用户名: 密码: 验证码:
高强混凝土加芯柱及框架结构抗震性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高强混凝土抗压强度高、耐久性好,可显著减小框架柱的截面尺寸和结构自重,避免或减少普通混凝土框架柱因受轴压比所限而出现的“胖柱少筋”现象,但塑性差阻碍了其在地震区的推广应用。钢管混凝土和钢骨混凝土虽然能改善高强混凝土的变形能力和延性,但存在用钢量大、防火性能差、节点构造复杂、施工难度大等缺陷。高强混凝土加芯柱是在高强混凝土柱的中部设置纵筋并与复合箍筋形成芯柱,既可提高柱的轴心抗压承载力又能增强延性,但国内外的研究却很少,使其不便直接应用于工程实践。本文通过理论分析、试验研究和数值计算等方法研究高强混凝土加芯柱的抗震性能,为其推广应用于工程实践提供理论依据。
     本文的主要工作和成果包括:1)进行了7个高强混凝土加芯柱试件在高轴压力和往复水平力作用下的拟静力试验,研究和分析了高强混凝土加芯柱的破坏现象、水平承载力、滞回性能、延性系数、耗能性能、强度及刚度退化率等。研究表明,高强混凝土加芯柱具有较好的抗震性能,核心区面积、核心纵筋配筋率、配箍特征值对高强混凝土加芯柱的抗震性能均有影响;2)基于试验数据拟合了高强混凝土加芯柱在反复水平荷载作用下的无量纲化骨架曲线,得到了简化三线型模型的基本参数;采用理论分析及试验回归的方法得到了骨架曲线的计算公式;根据试验试件的滞回规则,构建了高强混凝土加芯柱的恢复力模型,并用试验数据进行了验证;3)采用有限元程序对不同设计参数的大量高强混凝土加芯柱非线性受力性能进行了数值分析,总结了核心区面积、核心纵筋配筋率、配箍特征值、轴压比等参数对高强混凝土加芯柱抗震性能的影响规律。分析结果表明,理论计算结果和试验结果吻合较好,用有限元分析程序对高强混凝土加芯柱抗震性能进行受力分析的方法可行;4)将一七层框架结构的1-4层普通混凝土框架柱用高强混凝土加芯柱代替,进行了静力和动力弹塑性分析,从结构的性能点、最大层间位移角、塑性铰出铰机制等方面对结构的抗震性能进行了综合评估。研究表明,采用高强混凝土加芯柱在减小柱截面尺寸、提高建筑面积利用率的情况下仍能甚至优于原结构的抗震性能。
     本文的研究,既可为补充和完善建筑结构抗震规范及进一步研究提供参考,又可为高强混凝土加芯柱的推广和应用提供理论依据。
High-strength concrete has both high compressive strength and durability, which cancause significant decrease in the cross sections of columns and self weight of a structure, andavoid or reduce the phenomenon of “large column cross scections with slight reinforcement”due to the restriction of axial compression ratio of columns in an ordinary concrete frame.But its low plasticity hinders the extent of its application in seismic zones. Thoughconcrete-filled steel tubes and steel reinforced concrete can improve the deformation capacityand ductility of high-strength concrete, they have such disadvantages as high steel ratios, poorfire-proof property, complex joint detailing and construction difficulties, etc.. High-strengthconcrete columns with central reinforcement (HCCCR) are columns made of high-strengthconcrete with additional longitudinal bars provided at the central parts of their cross sectionscombined with composite ties to form the cores. This type of columns has both higher axialcompression capacity and ductility. There have been, however, rare literatures in the researchof HCCCR home and abroad, which makes their direct application inconvenient. In thisdissertation, the seismic performance of HCCCR has been investigated through theoreticalanalysis, test study and numerical computation so as to provide theoretical basis for theextensive application of such columns in actual projects.
     The major works and results includes:1) pseudo-static tests were conducted for7specimens of HCCCR under high axial compression and repeated lateral loading, with theirfailure phenomena analyzed and investigated, together with the lateral load carryingcapacities, hysteric property, ductility factor, strength and rate of rigidity degradation. It hasbeen indicated that HCCR has good seismic performance, which are affected by core area,core longitudinal reinforcement ratio and tie characteristic value;2) on the basis of testingdata, the dimensionless skeleton curves of HCCCR under repeated lateral loading were fittedand the basic parameters for simplified trilinear models were obtained; formula of theskeleton curves were put forth by using the methods of theoretical analysis and regression;based on hysteric rules of specimens, the restoring force model of HCCCRs was constructedand checked by the testing data;3) with the application of a finite element software,numerical analysis was conducted for a large number of HCCCRs with different parameters so that the rules were summarized by which core area, core longitudinal reinforcement ratio,characteristic value of tie and axial compression ratio affect the seismic performance ofHCCCRs. Analytical results shows that theoretical results closely match the testing results sothat it is feasible to use the finite element software to analyze the seismic performance ofHCCCR;4) for a7-storey concrete frame structure with its columns from the first to thefourth storey replaced by HCCCRs, both static elastoplastic analysis and dynamicelastoplastic analysis were conducted, and its seismic performance was comprehensivelyevaluated in terms of performance points, maximum inter-story drift angles and mechanismof appearance of plastic hinges. The study indicates that with reduction in the cross sectionsof ordinary concrete columns and increase in the utility rate of building areas, HCCCR canstill have equivalent, even better seismic performance as compared with the originalstructure.
     The research results can not only provide reference for the supplementation andperfection of seismic design codes, but can also form a sound base for the generalization andwide application of HCCCR.
引文
[1]叶列平.体系能力设计法与基于性态/位移抗震设计[J].建筑结构,2004,34(6):10-13.
    [2]叶列平,曲哲,马千里,等.从汶川地震框架结构震害谈/强柱弱梁0屈服机制的实现[J].建筑结构,2008,38(11):52-59.
    [3]叶列平,马千里,缪志伟.钢筋混凝土框架结构强柱弱梁设计方法的研究[J].工程力学,2010,27(12):102-112.
    [4]袁贤讯、易伟建.框架“强柱弱梁”及轴压比限值的概率分析[J].重庆建筑大学学报,2000,22(3):64-68.
    [5] Cheung P. C., Paulay T., Park R. New Zealand tests on full-scale reinforced concrete beam-column-slabsubassemblages designed for earthquake resistance[R]. Design of Beam-Column Joints for SeismicResistance, SP-123, American Concrete Institute, Farmington Hills, Mich.,1991:1-38.
    [6] Leon R. T.. The effect of floor member size on the behavior of reinforced concrete beam-column joints[C]. Proceedings of8th World Conference on Earthquake Engineering, San Francisco, Calif., July,1984:445-452.
    [7]万海涛,韩小雷,季静.基于性能设计方法的钢筋混凝土柱构件分析[J].中南大学学报(自然科学版),2010,41(4):1584-1589.
    [8]李方圆,梁兴文.框架结构设计中的梁柱内力调整[J].建筑结构,2009,39(4):46-49.
    [9]蔡健,周靖,方小丹.柱端弯矩增大系数取值对RC框架结构抗震性能影响的评估[J].土木工程学报,2007,40(1):6-14.
    [10] Dooley K L, Bracci J M. Seismic evaluation of column-to-beam strength ratios in reinforced concreteframes[J]. ACI Structural Journal,2001,98(6):843-851。
    [11]陈家夔.钢筋混凝土框架柱的抗震性能[J].西南交通大学学报,1990,2:23-31.
    [12]王全凤,沈章春,杨勇新,等. HRB400级钢筋混凝土短柱抗震试验研究[J].建筑结构学报,2008,29(2):114-117.
    [13]汪训流,陆新征,叶列平.变轴力下钢筋混凝土柱的抗震性能分析[J].工业建筑,2007,37(12):71-75.
    [14]康洪震,江见鲸.不同加载路径下钢筋混凝土框架柱抗震性能的试验研究[J].土木工程学报,2003,36(5):71-75.
    [15] GB50011-2010,建筑抗震设计规范[S].北京:中国建筑工业出版社,2010.
    [16]夏洪流、李英民、周长安.钢筋混凝土抗震框架柱截面尺寸控制因素分析[J].世界地震工程,2004,20(3):128-134.
    [17]张国军,刘伯权,白国良.钢筋混凝土框架柱在高轴压比下的抗震性能试验[J].长安大学学报(自然科学版),2002,22(6):53-57.
    [18]郭子雄,吕西林.高轴压比框架柱抗震性能试验研究[J].华侨大学学报(自然学版),1999,20(3):258-263.
    [19]张国军,吕西林,刘伯权.钢筋混凝土框架柱在轴压比超限时抗震性能的研究[J].土木工程学报,2006,39(3):47-54.
    [20]李学平,吕西林,郭少春.反复荷载下矩形钢管混凝土柱的抗震性能Ⅰ-Ⅱ:试验研究及分析研究[J].地震工程与工程振动,2005,25(5):96-111.
    [21]吕西林,陆伟东.反复荷载作用下方钢管混凝土柱的抗震性能试验研究[J].建筑结构学报,2000,21(2):2-11.
    [22]陶忠,韩林海.方钢管混凝土压弯构件滞回性能试验研究[J].地震工程与工程震动,2001,21(1):74-78.
    [23] Shakir-Khalil H. Experimental study of concrete-filled rectangular hollow section columns[J]. Structu-ral Engineering Review,1994,6(2):85-96.
    [24]韩林海.钢管混凝土结构[M].北京:科学出版社,2004.
    [25] Varma A H, Ricles JM, Sause R, et al. Seismic behavior and modeling of high-strength compositeconcrete filled steel tube (CFT) beam-columns[J]. Journal of Constructional Steel Research,2002,58:725-758.
    [26]郭健,何益斌,肖阿林.实腹式型钢混凝土柱延性系数分析[J].中南大学学报:自然科学版,2008,39(1):196-201.
    [27]张志伟,郭子雄.型钢混凝土柱位移延性系数研究[J].西安建筑科技大学学报(自然科学版),2006,38(4):528-532.
    [28]郭子雄,刘阳,黄秋来.高轴压比核心型钢混凝土柱抗震性能试验研究[J].哈尔滨工业大学学报,2007,39(2):167-171.
    [29]何文辉,肖岩,尚守平.钢环约束钢管混凝土柱的抗震性能[J].建筑技术开发,2004,31(8):41-43.
    [30]肖岩等,郭玉荣,何文辉,等.局部加劲钢套管加固钢筋混凝土柱的研究[J].建筑结构学报,2003,24(6):79-86.
    [31] Tomii M., Saknio K., Wanatabe K., et al. Lateral Load Capacity of Reinforced Concrete ShortColumns Confined by Steel Tube[C]. Proceedings of the International Specialty Conference onConcrete Filled Steel Tubular Structures, Harbin, China, August,19-26.
    [32]何文辉.约束钢管混凝土柱抗震性能的试验与理论研究[D].长沙:湖南大学,2004.
    [33]陈肇元,朱金铨,吴佩刚.高强混凝土及其应用[M].北京:清华大学出版社,1993.
    [34]叶列平,丁大钧,程文壤.高强砼框架柱抗震性能的试验研究[J].建筑结构学报,1992,13(4):41-48.
    [35]王清湘,赵国藩.林立岩.高强混凝土柱延性的试验研究[J].建筑结构学报,1995,16(4):22-31.
    [36]谢涛,陈肇元.高强混凝土柱抗震性能的试验研究[J].建筑结构,1998,12:3-6.
    [37]吕西林,张国军,陈绍林.高轴压比高强混凝土足尺框架柱抗震性能研究[J].工程力学,2009,30(3):20-26
    [38]孙治国,司炳君,王东升,等.高强箍筋高强混凝土柱抗震性能研究[J].工程力学,2010,27(5):128-136
    [39] Hwang S. K., Yun, H. D., Park W. S., et al. Seismic performance of high-strength concrete columns[J]. Magazine of Concrete Research,2005,57(5):247-260.
    [40] Saatcioglu Murat, Baingo Darek. Circular high-strength concrete columns under simulated seismicloading[J]. Journal of structural engineering New York, N.Y.,1993,125(3):272-280.
    [41]张春梅,阴毅,周云.钢管高强混凝土柱抗震性能的试验研究[J].地震工程与工程震动,2004,24(4):86-89.
    [42]蒋东红,王连广,刘之洋.高强钢骨混凝土框架柱的抗震性能[J].东北大学学报(自然科学版),2002,23(1):67-70.
    [43]朱美春,刘建新,王清湘.钢骨-方钢管高强混凝土柱抗震性能试验研究[J].土木工程学报,2011,4(7):55-63.
    [44]李立仁,余瑜,陈永庆.不同配箍方式的轴压高强混凝土短柱承载力及延性试验研究[J].施工技术,2005,34(增刊):54-57.
    [45] Y. Tanaka, Y. Ro. Strengthening of Reinforced Concrete Columns by Central Reinforceing Element
    [A]. Proc.11th WCEE, Acapulco, Mexico,1996: Ref. No.00744.
    [46] H Yashiro, Y Tanaka, et al. Seismic Upgrade for Reinforced Concrete Columns by Strengthing theCross Sectional Center[A]. Proc.12thWCEE, Sydney,2000: Ref. No.0758.
    [47]许婷婷.加芯混凝土框架柱的抗震性能研究[D].西安:长安大学,2006.
    [48]郭军庆,王雪韵,雷自学,等.加芯混凝土框架柱轴压比限值试验研究[J].建筑科学与工程学报,2005,22(4):45-49.
    [49]全学友,邓凡,黄辉辉.以设计轴压比限值为目标的核心钢筋优化布置分析[J],重庆建筑(施工与技术),2006:35-38.
    [50]范重,钱稼茹,吴学敏.核心配筋柱抗震性能试验研究[J].建筑结构学报,2001,22(1):14-19.
    [51]程丽荣,钱稼茹,范重,等.核心配筋柱中心受压试验研究[J].工程力学,2000(增刊):579-584.
    [52]董三升,赵均海.不同配筋形式柱的抗震延性[J].建筑科学与工程学报,2010,27(3):121-126.
    [53]郭军庆,雷自学,陈鹏郎,等.高轴压比下加芯混凝土框架柱延性与承载力试验研究[J].建筑结构学报,2008,29(4):89-95.
    [54]郭军庆,雷自学,周天华.往复荷载作用下加芯混凝土框架柱刚度与耗能试验分析[J].建筑结构,2008,38(5):45-48.
    [55]王传志,滕智明.钢筋混凝土结构理论[M].北京:中国建筑工业出版社,1985.
    [56] GB50152-92,混凝土结构试验方法标准[S].北京:中国建筑工业出版社,1992.
    [57]中国土木工程学会高强与高性能混凝土委员会.高强混凝土结构设计与施工指南(第二版)[M].北京:中国建筑工业出版社,2001.
    [58] CECS104:99,高强混凝土结构技术规程[S].北京:中国建筑工业出版社,1999.
    [59] Murat Saatciogiu, Salim R Razvi. Displacement based design of reinforced concrete columns forconfinement[J]. ACI Structural Journal,2002,99(1):23-31.
    [60] Lingo Brachmann, JoAnn Browning, Adolfo Matamoros. Drift-dependent confinement requirementsfor reinforced concrete columns under cyclic loading[J]. ACI Structural Journal,2004,101(5):669-677.
    [61] JGJ101-96,建筑抗震试验方法规程[S].北京:中国建筑工业出版社,1997.
    [62]郭子雄,吕西林.高轴压比框架柱恢复力模型试验研究[J].土木工程学报,2004,37(5):32-38
    [63]齐岳,郑文忠.低周反复荷载下核心高强混凝土柱抗震性能试验研究[J].湖南大学学报(自然科学版),2009,36(12):6-12.
    [64] R Park, T Paulay. Reinforced concrete structures[M]. New York: John Wiley&Sons,1975.
    [65]宋或,段敬民.建筑结构试验与检测[M].北京:人民交通出版社,2005.
    [66] ZHENG Wenzhong, JI Jing. Dynamic performance of angle-steel concrete columns under low cyclicloading-I: experimental study[J]. Earthquake Engineering and Engineering Vibration,2008,7(1):67-75.
    [67]李正良,冯宏,陈永庆, HSRC框架柱的恢复力特性[J].西南交通大学学报,2010,45(6):888-892.
    [68]张国军.大型火力发电厂高强混凝土框架柱的抗震性能研究[D].西安建筑科技大学,2003.
    [69]郭子雄,杨勇.恢复力模型研究现状及存在问题[J].世界地震工程,2004,20(4):48-51.
    [70]高菲,刘文锋,李春晖.钢筋混凝土压弯构件恢复力模型的研究[J].青岛理工大学学报,2008,29(2):40-46.
    [71] Penizen J.. Dynamic Response of Elasto-plastic Frames[J]. Journal of structural Div, ASCE,1962,86(7):420-432.
    [72] Clough R W., Johnston S B.. Effect of Stiffness Degradation on Earthquake Ductility Requirements[A].Proc. of2th Japan Earthquake Engineering Sym[C]. Tokyo,1966.278-289.
    [73] Takeda T, Sozen M A, Nielson N M. Reinforced Concrete Response to Simulated Earthquakes[J]. J. ofStructural Div. AS2CE,1970,96(12):289-295.
    [74] Saiidi M. Hysteresis Models for Reinforced Concrete[J]. J. of structural Div. ASCE,1982,108(5):437-451.
    [75] Mander J B., Priestley MJ N., Park R. Seismic Design Bridge Piers[J]. Journal of structuralEngineering, ASCE,1984,110(4):987-1012.
    [76]恢复力特性专题组.钢筋混凝土柱恢复力特性的研究[R].西安:西安冶金建筑学院工程结构研究所,1991.
    [77]沈聚敏,周锡元,高小旺,等.抗震工程学[M].北京:中国建筑工业出版社,2000.
    [78]周小真.压弯剪作用下钢筋混凝土剪切破坏柱恢复力特性研究[J].西安冶金建筑学院学报,1992,24(3):235-241.
    [79] Motoo Saisho and KaZuya Suda. Restoring Force Model of RC Column Subjected to DynamicallyVarying Axial Forced[C].12th WCEE,2000.
    [80]成文山,邹银生,程翔云.钢筋混凝土压弯构件恢复力特性的研究[J].湖南大学学报,1983,10(4):13-22.
    [81]朱伯龙,张琨联.矩形及环形截面压弯构件恢复力特性的研究[J].同济大学学报,1981,9(2):1-20.
    [82]马恺泽,梁兴文,李斌.方钢管高强混凝土柱恢复力模型研究[J].世界地震工程,2011,27(1):54-59.
    [83]王海生,陈以,赵宪忠,等.高含钢率钢骨混凝土柱试验和恢复力模型[J].地震工程与工程振动,2010,30(4):57-65.
    [84]白国良,石启印.空腹式型钢砼框架柱的恢复力性能[J].西安建筑科技大学学报,1999,31(1):32-39.
    [85]张素梅,刘界鹏,王玉银,等.双向压弯方钢管高强混凝土构件滞回性能试验与分析[J].建筑结构学报,2005,26(3):9-18.
    [86]张国军,吕西林,刘伯权.高强混凝土框架柱的恢复力模型研究[J].工程力学,24(3):83-90.
    [87]张国军,吕西林,刘伯权.轴压比超限时框架柱的恢复力模型研究[J].建筑结构学报,2006,27(1):90-98.
    [88](GB50010-2002),混凝土结构设计规范[S].北京:中国建工出版社,2002.
    [89]过镇海,时旭东.钢筋混凝土原理和分析[M].北京:清华大学出版社,2004.
    [90]李俊华,王新堂,薛建阳.低周反复荷载下型钢高强混凝土柱受力性能试验研究[J].土木工程学报,2007,40(7):11-18.
    [91]江见鲸,陆新征,叶列平.混凝土结构有限元分析[M].北京:清华大学出版社,2005.
    [92]膝智明,邹离湘.反复荷载下钢筋混凝土构件的非线性有限元分析[J].土木工程学报,1996,29(2):19-27.
    [93]朱可善,刘西拉.钢筋混凝土柱非线性全过程分析[J].建筑结构学报,1982,3:35-45.
    [94]周凌远,李乔.钢筋混凝土梁非线性有限元分析方法[J].工程力学,2011,28(1):82-86.
    [95]钟小兵.钢筋混凝土轴心受压柱非线性设计[J].建筑结构,2006,36(12):25-27.
    [96]吕西林,金国芳,吴晓涵.钢筋混凝土结构非线性有限元理论与应用[M].上海:同济大学出版社,1999.
    [97]张国军,刘伯权,白国良.钢筋混凝土框架柱的三维有限元模拟分析[J].同济大学学报(自然科学版),2005,33(8):995-910.
    [98]余流,王铁成,王元丰,等.斜向水平荷载作用下钢筋混凝土柱受剪承载力有限元分析[J].天津大学学报,2004,37(8):723-727.
    [99]闫长旺,贾金青,张菊.钢骨超高强混凝土柱-钢筋混凝土梁框架节点滞回性能的有限元分析[J].土木工程学报,2010,43(增刊):92-97.
    [100]李兴代.用有限元法分析钢筋混凝土框架短柱的强度[J].西南交通大学学报,1990,2:104-111.
    [101]赵均海,王敏强,魏雪英.高等有限元[M].武汉:武汉理工大学出版社,2004.
    [102]王鑫.方钢管混凝土柱受力性能的研究[D].西安:西安科技大学,2006.
    [103] SeismoSoft Ltd. SeismoStruct-A computer program for static and dynamic nonlinear analysis offramed structures[CP]. http://www.seismosoft.com (Accessed10/5/2008).
    [104] Yuksel E., Teymur P.. Earthquake performance improvement of low rise RC buildings using highstrength clay brick walls[J]. Bulletin of Earthquake Engineering,2011,9(4):1157-118.
    [105] Gupta Ankit, Agarwal Pankaj. Cyclic behaviour of confined and unconfined RC beam column joints(T-joints)[J]. International Journal of Earth Sciences and Engineering,2010,3(4):671-684.
    [106] Malekpour S., Ghaffarzadeh H., Dashti F.. Direct displacement based design of regular steel momentresisting frames [J]. Procedia Engineering,2011,14:3354-3361.
    [107]马彦晓.短肢剪力墙结构的抗震性能研究[D].广州:华南理工大学,2011.
    [108]刘畅,邹银生.偏心结构在双向地震作用下扭转反应之影响因素[J].防灾减灾工程学报,2007,27(1):23-28.
    [109]邹离湘.反复荷载下钢筋混凝土本构关系研究[J].深圳大学学报(理工版),1996,13(3~4):7-10.
    [110]蔡健,孙刚.方形钢管约束下核心混凝土的本构关系[J].华南理工大学学报(自然科学版),2008,36(1):105-109.
    [111]李杰,杨卫忠.混凝土弹塑性随机损伤本构关系研究[J].土木工程学报,2009,42(2):31-38.
    [112]郑建军,徐世火良,周欣竹.混凝土在双向应力作用下新的破坏准则和弹塑性本构关系[J].浙江工业大学学报,2003,31(2):119-123.
    [113]黄承逵,常旭,姜德成.自应力钢管混凝土中核心混凝土单轴本构关系[J].大连理工大学学报,2010,50(1):81-85.
    [114] Madas P. Advanced Modelling of Composite Frames Subjected to Earthquake Loading[D]. ImperialCollege, University of London,1993.
    [115] Mander J.B., Priestley M.J.N., Park R. Theoretical stress-strain model for confined concrete[J].Journal of Structural Engineering,1988,114(8):1804-1826.
    [116] Martinez-Rueda J.E. Energy Dissipation Devices for Seismic Upgrading of RC Structures[D].Imperial College, University of London, London,1997.
    [117] Madas P. and Elnashai A.S. A new passive confinement model for transient analysis of reinforcedconcrete structures[J]. Earthquake Engineering and Structural Dynamics,1992,21:409-431.
    [118] Monti G., Nuti C., Santini S. CYRUS-Cyclic Response of Upgraded Sections. Report No.96-2,University of Chieti, Italy,1996
    [119] Menegotto M., Pinto P.E. Method of analysis for cyclically loaded R.C. plane frames includingchanges in geometry and non-elastic behaviour of elements under combined normal force and bending.Symposium on the Resistance and Ultimate Deformability of Structures Acted on by Well DefinedRepeated Loads, International Association for Bridge and Structural Engineering, Zurich,Switzerland,1973:15-22.
    [120] Filippou F.C., Popov E.P., Bertero V.V. Effects of bond deterioration on hysteretic behaviour ofreinforced concrete joints. Report EERC83-19, Earthquake Engineering Research Center,University of California, Berkeley,1983.
    [121] Monti G., Nuti C. Nonlinear cyclic behaviour of reinforcing bars including buckling[J]. Journal ofStructural Engineering,1992,118(12):3268-3284.
    [122] Fragiadakis M., Papadrakakis M.[2008] Modeling, analysis and reliability of seismically excitedstructures: computational issues[J]. International Journal of Computational Methods,2008,5(4):483-511.
    [123] Beyer K, Dazio A., Priestley M.J.N. Inelastic wide-column models for U-shaped reinforced concretewall[J]. Journal of Earthquake Engineering,2008,12(1):1-33.
    [124] Calabrese A., Almeida J.P., Pinho R. Numerical issues in distributed inelasticity modelling of RCframe elements for seismic analysis[J]. Journal of Earthquake Engineering,2010,14(1):38-68.
    [125] Mpampatsikos V., Nascimbene R., Petrini L. A critical review of the R.C. frame existing buildingassessment procedure according to Eurocode8and Italian Seismic Code[J]. Journal of EarthquakeEngineering,2008,12(1):52-58.
    [126]张国军,吕西林,刘伯权.轴压比超限时框架柱的恢复力模型研究[J].建筑结构学报,2007,27(1):90-98.
    [127] Bertero V V. Major issues and future directions in earthquake-resistant design//Proceeding of10thWorld Conference on Earthquake Engineering. Madrid:1994:6407-6445.
    [128] Nuray M. Ayd inoglu. An incremental resPonse Spectrum analysis Procedure based on inelasticspectral disPlacements formultiz Mode seismic Performance evaluation[J]. Bulletin of EarthquakeEngineering,2003,1(1):32-36.
    [129] JGJ3-2010,高层建筑混凝土结构技术规程[S].北京:中国建筑工业出版社,2010.
    [130] Freeman SA, Nicoletti J P, Tyrell J V. Evaluation of existing Buildings for Seismic Risk-A CaseStudy of Puget Sound Naval ShiPyard,Bremerton,Washington.In:Proc.1st U.S. National Conf.Earthquake Engneering. Berkeley: EERI,1975,63-72.
    [131] M. Saiidi, M.A.Sonez.SimPle nonlinear seismic analysis of R/C strurctures[J]. Journalof StructuralDivision (ASCE),1981,107(8):937-952.
    [132] Peter Fajfar, Peter GasPersic.The N2method for the seimic damage analysis of RC buildings[J].Earthquake Engineering and Structura1Dynamics,1996,25(l):31-46.
    [133] ATC. Seismic Evaluation and Petrofit of Concrete Buildings[R]. APPiled Technology Council,Redwood City California,1996.
    [134] Building Seismic Safety Council(BSSC). NEHRP Guidelines for the Seismic Rehabilitation ofBuildings. FEMA273/274.develoPed for the Federal Emergency Management Agency, WashingtonD C,1997.
    [135]李峻,叶燎原. Push-over分析法及其与非线性动力分析法的对比[J].世界地震工程,15(2),1999:34-39.
    [136]钱稼茹,罗文斌.静力弹塑性分析-基于性能/位移抗震设计的分析工具[J].建筑结构,2000,30(6):23-26.
    [137]叶燎原,潘文.结构静力弹塑性分析(Push-over)的原理和计算实例[J].建筑结构学报,2002,21(1):37-43.
    [138]叶献国,种迅,李康宁,等. Pushover方法与循环往复加载分析的研究[J].合肥工业大学学报,2001,24(6):1019-1024.
    [139]杨志勇,何若全.高层钢结构弹塑性抗震分析静动力综合法[J].建筑结构学报,2003,24(3):25-32.
    [140]候爱波,汪梦甫.循环往复加载的Pushover分析方法及其应用[J].湖南大学学报,2003,30(3):145-152.
    [141]侯爱波,汪梦甫,周锡元. Pushover分析方法中各种不同的侧向荷载分布方式的影响[J].世界地震工程,2007,23(3):120-128.
    [142]仲其林,陈跃林,陆伟.静力弹塑性分析方法在结构抗震设计中的应用[J].山西建筑,2009,35(16):49-51.
    [143]种讯,叶献国,吴本华. Push-over分析中侧向力分布形式的影响[J].工程力学,2001(增刊):298-302.
    [144] Krawinkler G D P K. Pros and cons of a Pushover analysis of seismic Performance evaluation[J].Engineering Structures,1998,20(4):452-464.
    [145]汪梦甫,王锐.基于位移的结构静力弹塑性分析方法的研究[J].地震工程与工程振动,2006,26(5):73-80.
    [146]冯峻辉,闫贵平,钟铁毅.地震工程中的静力弹塑性(Pushover)分析法[J].贵州工业大学学报(自然科学版),2003,32(2):89-91.
    [147]杨溥,李英明,王亚勇,等.结构静力弹塑性分析方法的改进[J].建筑结构学报,2000,21(1):44-51.
    [148]刘畅,邹银生,陈敏.偏心结构考虑扭转的三维Push-over分析[J].建筑科学与工程学报,2005,22(2):47-50
    [149]方鄂华,钱稼茹.我国高层建筑结构抗震设计的若干问题[J].土木工程学报,1999,32(1):3-8.
    [150]玉军.钢筋混凝土高层建筑结构抗震弹塑性分析方法的研究及其应用[D].长沙:湖南大学,2007.
    [151]李明昊.高层建筑结构的非线性时程分析[J].工程结构,2006,26(1):119-121.
    [152] Uniform Building Code[S]. UBC94Structural Enigneering Design Provisions,1994.
    [153] European Prestangard. Eurocode8[S], CEN, ENV1998,1994.
    [154] AIJ Recommendations for Loads on Buildings,1996.
    [155] Australian Standard, Part4: Earthquake Loads,1994.
    [156]陈清军,袁伟泽,曹丽雅.长周期地震波作用下高层建筑结构的弹塑性动力响应分析[J].力学季刊,2011,32(3):403-410.
    [157]王滋军,刘伟庆,蒋永生.中高层钢筋混凝土异形柱框架结构弹塑性时程分析[J].地震工程与工程振动,2001,21(3):60-64.
    [158]吴晓涵,孙方涛,吕西林,等.上海世博会中国馆结构弹塑性时程分析[J].建筑结构学报,2009,30(5):112-118.
    [159]聂建国,田淑明.大震下高层型钢混凝土结构弹塑性分析[J].清华大学学报(自然科学版),2007,47(6):772-775.
    [160]杨志勇,黄吉锋,田家勇.罕遇地震弹塑性静、动力分析方法中结构阻尼问题探讨[J].地震工程与工程振动,2009,29(6):115-120.
    [161]王蕊.大跨度空间结构弹塑性时程分析[D].天津大学,2007.
    [162]刘大鹏,吴晓涵.某框架结构的弹塑性时程分析[J].结构工程师,2011,27(增刊):277-230.
    [163]潘文. Push-over方法的理论与应用[D],西安建筑科技大学,2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700