用户名: 密码: 验证码:
含聚醚链季铵盐型离子液体稳定的铑及钯/铑双金属纳米催化剂的制备及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以含聚醚链季铵盐型离子液体[CH3(OCH2CH2)12N+Et3SO3-CH3](IL550)为稳定剂,以相应的过渡金属盐为前体,在室温条件下通过氢气还原法制备了铑及钯/铑双金属纳米催化剂。通过TEM表征得知铑纳米粒子的平均粒径为1.0nm,标准偏差为0.2 nm。钯/铑双金属纳米粒子的平均粒径为3.5 nm,标准偏差为0.4 nm。
     将IL550稳定的铑纳米催化剂应用于室温下苯乙烯的加氢反应,系统考察了反应时间、氢气压力、IL550与铑的摩尔比以及加入的溶剂量对整个反应的影响。在优化的反应条件下, T=25℃,t=90 min,P=2.0 MPa,苯乙烯/铑=5000:1(摩尔比),IL550/铑为100:1(摩尔比),加入的溶剂量为1g,苯乙烯的转化率和乙苯收率均为100%。催化剂循环使用8次,催化活性保持不变。催化剂循环使用8次后,铑纳米粒子的平均粒径保持不变,上层有机相中平均铑流失为0.08%。
     将IL550稳定的钯/铑双金属纳米催化剂应用于室温下1,5-环辛二烯的选择性加氢反应,系统考察了反应时间,氢气压力,底物与催化剂的摩尔比,钯/铑的摩尔比对整个反应的影响。结果表明,当选择合适的钯/铑摩尔比时,该催化剂的催化活性优于单金属钯纳米催化剂,选择性优于单金属铑纳米催化剂。在优化的反应条件下,T=25℃,t=5 h,P=4.0 MPa,1,5-环辛二烯/Catalyst=1000:1(摩尔比),Pd/Rh=5:1(摩尔比),1,5-环辛二烯的转化率为97%,环辛烯的选择性为79%。纳米钯/铑双金属催化剂可方便地分离回收和循环使用。催化剂循环使用10次,催化活性无明显降低。反应10次后,纳米粒子的平均粒径基本保持不变,上层有机相中钯和铑的平均流失分别为0.04%和0.72%。
Ammonium-based ionic liquids with polyether chain [CH3(OCH2CH2)12N+Et3SO3-CH3 (IL550)] was used as stabilizer for preparation of Rh and Pd/Rh nano-particles by hydrogen reduction of corresponding transition-metal salts at room temperature. TEM images showed that the average size of Rh nanoparticles was 1.0 nm with standard deviation of 0.2nm. The average size of Pd/Rh bimetallic nanoparticles was 3.5 nm with standard deviation of 0.4 nm.
     The Rh nanoparticles stabilized by IL550 were used as catalyst for the hydrogenation of styrene at room temperature. The effects of reaction time, hydrogen pressure, the ratio of Rh/IL55o and the amount of solvent on the reaction were investigated. Under the optimized reaction conditions (T=25℃, t=90 min, P=2.0 MPa, styrene/Rh=5000:1 (molar ratio), IL550/Rh=100:1 (molar ratio), n-heptane=1g), both the conversion of styrene and the yield of ethylbenzene were 100%. The Rh nanoparticle catalyst could be recycled 8 times without any loss in activity. After 8 recycles, the average size of Rh nanoparticles was the same to those of freshly prepared. The average of loss of Rh was under 0.08%(wt%).
     IL550-stabilized Pd and Rh bimetallic nanoparticle catalysts were used for the selective hydrogenation of 1,5-cyclooctadiene. The effects of reaction time, hydrogen pressure, the molar ratio of Pd/Rh and the molar ratio of 1,5-COD/catalyst on the reaction were investigated. Under the optimized reaction conditions (T=25℃, t=4h, P=4.0 MPa, Pd/Rh =5:1 (molar ratio),1,5-COD/catalyst=1000:1 (molar ratio)), the conversion of 1,5-COD was 97% and the selectivity of cyclooctene was 79%. The activity of the Pd/Rh nanoparticle catalyst was higher than Rh nanoparticle catalyst and the selectivity of the catalyst was higher than Pd nanoparticles. The ILsso-stabilized Pd/Rh bimetallic nanoparticle catalyst could be reused for 10 times. After 10 recycles, the average size of Pd/Rh the nanoparticles remained nearly the the same. The loss of Pd and Rh was 0.04% and 0.72%(wt%) respectively.
引文
[1]Haruta M. Size-and Support-dependency in the Catalysis of Gold[J]. Catal. Today, 1997,36:153-156.
    [2]Roucoux A, Schulz J, Patin H. Reduced Transition Metal Colloids:a Novel Family of Reusable Catalysts[J]. Chem. Rev.,2002,102:3757-3778.
    [3]Walton T. Room Temperature Ionic Liquids Solvent for Synthesis and Catalysis[J]. Chem. Rev.,1999,99:2071-2083.
    [4]Oliver H. Recent Developments in the Use of Non-aqueous Ionic Liquids for Two-Phase Catalysis[J]. J. Mol. Catal., A:Chem.,1999,146:285-289.
    [5]Dupont T, Fonseca G S, Umpierre A P, et al. Transition-Metal Nanoparticles in Imidazolium Ionic Liquids:Recycable Catalysts for Biphasic Hydrogenation Reactions[J]. J. Am. Chem. Soc.,2002,124:4228-4229.
    [6]Scheeren C W, Machado G, Dupont J, et al. Nanoscale Pt(0) Particles Prepared in Imidazolium Room Temperature Ionic Liquids:Synthesis from an Organometallic Precursor, Characterization, and Catalytic Properties in Hydrogenation Reactions[J]. Inorg. Chem.,2003,42:4738-4742.
    [7]Silveira E T, Umpierre A P, Rossi L M, et al. The Partial Hydrogenation of Benzene to Cyclohexene by Nanoscale Ruthenium Catalysts in Imidazolium Ionic Liquids [J]. Chem. Eur. J.,2004,10:3734-3740.
    [8]Toshima N, Yonezawa T. Bimetallic Nanoparticles-Novel Materials for Chemical and Physical Applications[J]. New J. Chem.,1998,22(11):1179-1202.
    [9]Turkevich J, Kim G. Palladium:preparation and catalytic properties of particles of uniform size [J]. Science,1970,169(3948):873-879.
    [10]Tan C K, Newberry V, Webb T R, et al. Water Photolysis Part2:An investigation of the Relation Advantages of Various Components of the Sensitiser-Electron. Relay-Metal Colloid System for the Photoproduction of Hydrogen from Water, and the Use of These System in the Photohydrogenation of Unsaturated Organic Substrates[J]. J. Chem. Soc. Dalton Trans.,1987,6:1299-1303.
    [11]Nasar K, Fache F, Lemaire M, et al. Stereoselective Reduction of Disubstituted Aromatics on Colloidal Rhodium[J]. J. Mol. Catal.,1994,87 (1):107-115.
    [12]Yu W Y, Liu H F. Quantity Synthesisof Nanosized Metal Clusters. Chem. Mater[J]. 1998,10 (7):1205-1207.
    [13]黄天松.温控PEG两相体系中过渡金属纳米催化剂的制备与应用[D].大连:大连理工大学硕士论文,2008.
    [14]Kopple K, Meyerstein D, Meisel D. Mechanism of the Catalytic Hydrogen Production by Gold Sols. Hydrogen/Deuterium Isotope Effect Studies[J]. J. Phys. Chem.,1980, 84(8):870-875.
    [15]Yang J, Deivaraj T C, Too H P, et al. Acetate Stabilization of Metal Nanoparticles and Its Role in the Preparation of Metal Nanoparticles in Ethylene Glycol[J]. Langmuir,2004,20(10):4241-4245.
    [16]Yang J, Lee J Y, Deivaraj T C, et al. An Improved Procedure for Preparing Smaller and Nearly Monodispersed Thiol-Stabilized Platinum Nanoparticles[J]. Langmuir, 2003,19(24):10361-10365.
    [17]Bonnemann H, Brinkman R, Neithler p. Preparation and catalyticproperties of NR4--stabilized palladium colloids[J]. Appl. Organomet. Chem.,1994, 8(4):361-378.
    [18]Bonnemann H, Brijoux W, et al. Nanoscale Colloidal Metals and Akkiys Stabilized by Solvents and Surfactants:Preparation and Use as Catalyst Precursors[J]. J. Organomet. Chem.,1996,520(1-2):143-162.
    [19]Haba Y, Kojima C, Harada A, et al. Preparation of Poly (ethylene glycol)-Modified Poly(amido amine) Dendrimers Encapsulating Gold Nanoparticles and Their Heat-Generating Ability[J]. Langmuir,2007,23(10):5243-5246.
    [20]Tu W X, Liu H F, Liew K Y. Preparation and Catalytic Properties of Amphiphilic Copolymer-Stabilized Platinum Metals Colloids[J]. J. Colloid Interf. Sci.,2000, 229(2):453-461.
    [21]Yan X P, Liu H F, Liew K Y. Size Control of Polymer-Stabilized Ruthenium Nanoparticles by Polyol Reduction[J]. J. Mater. Chem.,2001,11:3387-3391.
    [22]Chen D H, Huang Y W. Spontaneous Formation of Ag Nanoparticles in Dimethylacetamide Solution of Poly (ethylene glycol)[J]. J. Colloid Interf. Sci.,2002, 255(2):299-302.
    [23]Luo C C, Zhang Y H, Zeng X W, et al. The Role of Poly (ethylene glycol) in the Formation of Silver Nanoparticles[J]. J. Colloid Interf. Sci.,2005,288(2):444-448.
    [24]Ma X M, Jiang T, Han B X. Palladium Nanoparticles in Polyethylene Glycols:Efficient and Recyclable Catalyst System for Hydrogenation of Olefins[J]. Catal. Commun. 2008,9:70-74.
    [25]Wang C C, Chen D H, Huang T C. Synthesis of palladium nanoparticles in water-in-of microemulsions[J]. Colloids Surf A,2001,189(1-3):145-154.
    [26]Esumi K, Sato N, Torigoe K, et al. Size Control of Gold Particles Using Surfactants[J]. J. Colloid Interface Sci.,1992,149(1):295-298.
    [27]Spatz J P, Mossmer S, Moller M. Mineralization of Gold Nanoparticles in a Block Copolymer Microemulsion[J]. J. Chem. Eur.,1996,2(12):1552-1555.
    [28]Ah C S, Yun Y J, Park H J. Size-Controlled Synthesis of Machinable Single Crystalline Gold Nanoplates[J]. Chem. Mater.,2005,17(22):5558-5561.
    [29]Chu H C, Kuo C H, Huang M H. Thermal Aqueous Solution Approach for the Synthesis of Triangular and Hexagonal Gold Nanoplates with Three Different Size Ranges[J]. Inorg. Chem.,2006,45(2):808-813.
    [30]Ozkar S, Finke R G. Nanocluster Formation and Stabilization Fundamental Studies Proton Sponge as an Effective H Scavengerand Expansion of the Anion Stabilization Ability Series[J]. J. Am. Chem. Soc.,2002,18:7653-7662.
    [31]Bradley J S, HillE W, Behal S, et al. Preparation and Characterization of Organosols of Monodispersed Nanoscale Palladium Particle Size Effects in the Binding Geometry of Adsorbed Carbon Monoxide[J]. Chem. Mater.,1992,4(6):1234-123.
    [32]Duteil A, Queau R, Bradley J S, et al. Preparation of Organic Solutions or Solid Films of Small Particles of Ruthenium, Palladium and Platinum from Organometallic Precursors in the Presence of Cellulose Derivatives[J]. Chem. Mater.,1993, 5(3):341-347.
    [33]Philippot K, Chaudret B. Organometallic Approach to the Synthesis and Surface Reactivity of Noble Metal Nanoparticles [J]. C. R. Chimie,2003,6(8-10):1019-1034.
    [34]Reetz M T, Helbig W. Size-Selective Synthesis of Nanostructured Transition Metal Clusters[J]. Chem. Soc.,1994,116(16):7401-7402.
    [35]Wang Y, Ren J W, Deng K, et al. Preparation of Tractable Platinum, Rhodium and Ruthenium Nanoclusters with Small Particle Size in Organic Media[J]. Chem. Mater. 2000,12(6):1622-1627.
    [36]Tano T, Esumi K, Meguro K. Preparation of Organopalladium Sols by Thermal Decomposition of Palladium Acetate[J]. J. Colloid Interface Sci.,1989, 133(2):530-533.
    [37]Esumi K, Sadakane 0, Torigoe K, et al. Preparation of Platinum Particles by Thermal Decomposition of Platinum Complex in Organic Solvent[J]. Colloids Surf.,1992, 62(3):255-257.
    [38]Reetz M T, Helbig W. Size-Selective Synthesis of Nanostructured Transition Metal Clusters [J]. Chem. Soc.,1994,116 (16):7401-7402.
    [39]Reetz M T, Quaiser S A. A New Method for the Preparation of Nanostructured Metal Clusters[J]. Angew Chem Int Ed Engl.,1995,34(20):2240-2241.
    [40]Mayer A B R. Colloidal Metal Nanoparticles Dispersed in Amphiphilic Polymers[J]. Polym. Adv. Technol.,2001,12(1-2):96-106.
    [41]Park I S, Kwon M S, Park J, et al. Rhodium and Iridium nanoparticles Entrapped in Aluminum Oxyhydroxide Nanofibers:Catalysts for Hydrogenations of Arenes and Ketones at Room Temperature with Hydrogen Balloon[J]. Adv. Synth. Catal.,2007, 349(11-12):2039-2047.
    [42]Toshima N, Shiraishi Y, Teranishi T, et al. Various Ligand-Stabilized Metal Nanoclusters as Homogeneous and Heterogeneous Catalysts in the Liquid Phase[J]. Appl. Organometal. Chem.,2001,15(3):178-196.
    [43]Zhang H, Cui H. Synthesis and characterization of functionalized ionic liquid-stabilized metal (gold and platinum) nanoparticles and metal nanoparticle/carbon nanotube hybrids[J]. Langmuir,2009,25(5):2604-2612.
    [44]Zhao C, Wang H Z, Yan N, et al. Ionic-liquid-like Copolymer Stabilized Nanocatalysts in Ionic Liquids:Ⅱ. Rhodium-Catalyzed Hydrogenation of Arenes[J]. J. Catal.,2007, 250:33-40.
    [45]薛永强,王志忠,张蓉等.现代有机合成方法与技术[M].北京:化学工业出版社,2003,5.
    [46]Schmid G, Pfeil R, Boese R, et al. Au55[P(C6H5)3]12Cl6-Ein Goldcluster Ungewohnlicher Groβe[J]. Chem. Ber.,1981,114:3634-3642.
    [47]Schmid G, Emde S, Maihack V, et al. Synthesis and Catalytic Properties of Large Ligand Stabilized Palladium Clusters[J]. J. Mol. Catal. A:Chem.,1996, 107(1-3):95-104.
    [48]Son S U, Jang Y, Hyeon T, et al. Facile Synthesis of Various Phosphine-stabilized Monodisperse Palladium Nanoparticles through the Understanding of Coordination Chemistry of the Nanoparticles[J]. Nano, Lett.,2004,4(6):1147-1151.
    [49]Cordente N, Respaud M, Senocq F, et al. Synthesis and Magnetic Properties of Nickel Nanoreds[J]. Nano. Lett.,2001,1(10):565-568.
    [50]Chen S, Kimura K. Synthesis of Thiolate-Stabilized Platinum Nanoparticles in Protolytic Solvents as Isolable Colloids[J]. J. Phys. Chem. B.,2001,105(23): 5397-5403.
    [51]Franke R, Rothe J, Bonnemann H, et al. A Study of the Electronic and Geometric Structure of Colloidal Ti0-0.5THF[J]. J. Am. Chem. Soc.,1996, 118(48):12090-12097.
    [52]Mayer A B R, Mark J E. Transition Metal Nanoparticles Protected by Amphiphilic Block Copolymers as Tailored Catalyst Systems[J]. Colloid. Polym. Sci.,1997,275 (4):333-340.
    [53]鲁亚东.PETPP/Ru络合物及PETPP稳定的过渡金属纳米催化剂在液/液两相体系中的应用[D].大连:大连理工大学博士论文,2008.
    [54]Li K X, Wang Y H, Jiang J Y, et al. Thermoregulated phase-transfer rhodium nanoparticle catalyst for hydrogenation in an aqueous/organic biphasic system [J]. Catal Commun,2010,11:542.
    [55]Park I S, Kwon M S, Park J, et al. Rhodium and Iridium Nanoparticles Entrapped in Aluminum Oxyhydroxide Nanofibers:Catalysts for Hydrogenations of Arenes and Ketones at Room Temperature with Hydrogen balloon[J]. Adv. Synth. Catal.,2007, 349 (11-12):2039-2047.
    [56]Leger B, Denicourt N A, Olivier B H, et al. Rhodium Nanocatalysts Stabilized by Various Bipyridine Ligands in Nonaqueous Ionic Liquids:Influence of the Bipyridine Coordination Modes in Arene Catalytic Hydrogenation[J]. Inorg. Chem., 2008,47(19):9090-9096.
    [57]Edson T S, Alexandre P U, Dupont J, et al. The Partial Hydrogenation of Benzene to Cyclohexene by Nanoscale Ruthenium Catalysts in Imidazolium Ionic Liquids [J]. Chem. Eur. J.,2004,10(15):3734-3740.
    [58]Yu W Y, Liu H f, Liu M H, et al. Selective Hydrogenation of α,β-Unsaturated Aldehyde to α, β-Unsaturated Alcohol over Polymer-Stabilized Platinum Colloid and the Promotion Effect of Metal Cations[J]. Journal of Molecular Catalysis A: Chemical,1999,138(2-3):273-286.
    [59]Chung Y M, Rhee H K. Partial Hydrogenation of 1,3-Cyclooctadiene Using Dendrimer-Encapsulated Pd-Ph Bimetallic Nanoparticles[J]. J. Mol. Catal. A:Chem.,2003, 206:291-298.
    [60]Lewis L N, Uriarte R J. Hydrosilylation Catalyzed by Metal Colloids. A Relative Activity Study[J]. Organometallics,1990,9(3):621-625.
    [61]Schmid G, West H, Mehles H, et al. Hydrosilation Reactions Catalyzed by Supported Bimetallic Colloids[J]. Inorg. Chem.,1997,36(5):891-895.
    [62]Shen J, Shan W, Zhang Y H. A novel catalyst with high activity for polyhydric alcohol oxidation:nanosilver/zeolite film[J]. Chem. Commun.,2004(24),2880-2881.
    [63]Hou Z S, Theyssen N, Brinkmann A, et al. Biphasic Aerobic Oxidation of Alcohols Catalyzed by Poly(ethylene glycol)-Stabilized Palladium Nanoparticles in Supercritical Carbon Dioxide[J]. Angew. Chem. Int. Ed.,2005,44(9):1346-1349.
    [64]Shiraishi Y, Toshima N. Oxidation of Ethylene Catalyzed by Colloidal Dispersions of Poly(Sodium Acrylate)-Protected Silver Nanoclusters[J]. Colloids Surf. A,2000, 169(1-3):59-66.
    [65]Qiu J S, Zhang H, Liang C, et al. Co/CNF Catalysts Tailored by Controlling the Deposition of Metal Colloids onto CNFs:Preparation and Catalytic Properties [J]. Chem. Eur. J.,2006,12(8):2147-2151.
    [66]孙政.以PEG为稳定剂的纳米铑催化剂在烯烃氢甲酰化反应中的应用[D].大连:大连理工大学硕士论文,2010.
    [67]Beller M, Fischer H, Kuhlein K, et al. First palladium-catalyzed Heck reactions with efficient colloidal catalyst systems[J]. J. Organomet. Chem.,1996,520(1-2): 257-259.
    [68]张金堂,虞辰敏,汪志勇等.纳米金属催化在偶联反应中的应用[J].化学进展,2010,22(7):1482-1489.
    [69]葛睿,黄燕,尹鹏程等.纳米过渡金属催化剂在有机合成中的应用进展[J].有机化学,2007,27(6):724-732.
    [70]Reetz M T, Breinbauer R, Wanninger K. Suzuki and Heck Reactions Catalyzed by Preformed Palladium Clusters and Palladium/Nickel Bimetallic Clusters[J]. Tetrahedron Lett.,1996,37(26):4499-4502.
    [71]Lewis L N. Chemical Catalysis by Colloids and Clusters[J]. Chem. Rev.,1993, 93(8):2693-2730.
    [72]Lauany F, Roucoux A, Pantin H, Ruthenium Colloids:A New Catalyst for Alkane Oxidation by tBHP in a Biphasic Water-Organic Phase System [J]. Tetrahedron Lett. 1998,39(11):1353-1356.
    [73]Mevellec V, Roucoux A. Nanoheterogeneous Catalytic Hydrogenation of N-,O-or S-Heteroaromatic Compounds by Re-usable Aqueous Colloidal Suspensions of Rhodium (0)[J]. Inorg. Chim. Acta.,2004,357(13):3099-3103.
    [74]Mevellec V, Roucoux A, Ramirez E. Surfactant-Stabilized Aqueous Iridium(0) Colloidal Suspension:An Efficient Reusable Catalyst for Hydrogenation of Arenes in Biphasic Media[J]. Adv. Synth. Catal.,2004,346:(1)72-76.
    [75]Lu F, Liu J, Xu J. Synthesis of PVP-Ru Amphiphilic Microreactors with Ru Nanocatalysts and Their Appllication in the Fast Hydrogenation of Unsaturated Compounds in Aqueous Media[J]. J. Mol. Catal. A:Chem.,2007,271:(1-2)6-13.
    [76]Pittelkow M, Moth-Poulsen K, Christensen J B, et al. Poly(amidoamine)-Dendrimer-Stabilized Pd(0) Nanoparticles as a Catalyst for the Suzuki Reaction[J]. Langmuir,2003,19(18):7682-7684.
    [77]Man M M, Pleixats R, Villarroya S. Fluorous Phase Soluble Palladium Nanoparticles as Recoverable Catalysts for Suzuki Cross-Coupling and Heck Reactions[J]. Organometallics.,2001,20:4524-4528.
    [78]Seddon K R, Ionic Liquids for Clean Technology [J]. J. Chem. Technol. Biotechnol. 1997,68:351-356.
    [79]Adams C, Earle M J, Roberts G, et al. Friedel-Crafts Reaction in Room Temperature Ionic Liquid[J]. Chem. Commun.,1998,2097-2098.
    [80]Ngo H L, Karen, Liesl H, et al. Thermal Propties of Imidazolium Ionic Liquids[J]. Thermochimica Acta.,2000,97:357-358.
    [82]Wilkes J S. Properties of Ionic Liquid Solvents for Catalysis[J]. J. Mol. Cata. A:Chem,2004.214:11-17.
    [83]Holbrey J D, Seddon K R. The Phase Behaviour of 1-Alkyl-3-Methylimidazolium Tetra-Fluoroborates:Ionic Liquids and Ionic Liquid Crystals[J]. J. Chem. Soc. Dalton Trans,1999, (13):2133-2139.
    [84]Wasserscheid P, Keim W. Ionic Liquids-New "Solution" for Transition Metal Catalysis[J]. Angew. Chem. Int. Ed.,2000,39(21):3772-3778.
    [85]Dyson P J, Ellis D J, Parket D G, et al. Arene Hydrogenationin in a Room Temperature Ionic liquid Using a Ruthenium Cluster Catalyst[J]. Adv. Synth. Catal.2002, 345:216-221.
    [86]Bond G C, Keane M A, Kral H, Lercher J A. Compensation Phenomena in Heterogeneous Catalysis:General Principles and a Possible Explanation [J]. Cat. Rev.-Sci. Eng., 2000,42 (3):323-383.
    [87]Swatloski R P, Holbrey J D, Memon S B, et al. Using Caenorhabditis Elegans to Probe Toxicity of 1-Alkyl-3-Methylimidazolium Chloride Based Ioni Liquids[J]. Chem. Commun.,2004, (6):668-669.
    [88]Ranke J, Molter K, Stock F, et al. Biological effects of imidazolium ionic liquids with varying chain lengths in acute Vibrio fischeri and WST-1 cell viability assays[J]. Ecotoxicol Environ Saf,2004,58(3):306-404.
    [89]Chauvin Y, Mussmann L, Olivier H. A Novel Class of Versatile Solvents for Two-Phase Catalysis:Hydrogenation of Alkenes Catalysed by Rhodium Complexes in Liquids 1,3-Dialkylimidazolium Salts[J]. Angew. Chem. Int. Ed. Engl.,1995,34:2698-2700.
    [90]Suarez P A Z, Dullius J E L, Einloft S, et al. Two-Phase Catalytic Hydrogenation of Olefins by Ru(Ⅱ)and Co(Ⅱ) Complexes Dissolved in 1-n-Butyl-3-methylimidazolium Tetrafluoroborate Ionic Liquid[J]. Inorganica chimica acta.,1997,55:207-209.
    [91]Suarez P A Z, Dullius J E L, Einloft S, et al. The Use of New Ionic Liquids in Two-Phase Catalytic Hydrogenation Reaction by Rhodium Complexes [J]. Polyhedron, 1996,15:1217-1219.
    [92]顾彦龙,杨宏洲,邓友全.室温离子液体中双环戊二烯加氢以及金刚烷合成[J].石油化工,2002,3:345-348.
    [93]Liu F, Abrams M B, Abrams R T, et al. Phase-Separable Catalysis Using Room Temperature Ionic liquids and Supercritical Carbon Dioxide [J]. Chem. Commun.,2001, 433-434.
    [94]Dupont J, Fonseca G S, Umpierre A P, et al. Transition-Metal Nanoparticles in Imidazolium Ionic Liquids:Recycable Catalysts for Biphasic Hydrogenation Reactions[J]. J. Am. Chem. Soc.,2002,124:4228-4229.
    [95]Mu X, Evans D G, Kou Y. A General Method for Preparation of PVP-Stabilized Noble Metal Nanoparticles in Room Temperature Ionic Liquids [J]. Catal. Lett.,2004, 97(3-4):151-154.
    [96]Ma X M, Jiang T, Han B X,et al. Palladium Nanoparticles in Polyethylene Glycols: Efficient and Recyclable Catalyst System for Hydrogenation of Olefins[J]. Catal. Commun.,2008,9:70-74.
    [97]Dupont J, Suarez P A Z, Umpierre A P, et al. Pd(II)-Dissolved in Ionic Liquids: A Recyclable Catalytic System for the Selective Biphasic Hydrogenation of Dienes to Monoenes[J]. J. Brat. Chem. soc.,2000,11:293-297.
    [98]Dyson P J, Ellis D J, et al. Arene Hydrogenation in a Room-Temperatwe Ionic Liquid Using a Ruthenium Cluster Catalyst[J]. Adv. Synth. Catal.,2002,345:216-221.
    [99]Wasserscheid P, Waffenschmidt H. Ionic Liquid in Regioselective Platinum-Catalyzed Hydroformylation[J]. J. Mol. Catal. A:Chem.,2000,164:6167.
    [100]Arnoldo J B, Marcos A G, Giovanna M J, et al. Rh(0) nanoparticles as catalyst precursors for the solventless hydroformylation of olefins[J]. J. Mol. Catal. A: Chem.,2000,19:3818-3823.
    [101]Wasserscheid P, Waffenschrnidt H, Machnitzki P, et al. Cationic Phosphine Ligands with Phenylguandinium Modified Xanthene Moieties:A Successful Concept for Highly Regioselective, Biphasic Hydroformylation of Oct-1-erie in Hexafluorophosphate Ionic Liquids[J]. Chem. Commun.,2001:451-452.
    [102]Vincenzo C, Angelo N, Antonio M, et al. Pd Nanoparticle Catalyzed Heck Arylation of 1,1-Disubstituted Alkenes in Ionic Liquids. Study on Factors Affecting the Regioselectivity of the Coupling Process[J]. Tetrahedron Letters,2001,42(26): 4349-4351.
    [103]Tao R T, Miao S D, Liu Z M, et al. Pd Nanoparticles Immobilized on Sepiolite by Ionic Liquids:Efficient Catalysts for Hydrogenation of Alkenes and Heck Reactions[J]. Green Chem.2009,11,96-101.
    [104]Deshmukh R R, Rajagopal R, Srinivasan K V, Ultrasound Promoted C-C Bond Formation: Heck Reaction at Ambient Conditions in Room Temperature Ionic Liquids[J]. Chem. Commun.2001,1544-1545.
    [105]Herrmann W A, Bohm V P W. Coordination Chemistry and Mechanism of Metal-Catalyzed C-C coupling Reactions and Heck reaction Catalyzed by Phospha-Palladacycles in Non-Aqueous Ionic Liquids[J]. J. Organomet. Chem.,1999,572:141-145.
    [106]Bohm V P W, Herrmann W A. Coordination Chemistry and Mechanisms of Metal-Catalyzed C-C Coupling Reactions; Part 12 Nonaqueous Ionic Liquids:Superior Reaction Media for the Catalytic Heck-vinylation of Chloroarenes[J]. Chem. Eur. J.,2000,6:1017-1025.
    [107]魏莉.温控聚醚离子液体两相体系及其在过渡金属催化中的应用[D].大连:大连理工大学博士论文,2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700