用户名: 密码: 验证码:
供水枢纽工程水环境系统安全管理问题的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
深入研究供水枢纽水库所在流域的水量、水质演变规律,准确评估供水枢纽工程水环境的系统风险并制定出相关的应对措施,对保障我国北方地区城市的供水安全具有深远意义。本文以天津于桥水库供水枢纽工程为研究对象,分析了于桥水库的水环境系统风险,并提出了应对水环境系统风险的相关措施。论文的主要工作及研究成果如下:
     (1)以于桥水库流域水文时序为研究对象,联合运用Markov理论、游程理论、S变换、差积曲线、线性滑动平均等方法,研究了该水文时序的丰枯变化特性、丰枯持续特性、多时间尺度波动特征、周期变化特征及趋势特性。
     (2)详细讨论了运用多元Copula函数建立多维联合分布模型的具体步骤,并采用该多维联合分布模型定量地研究了于桥水库上游流域三个分析区之间以及引滦水库之间的丰枯补偿特性。
     (3)在统计分析于桥水库流域水质超标情况时,采用三维显示技术,将超标倍数、超标年份、超标月份刻画在同一坐标系中,使读者能对水质超标的严重程度、超标所在年份、超标的季节特点等一目了然。然后采用季节性肯德尔秩次检验法分析了水质时序的月序列变化趋势、季节性变化趋势和年际变化趋势。
     (4)根据于桥水库流域水质时序具有结构复杂性和方差非平稳性的特点,建立了基于Markov状态切换理论的水质时序自回归模型,并将该模型和蒙特卡罗方法结合起来,对水质时序进行了随机模拟,然后运用模拟结果进行了水质超标风险的评估。
     (5)将基于多元Copula函数的多维联合分布模型应用于于桥水库水环境系统组合风险的分析,研究了影响于桥水库水环境质量的关键污染物之间的相关关系,定量分析了于桥水库上游来水关键污染因子超标的组合风险。
     (6)识别出了于桥水库水环境系统风险的来源,发现了于桥水库富营养化的限制因子是磷元素;于桥水库7-9月份的蓝藻暴发事件主要是由库区底泥中磷元素的释放所引起的,并且底泥中的磷原素是受铁氧化还原控制的。最后,针对于桥水库污染风险的不同来源,提出了针对于桥水库外源性污染风险的应对措施、内源性污染风险的应对措施、蓝藻暴发的应急措施等。
Studying on the water quantity and quality evolution laws and assessing water environment system risk of the water supply projects and therefore making out countermeasures, have important significance for the water supply security in northern cities of China. Taking Yuqiao Reservior as the research object, the water environment system risk of Yuqiao Reservoir was analyzed and evaluated in this dissertation. And based on the risk analysis result, a set of technical measures was put forward to cope with the Yuqiao Reservoir’s potential pollution risks. The main contents and achievements in this dissertation can be summarized as following:
     (1) Taking the annual rainfall series and annual runoff series as research objects, such methods as Markov theory, runs theory, S-transform, accumulated difference curve and linear sliding average were comprehensively applied to study on the wetness-dryness persistence laws, wetness-dryness changing laws, multi-time scale fluctuation features, periodic variation features and changing trends of hydrological time series in the Yuqiao Reservoir watershed.
     (2) Modeling procedure of multivariate joint distribution based on Copula theory was detailly discussed and illustrated in this dissertation. And then, the wetness-dryness compensation characteristics of different water source regions of the Yuqiao Reservoir were quantitatively analyzed by means of multivariate joint distribution model.
     (3) The 3-dimensional display technique was applied to illustrate the statistical analysis results of water quality status of the Yuqiao Reservoir watershed in the past 23 years. Standard-exceeding multiple and frequency was plotted on the coordinate system of which x-axis, y-axis and z-axis is respectively month, year and exceeding-multiple(or exceeding-frequency). This technique makes pollutant’s standard-exceeding characteristics such as exceeding severity and exceeding seasonal features very clear at a glance. Finally, the monthly, seasonal and annually changing trends of water quality time series were studied by means of Mann-Kendall test method.
     (4) According to the characteristics of structural complexity and non-stationary of the water quality series in the Yuqiao Reservoir watershed, water quality time series autoregressive model was built based on Markov switching theory. And then, Monte Caro method was introduce to combined with the above autoregressive model for Yuqiao Reservoir’s water environment random simulating and risk evaluating.
     (5) The multivariate joint distribution model was applied to the risk combination quantitative analysis of the Yuqiao Reservoir’s water environment system. And then, through analyzing the risk combination calculating results, the correlation among the key pollutants was studied.
     (6) The risk sources of the Yuqiao Reservoir’s water environment system were identified based on the research conclusion of the previous chapter; and drew the conclusion that the eutrophication limiting fator of the Yuqiao Reservoir is phosphorus; and moreover, water algal blooming events in Yuqiao Reservoir during 7-9 month was chiefly caused by the release of phosphorus in the reservior’s mud. Furthermore, the phosphorus release in the Yuqiao Reservoir mud is controlled by the Oxidation-Reduction of ferro element. At last, according to the risk source of the water environment, a set of countermeasures was put forward, which includes exogenous pollution risk countermeasurs, endogenous pollution risk countermeasurs, and emergency measures for algal blooming in the reservoir.
引文
[1] P.C. Nayak, K.P. Sudheer, D.M.Rangan, et al. A neruo-fuzzy computing technique for modeling hydrological time series[J]. Journal of Hydrology, 2004, 291(1-2):52-66.
    [2] Mohammad Zounemat-Kermani, Mohammad Teshnehlab. Using adaptive neuro-fuzzy inference system for hydrological time series prediction[J]. Applied Soft Computing, 2008, 8(2): 928:936.
    [3] Lafreniere Melissa, Sharp Martin. Wavelet analysis of inter-annual variability in the runoff regimes of glacial and nival stream catchment, Bow Lake, Alberta[J]. Hydrological Process, 2003, 17(6):1093-1118.
    [4]蔡福,明惠青,陈鹏狮,等. 1961年~2004年东北地区四季降水的时空演变特征[J].资源科学,2008, 30(10): 1456-1462.
    [5]张立杰,胡天洁,胡非,等.近30年北京夏季降水演变的城郊对比[J].气候与环境研究,2009, 14(1): 63-68.
    [6]张利平,夏军,胡志芳.华北地区降水多时间尺度演变特征[J].气候变化研究进展,2008, 4(3): 140-143.
    [7]戴新刚,任宜勇,陈洪武.近50年新疆温度降水配置演变及尺度特征[J].气象学报,2007, 65(6): 1003-1010.
    [8]韦志刚,黄荣辉,董文杰.青藏高原气温和降水的年际和年代际变化[J].大气科学,2003, 27(2): 157-170.
    [9]李栋梁,张佳丽,全建瑞,等.黄河上游径流量演变特征及成因研究[J].水科学进展,1998, 9(1): 22-28.
    [10]冯建英,柯晓新,姚志宗.黄河上游径流量的长期演变特征[J].人民黄河,2000, 22(10): 40-42.
    [11]卢晓宁,邓伟,张树清,等.霍林河中游径流量序列的多时间尺度特征及其效应分析[J].自然资源学报,2006, 21(5): 819-826.
    [12]汪丽娜,陈晓宏,李粤安,等.西江流域径流演变规律研究[J].水文,2009, 29(4): 22-25.
    [13]杨贵羽,周祖昊,秦大庸,等.三川河降水径流演变规律及其动因分析[J].人民黄河,2007, 29(2): 42-44.
    [14]朱厚华,秦大庸,周祖昊,等.黄河流域降水演变规律研究[J].人民黄河,2005, 27(11): 17-20.
    [15]冯平,韩瑞光,丁志宏,等.河流之间径流变化关系不确定性的多时间尺度SPA研究[J].应用基础与工程科学学报,2009, 17(5): 716-724.
    [16] Pekarova Pavla, Miklanek Pavol, Pekar Jan. Long-term trends and runoff fluctuations of European rivers[J]. IAHS-AISH Publication, 2006, 308: 520-525.
    [17]冯耀龙,韩文秀.权马尔可夫链在河流丰枯状况预测中的应用[J].系统工程理论与实践,1999, 10: 89-93, 98.
    [18]张少文,张学成,王玲,等.黄河天然年径流长期丰枯状态变化特征研究[J].人民黄河,2005, 27(5): 9-10,46.
    [19]冯利华,张行才,桑广书,等.金华市水资源的丰枯变化特征[J].地理科学,2005, 25(5): 626-630.
    [20]丁志宏,冯平,牛军宜,等.黑河莺落峡年径流量时序变化的趋势特性及丰枯演化规律研究[J].干旱区资源与环境,2009, 23(10): 59-63.
    [21]郑红星,刘昌明.南水北调东中两线不同水文区降水丰枯遭遇性分析[J].地理学报,2000, 55(5): 523-532.
    [22]闫宝伟,郭生练,肖义.南水北调中线水源区与受水区降水丰枯遭遇研究[J].水利学报,2007, 38(10): 1178-1185.
    [23]戴昌军,梁忠民.多维联合分布计算方法及其在水文中的应用[J].水利学报,2006, 37(2): 160-165.
    [24]金菊良,杨晓华,丁晶.基于神经网络的年径流预测模型[J].人民长江,1999, 30(supplement): 58-59,62.
    [25]金菊良,杨晓华,丁晶..年径流预测的遗传门限自回归模型[J].四川水力发电,2001, 20(1): 22-24, 31.
    [26]金菊良,魏一鸣,付强,等.投影寻踪门限自回归模型在海洋冰情预测中的应用[J].海洋预报,2002, 19(4): 60-66.
    [27]金菊良,魏一鸣,丁晶.投影寻踪门限回归模型在年径流预测中的应用[J].地理科学,2002, 22(2): 171-175.
    [28]张欣莉,丁晶.参数投影寻踪回归及其在年径流预测中的应用[J].四川大学学报(工程科学版),2000, 32(3): 13-15.
    [29]陈南祥,黄强,曹连海.径流序列的相空间重构神径网络预测模型[J].河海大学学报(自然科学版),2005, 33(5): 490-493.
    [30]王博,马跃先,贺北方.月径流序列的多层递阶预报研究[J].系统工程理论与实践,1999, 7: 132-135, 142.
    [31]李存军,邓红霞,朱兵,等. BP神径网络预测日径流序列的数据适应性分析[J].四川大学学报(工程科学版),2007, 39(2): 25-29.
    [32]李红霞,许士国,范垂仁,等.月径流序列的混沌特征识别及Volterra自适应预测法的应用[J].水利学报,2007, 38(6): 760-766.
    [33]刘素一,权先璋,张勇传.小波变换在径流序列中的应用[J].自然科学进展,2003, 13(6): 659-662.
    [34]王红瑞,高雄,常晋源,等.基于条件异方差分析的水文时序模型及其应用[J].系统工程理论与实践,2009, 29(11): 19-30.
    [35] Nandish M.Mattikalli. Time series analysis of historical surface water quality data of the river Glen catchment,U.K.[J]. Journal of Environmental Management, 1996, 46(2):149:172.
    [36] Shimin Zou, Yun-Sheng Yu. A dynamic factor model for multivariate water quality time series with trends[J]. Journal of Hydrology, 1996, 178(1-4): 381:400.
    [37] Durdu (?)mer Faruk. A hybrid neural network and ARIMA model for water quality time series prediction[J]. Engineering Applications of Artificial Intelligence, 2009, 10: 1-9.
    [38] F.Worrall, T.P. Burt. A univariate model of river water nitrate time series[J]. Journal of Hydrology, 1999, 214(1-4): 74-90.
    [39] Jun Wu, Jian Lu, Jiaquan Wang. Application of chaos and fractal models to water quality time series prediction[J]. Environmental Modeling & Software, 2009, 24(5): 632-636.
    [40]胡国华,唐忠旺,肖翔群.季节性Kendall检验及其在三门峡水库水质趋势分析中的应用[J].地理与地理信息科学,2004, 20(3):86-88.
    [41]梁涛,王浩,丁志明,等.官厅水库近三十年的水质演变时序特征[J].地理科学进展,2003, 22(1): 38-44.
    [42] Manel Grifoll, Gabriel Jordà,ángel Borja, et al. A new risk assessment method for water quality degradation in harbour domains, using hydrodynamic models[J]. Marine Pollution Bulletin, 2010, 60(1): 69-78.
    [43] S. Rehana, P. P. Mujumdar. An imprecise fuzzy risk approach for water quality management of a river system[J]. Journal of Environmental Management, 2009, 90(11): 3653:3664.
    [44] Roy Brouwer, Chris De Blois. Integrated modeling of risk and uncertainty underlying the cost and effectiveness of water quality measures. Environmental Modelling & Software[J]. 2008, 23(7): 922-937.
    [45] Subimal Ghosh, P.P. Mujumdar. Risk minimization in Water quality control problems of a river system[J]. Advances in Water Resources, 2006, 29(3): 458-470.
    [46] Neil R.Mclntyre, Howard S.Wheater. A tool for risk-based management of surface water quality[J]. Environmental Modelling & Software, 2004, 19(12): 1131-1140.
    [47] D. C. McAvoy, P. Masscheleyn, C.Peng, etc. Risk assessment approach for untreated wastewater using the QUAL2E water quality model[J]. Chemosphere, 2003, 52(1): 55-66.
    [48] Robert Portielji, Thorkild Hvitved-Jacobsen, Kjeld Schaarup-Jensen. Risk analysis using stochastic reliability methods applied to two cases of deterministic water quality models[J]. water Research, 2000, 34(1): 153-170.
    [49] Zhi Chen, Lin Zhao, Kenneth Lee. Environmental risk assessment of offshore produced water discharges using a hybrid fuzzy-stochastic modeling approach[J]. Environmental Modelling & Software, 2010, 25(6):782-792.
    [50] Ibrahim M.Khadam. Multi-criteria decision analysis with probabilistic risk assessment for the management of contaminated ground water[J]. Envionmental Impact Assessment Review, 2003, 23(6): 683-721.
    [51]耿福明,薛联青,陆桂华,等.饮用水源水质健康危害的风险度评价[J].水利学报,2006, 37(10): 1242-1245.
    [52]李如忠.基于不确定信息的城市水源水环境健康风险评价[J].水利学报,2007, 38(8): 895-900.
    [53]金菊良,吴开亚,李如忠.水环境风险评价的随机模拟与三角模糊数耦合模型[J].水利学报,2008, 39(11): 1257-1261, 1266.
    [54]徐敏,曾光明,黄国和,等.非线性随机水环境风险模型[J].水利学报,2005, 36(1): 56-61.
    [55]王丽萍,周晓蔚,李继清.饮用水源污染风险评价的模糊-随机模型研究[J].清华大学学报(自然科学版),2008, 48(9): 1449-1452, 1457.
    [56]祝慧娜,袁兴中,曾光明,等.基于区间数的河流水环境健康风险模糊综合评价模型[J].环境科学学报,2009, 29(7): 1527-1533.
    [57] George N. Van Orden, Christopher G. Uchrin. The study of dissolved oxygen dynamics in the Whippany river, New Jersey using the QUAL2E model[J]. Ecological Modelling, 1993, 70(1-2): 1-17.
    [58] A. Drolc, J. Zagorc Koncan. Calibration of qual2e model for The Sava river(Slovenia)[J]. Water Science and Technology, 1999, 40(10): 111-118.
    [59] Mehmet Yuceer, Erdal Karadurmus, Ridvan Berber. Simulation of river streams: Comparison of a new technique with QUAL2E[J]. Mathematical and Computer Modelling, 2007, 46(1-2): 292-305.
    [60] Ritu Paliwal, Prateek Sharma, Arun Kansal. Water quality modeling of the river Yamuna(India) using QUAL2E-UNCAS[J]. Journal of Environmental Management, 2007, 83(2): 131-144.
    [61] S. K. Ning, Ni-Bin Chang, L. Yang, H. W. Chen, H. Y. Hsu. Assessing pollution prevention program by QUAL2E simulation analysis for the Kao-Ping River Basin, Taiwan[J]. Journal of Environmental Management, 2001, 60(1): 61-76.
    [62] D. C. McAvoy, P. Masscheleyn, C. Peng, S. W. Morrall, A. B. Casilla, J. M. U. Lim, E. G. Gregorio. Risk assessment approach for untreated wastewater using the QUAL2E water quality model[J]. Chemosphere, 2003, 52(1): 55-66.
    [63] Vivian Palmieri, Roberto Jose de Carvalho. Qual2e model for the Corumbatai River[J]. Ecological Modelling, 2006, 198(1-2): 269-275.
    [64] A. Azzellino, R. Salvetti, R. Vismara, et al. Combined use of the EPA-QUAL2E simulation model and factor analysis to assess the source apportionment of point and non point loads of nutrients to surface waters[J]. Science of The Total Environment, 2006, 371(1-3): 214-222.
    [65] V. Vuksanovic, F. De Smedt, S. Van Meerbeeck. Transport of polychlorinated biphenyls(PCB) in the Scheldt Estuary simulated with the water quality model WASP[J]. Journal of Hydrology, 1996, 174(1-2): 1-18.
    [66] Ambrose, R. B., T. Wool. WASP7 Stream Transport - Model Theory and User's Guide:Supplement to Water Quality Analysis Simulation Program (WASP) User Documentation[M]. U.S. Environmental Protection Agency, Athens, GA, 2009.
    [67] Daniel L. Tufford, Hank N. Mckellar. Spatial and temporal hydrodynamic and water quality modeling analysis of a large reservoir on the South Carolina(USA) coastal plain[J]. Ecological Modelling, 1999, 114(2-3): 137-173.
    [68] Samuela Franceschini, Christina W. Tsai. Assessment of uncertainty sources in water quality modeling in the Niagara River[J]. Advances in Water Resources, 2010, 33(4): 493-503.
    [69] Ming-liang ZHANG, Yong-ming SHEN, Yakun GUO. Development and application of a eutrophication water quality model for river networks[J]. Journal of Hydrodynamics, 2008, 20(6): 719-726.
    [70] Ray-Shyan Wu, Wen-Ray Sue, Ching-Ho Chen, Shu-Liang Liaw. Simulation model for investigating effect of reservoir operation on water quality[J]. Environmental Software, 1996, 11(1-3): 143-150.
    [71]史铁锤,王飞儿,方晓波.基于WASP的湖州市环太湖河网区水质管理模式[J].环境科学学报,2010, 30(3): 631-640.
    [72]孙学成,邓晓龙,张彩香,等. WASP6系统在三峡库区水质仿真中的应用[J].三峡大学学报(自然科学版),2003, 25(2): 185-188.
    [73]孙文章,曹升乐,徐光杰.应用WASP对东昌湖水质进行模拟研究[J].山东大学学报(工学版),2008, 38(2): 83-85, 100.
    [74]王旭东,刘素玲,张树深.白洋淀水域WASP富营养化模型改进研究[J].环境科学与技术,2009, 32(10): 19-23.
    [75] Sen Bai, Wu-Seng Lung. Modeling sediment impact on the transport of fecal bacteria[J]. Water Research, 2005, 39(20): 5232-5240.
    [76] Hamrick J M. A three-dimensional environmental fluid dynamics computer code: theoretical and computational aspects[R]. Williamsburg, Virginia: The College of William and Mary, Virginia Institute of Marine Science, 1992.
    [77] Hamrick J M. Users manual for the environmental fluid dynamic computer code[R]. Williamsburg Virginia: The College of William and Mary, Virginia Institute of Marine Science, 1996.
    [78] Jin K R, Hamrick J H, Todd T. Application of three dimensional hydrodynamic model for Lake Okeechobee[J]. Journal of Hydraulic Engineering, 2000: 758-771.
    [79] Kyeong Park, Hoon-Shin Jung, Hong-Sun Kim, et al. Three-dimensional hydrodynamic-eutrophication model(HEM-3D):application to Kwang-Yang Bay, Korea[J]. Marine Environmental Research, 2005, 60(2): 171-193.
    [80] Kang-Ren Jin, Zhen-Gang ji, R. Thomas James. Three-dimensional water quality and SAV modeling of a large shallow lake[J]. Journal of Great Lakes Research, 2007, 33(1): 28-45.
    [81] Heng-zhi JIANG, Yong-ming SHEN, Shou-dong WANG. Numerical study on salinitystratification in the Oujiang River Estuary[J]. Journal of Hydrodynamics, 21(6): 835-842.
    [82]周贤宾,吴建,詹中英. EFDC模型在饮用水源保护区划分中的应用研究——以杭嘉湖地区某水厂为例[J].环境科学导刊,2009, 28(2): 30-32.
    [83]陈异晖.基于EFDC模型的滇池水质模拟[J].云南环境科学, 2005, 24(4): 28-30.
    [84] US Army Corps of Engineers. CE-QUAL-RIVI: A Dynamic, One-Dimensional (Longitudinal) Water Quality Model for Streams[Z]. Washington : 1995.
    [85] US Army Corps of Engineers, Waterways Experiment Station. CE-QUAL-W2: A Numerical Two-Dimensional Laterally Averaged Model of Hydrodynamics and Water Quality, User’s Manual[Z]. Vicksburg Misissippi Environmental and Hydraulics Laboratory, 1986.
    [86] Luis Filipe Gomes Lopes, JoséS. Antunes Do Carmo, Rui Manuel Vitor Cortes, et al. Hydrodynamics and water quality modelling in a regulated river segment: application on the instream flow definition[J]. Ecological Modelling, 2004, 173(2-3): 197-218.
    [87] B.B. Hicks, J.J. DeLuisi, D.R. Matt. The NOAA Integrated Surface Irradiance Study (ISIS)– A new surface radiation monitoring program[J]. Bulletin of the American Meteorological Society, 1996, 77 (12):2857–2864.
    [88] Y.P. Zhu, H.P. Zhang, L. Chen, et al. Influence of the South-North Water Diversion Project and the mitigation projects on the water quality of Han River[J]. Science of The Total Environment, 2008, 406(1-2): 57-68.
    [89] B.A. Cox. A review of currently available in-stream water-quality models and their applicability for simulating dissolved oxygen in lowland rivers[J]. The Science and of The Total Environment, 2003, 314-316: 335-377.
    [90] Absar Ahmad Kazmi, lan Sehested Hansen. Numerical models in water quality management: a case study for the yamuna river (India)[J]. Water Science and Technology, 1997, 36(5): 193-200.
    [91] Nick Hanley, Robin Faichney, Alastair Munro, et al. Economic and environmental modeling for pollution control in an estuary[J]. Journal of Environmental Management, 1998, 52(3): 211-225.
    [92] Joao Magalhaes Neto, Mogens Rene Flindt, Joao Carlos Marques, et al. Modelling nutrient mass balance in a temperate meso-tidal estuary: Implications for management[J]. Estuarine, Coastal and Shelf Science, 2008, 76(1): 175-785.
    [93]刘坤,杨正宇. MIKE软件在水体富营养化研究中的应用[J].给水排水,2009, 35(增刊): 456-459.
    [94]王哲,刘凌,宋兰兰. MIKE21在人工湖生态设计中的应用[J].水电能源科学,2008, 26(5): 124-127.
    [95] M.J.P. van Duin, N.R. Wiersma, D.J.R. Walstra, et al. Nourishing the shoreface: observations and hindcasting of the Egmond case, The Nethterlands[J]. Coastal Engineering, 2004, 51(8-9): 813-837.
    [96] R. Morelissen, A.C. Bijlsma, M.J. Tapley. A dedicated tidal stream atlas of the stratified tidal flows near Stonecutters Bridge, Hong Kong, Based on 3D numerical simulations with HLES[J]. Journal of Hydro-environment Research, 2010, 3(4): 224-231.
    [97] G.R. Lesser, J.A. Roelvink, J.A.T.M. van Kester, et al. Development and validation of a three-dimensional morphological model[J]. Coastal Engineering, 2004, 51(8-9): 883-915.
    [98] Qiuwen Chen, Arthur E. Mynett. Modelling algal blooms in the Dutch Coastal waters by integrated numerical and fuzzy cellular automata approaches[J]. Ecological Modelling, 2006, 199(1): 73-81.
    [99]栗苏文,李红艳,夏建新.基于Delft3D模型的大鹏湾水环境容量分析[J].环境科学研究,2005, 18(5): 91-95.
    [100]徐祖信,尹海龙.黄浦江二维水质数学模型研究[J].水动力学研究与进展(A辑),2003, 18(3): 261-265.
    [101]徐祖信,尹海龙.黄清江干流二维水动力实时数学模型研究[J].水动力学研究与进展(A辑),2003, 18(3): 372-378.
    [102]徐祖信,卢士强.平原感潮河网水动力模型研究[J].水动力学研究与进展(A辑),2003, 18(2): 176-181.
    [103]徐祖信,卢士强.平原感潮河网水质模型研究[J].水动力学研究与进展(A辑),2003, 18(2): 182-188.
    [104]廖振良,徐祖信.苏州河干流水质模型的开发研究[J].上海环境科学,2002, 21(3): 136-138,142.
    [105]韩龙喜.三峡大坝施工期水环境三维数值预测方法[J].水科学进展,2002, 13(4): 427-432.
    [106] N. Gotts chall, C. Boutin, A. Crolla, et al. The role of plants in the removal of nutrients at a constructed wetland treating agricultural (dairy) wastewater, Ontario, Canada[J]. Ecological Engineering, 2007, 29(2): 154-163.
    [107] F. Zurita, J. De Anda, M.A. Belmont. Treatment of domestic wastewater and production of commercial flowers in vertical and horizontal subsurface-flow constructed wetlands[J]. Ecological Engineering, 2009, 35(5): 861-869.
    [108] E.J. Dunne, N. Culleton, G. O’Donovan, et al. Phosphorus retention and sorption by constructed wetland soils in Southeast Ireland[J]. Water Research, 2005, 36(18): 4355-4362.
    [109] Anne F. Lightbody, Heidi M. Nepf, James S. Bays. Modeling the hydraulic effect of transverse deep zones on the performance of short-circuiting constructed treatment wetlands[J]. Ecological Engineering, 2009, 35(5): 754-768.
    [110] B. Tuncsiper. Nitrogen removal in a combined vertical and horizontal subsurface-flow constructed wetland system[J]. Desalination, 247(1-3): 466-475.
    [111]吴为中,邢传宏,王占生.生物陶粒滤池预处理富营养化水库水源的净化效果与工艺参数[J].北京大学学报(自然科学版),2003, 39(2): 262-269.
    [112]陈鸣钊,丁训静,许京怀.用生态环境再改变理论研究湖泊富营养化治理方法[J].水科学进展,2003, 14(3): 323-327.
    [113]汪浚三,覃环.高水力负荷人工湿地处理富营养化湖水[J].中国给水排水,2005, 21(1): 1-4.
    [114]严立,刘志明,陈建刚,等.潜流式人工湿地净化富营养化景观水体[J].中国给水排水,2005, 21(2): 11-13.
    [115]王爱平,金秋,吴琦平.人工湿地硝化与反硝化细菌分布研究[J].环境科技,2010,23(1): 1-4.
    [116]石雷,杨璇.人工湿地植物量及其对净化效果影响的研究[J].生态环境学报,2010, 19(1): 28-33.
    [117]刘波,陈玉成,王莉玮,等. 4种人工湿地填料对磷的吸附特性分析[J].环境工程学报,2010, 4(1): 44-48.
    [118]栾晓丽,王晓,赵钰,等.复合垂直流与潜流人工湿地沿程脱氮除磷对比研究[J].环境污染与防治,2009, 31(11): 26-29, 34.
    [119]谢龙,汪德灌,戴昱.水平潜流人工湿地氮转化研究[J].水力发电学报,2009, 28(6): 151-156.
    [120]曹杰,罗安程,方照平.人工湿地对氮、磷的去除效率及其空间分布研究[J].科技通报,2009, 25(6): 848-853, 859.
    [121]李跃勋,徐晓梅,洪昌海,等.表面流人工湿地在滇池湖滨区面源污染控制中的应用研究[J].农业环境科学学报,2009, 28(10): 2155-2160.
    [122]邓杰群,周秀平,黄伟.基于Bayes-Markov过程的年降水量丰枯变化特性分析[J].中国农村水利水电,2009, (3): 4-6, 9.
    [123]夏乐天.梅雨强度的指数权马尔可夫链预测[J].水利学报,2005, 36(8): 1-8.
    [124]周淑瑾.湟水上游河川区域降水丰枯分析[J].西北水资源与水工程,2003, 14(3): 29-32.
    [125]冯利华,张行才,桑广书,等.金华市水资源的丰枯变化特征[J].地理科学,2005, 25(5): 626-630.
    [126]罗积玉,等.经济统计分析方法及预测[M].北京:清华大学出版社,1987.
    [127]邓红霞,李存军,朱兵,等.长江上游主要年降水量区域降水丰枯空间变化特性初步研究[J].四川水利发电,2006, 25(S1): 76-78.
    [128]殷彤,黄晓荣,文雯.南水北调西线调水区与受水区年降水量量丰、枯相关性集对分析[J].四川大学学报(工程科学版),2009, 41(2): 48-52.
    [129]毛慧慧,李建柱,王晓云.区域降雨的丰枯特性及其补偿特性分析[J].天津大学学报, 2009, 42(5): 377-381.
    [130] Nelson R. B. An introduction to Copulas[M]. Springer: New York, 2006.
    [131] Grimaldi S, Serinaldi F. Design hyetogragh analysis with 3-copula function[J]. Hydrological Sciences, 2006, 51(2):223-228.
    [132] Zhang L, Singh V P. Gumbel-Hougaard Copula for trivariate rainfall frequency analysis[J].Journal of Hydrologic Engineering, 2007, 12(4): 409-419.
    [133] Salvadori G, Michele C De. On the use of copulas in hydrology: theory and practice[J]. Journal of hydrologic Engineering, 2007, 12(4): 369-380.
    [134]郭生练,闫宝伟,肖义,等. Copula函数在多变量水文分析计算中的应用及研究进展[J].水文,2008, 28(3):1-7.
    [135]夏军.水文非线性系统理论与方法[M].武汉:武汉大学出版社,2002.
    [136]张贤达,保铮.非平稳信号分析与处理[M].北京:国防工业出版社,1998.
    [137]冉启文,王建赜.小波变换及其在时频分析中的应用[J].数理统计与管理,1999 ,18(3): 56-59.
    [138] Ran Q W, Wang J Z. Wavelet transform and its application to the analysis of time-frequency[J]. Mathematical statistics and management, 1999 ,18(3): 56-59.
    [139]胡劲松,杨世锡.基于HHT的旋转机械故障诊断方法研究[J].动力工程,2004, 24(6): 845-851
    [140]耿萌,石林锁.三种非平稳信号时频分析的方法[J].机械工程与自动化,2008,146(1): 108-109,114.
    [141]吴正国.现代信号处理技术:高阶谱、时频分析与小波变换[M].武汉:武汉大学出版社,2003.
    [142] Stockwell R G, Mansinha L, Lowe R P. Localization of the complex spectrum: The S transform [J].IEEE Transactions on Signal Processing, 1996, 17: 998-1001.
    [143] Pinnegar C, Mansinha L. Time-local Fourier analysis with a scalable, phase-modulated analyzing function: The S-transform with a complex window, Signal Process. 2004, 84 (7): 1167-1176.
    [144] Stockwell R G. A basis for efficient representation of the S-transform[J]. Digital Signal Processing. 2007, 17: 371-393.
    [145] Fritts D, Riggin D, Balsley B, et al. Recent results with an MF radar at McMurdo, Antarctica: Characteristics and variability of motions near 12-hour period in the mesosphere, Geophys. Res. Lett.1998, 25 (3): 297-300.
    [146] Stockwell R G, Large W G, Milliff R. Resonant inertial oscillations in moored buoy ocean surface winds, Tellus A, 2004, 56 (5): 546-547.
    [147] Pinnegar C R, Mansinha L. Time-local spectral analysis for non-stationary time series: the S-transform for noisy signals [J].Fluctuation and Noise Letters, 2003, 3(3):357-364.
    [148]刘传武,张智军,毕笃彦. S变换在雷达目标识别中的应用[J].系统仿真学报,2008, 20(12): 3290-3292;
    [149]辛欣,张效民.基于S-变换的水中目标特征提取[J].电声基础,2007, 31(1):10-12.
    [150]杨洪耕,刘守亮,肖先勇,等.基于S变换的电压凹陷分类专家系统[J].中国电机工程学报,2007, 27(1): 98-104.
    [151]樊剑,吕超,张辉.基于S变换的地震波时频分析及人工调整[J].振动工程学报,2008, 21(4): 381-386.
    [152]徐红梅,郝志勇,贾维新,等.基于S变换的内燃机气缸盖振动特性研究[J].内然机工程, 2008, 29(3): 68-71,75.
    [153]张茹,宓永宁,郭海军.柴河水库水质演变趋势分析[J].人民黄河,2009, 31(4): 67, 69.
    [154]康淑媛,张勃,柳景峰,等.基于Mann-Kendall法的张掖市降水量时空分布规律分析[J].资源科学,2009., 31(3): 501-508.
    [155]燕爱玲,黄强,刘招,等. R/S法的径流时序复杂特性研究[J].应用科学学报,2007, 25(2): 214-217.
    [156]冯新灵,冯自立,罗隆诚,等.青藏高原冷暖气候变化趋势的R/S分析及Hurst指数试验研究[J].干旱区地理,2008,31(2):175-181.
    [157]于延胜,陈兴伟. R/S和Mann-Kendall法综合分析水文时间序列未来的趋势特征[J].水资源与水工程学报,2008, 19(3): 41-44.
    [158]赵英,崔福义,郭亮,等.基于BP神经网络的天津于桥水库CODMn预测研究[J].南京理工大学学报,2008, 32(3): 376-380.
    [159] KENDALL, M G. Rank correlation methods[M].London: Charles Griffin, 1975.
    [160] VAN B G, HU GHES J P. Nonparametric tests for trend in water quality [J].Water Resources Research, 1984, 20(1) :127-136.
    [161]王文圣,金菊良,李跃清,等.水文水资源随机模拟技术[M].成都:四川大学出版社,2007.
    [162]周林飞,许士国,孙万光.基于灰色聚类法的扎龙湿地水环境质量综合评价[J].大连理工大学学报,2007, 47(2): 240-245.
    [163]李如忠,洪天求,金菊良.河流水质模糊风险评价模型研究[J].武汉理工大学学报,2007, 29(2): 43-46.
    [164]金菊良,魏一鸣.复杂系统广义智能评价方法与应用[M].北京:科学出版社,2008.
    [165] Hamilton, James D. A new approach to the economic analysis of non-stationary time series and the business cycle[J]. Econometrica, 1989, 57 (2), 357-384
    [166] Krolzig HM. Markov-switching Vector Autoregressions: Modelling, Statistical Inference and Application to Business Cycle Analysis[M]. Berlin: Springer, 1998.
    [167] Wen-Hsien Liu, Yih-Luan Chyi. A Markov regime-switching model for the semiconductor industry cycles[J]. Economic Modelling, 2006, 23 (4): 569-578.
    [168]苏涛,詹原瑞,刘家鹏.基于马尔科夫状态转换下的CAPM实证研究[J].系统工程理论与实践,2007, 27 (6): 21-26.
    [169] Alessandro Cologni, Matteo Manera. The asymmetric effects of oil shocks on output growth: A Markov–Switching analysis for the G-7 countries[J]. Economic Modelling, 2009, 26(1): 1-29.
    [170]刘丹红,张世英,苏为东.马尔可夫转换的资本资产定价模型及其最大似然估计[J].天津大学学报(社会科学版),2003, 5(4): 345-348.
    [171] C. Francq, J. -M. Zako?an. Stationarity of multivariate Markov–switching ARMA models[J]. Journal of Econometrics, 2001, 102(2): 339–364.
    [172] Hamilton J D.时间序列分析[M].刘明志译.北京:中国社会科学出版社,1999.
    [173] Hamilton J D. Time Series Analysis[M]. Princeton: Princeton University Press, 1994.
    [174] Toshimitsu Hamasaki, SeoYoung Kim. Box and Cox power-transformation to confined and censored non-normal responses in regression[J]. 2007, 51(8): 3788– 3799.
    [175] Smith A F M, Robert G O. Bayesian computation via the Gibbs sampler and related Markov chain Monte Carlo methods[J]. Journal of Royal Statistical Society Series B, 1993, 55: 3~23.
    [176]叶建峰.垂直潜流人工湿地中污染物去除机理研究[D].博士学位论文,上海:同济大学,2007.
    [177]《于桥水库污染源调查及防治措施研究》[R].天津:天津市水文水资源勘测管理中心,2003.
    [178]张锡辉.水环境修复工程学原理与应用[M].北京:化学工业出版社,2002.
    [179] Drenner R W, Day D J,Basham S J, et al. Ecological water treatment system for removal of phosphorus and nitrogen from polluted water[J]. Biological Application,1997,7(2):381-391.
    [180] Rydin E.Potentially mobile phosphorus in lake Erken sediment[J].Water Research, 2000, 34(7): 2037-2042.
    [181]袁文权,张锡辉,张丽萍.不同供氧方式对水库底泥氮磷释放的影响[J].湖泊科学,2004, 16(1): 28-34.
    [182]《于桥水库入库水量水质演变趋势分析及控制措施研究》[R].天津:天津市水文水资源勘测管理中心,2010.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700