
    Wisdom, R., Johnson, R. S., and Moore, C. (1999). c-Jun regulates cell cycle progression and apoptosis by distinct mechanisms. The EMBO journal 18,188-197.
    Xu, S. Z., Shan, C. J., Bullock, L, Baker, L, and Rajanna, B. (2006). Pb2+ reduces PKCs and NF-kappaB in vitro. Cell biology and toxicology 22,189-198.
    Yang, D. D., Kuan, C. Y, Whitmarsh, A. J., Rincon, M., Zheng, T. S., Davis, R. J., Rakic, P., and Flavell, R. A. (1997). Absence of excitotoxicity-induced apoptosis in the hippocampus of mice lacking the Jnk3 gene. Nature 389, 865-870.
    Yang, J. L, Wang, L. C, Chang, C. Y, and Liu, T. Y. (1999). Singlet oxygen is the major species participating in the induction of DNA strand breakage and 8-hydroxydeoxyguanosine adduct by lead acetate. Environ Mol Mutagen 33,194-201.
    Zhao, Q., Slavkovich, V., and Zheng, W. (1998). Lead exposure promotes translocation of protein kinase C activities in rat choroid plexus in vitro, but not in vivo. Toxicology and applied pharmacology 149,99-106.
    Zhu, G, Conner, S. E., Zhou, X., Shih, C, Li, T., Anderson, B. D., Brooks, H. B., Campbell, R. M., Considine, E., Dempsey, J. A., Faul, M. M., Ogg, C, Patel, B., Schultz, R. M., Spencer, C. D., Teicher, B., and Watkins, S. A. (2003). Synthesis, structure-activity relationship, and biological studies of indolocarbazoles as potent cyclin D1-CDK4 inhibitors. J Med Chem 46, 2027-2030.
    Zwijsen, R. M., Wientjens, E., Klompmaker, R., van der Sman, J., Bernards, R., and Michalides, R. J. (1997). CDK-independent activation of estrogen receptor by cyclin D1. Cell 88, 405-415.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700