用户名: 密码: 验证码:
风电叶片用竹木复合层积材的理论分析及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文针对风电叶片翼梁用竹木复合材料在冷压热固化中的流变模型而展开,对杨木、竹材横纹压缩的流变行为均进行了研究和评价,还对杨木单板层积材,竹木复合单板层积材的压制工艺、树脂浸渍量、最优压力等方面进行了研究。研究结果表明:
     (1)杨木径向压缩粘弹性行为
     以不同厚度杨木单板为原料,探讨不同因素对杨木单板应力松弛行为的影响。实验结果表明:室温,变形相同时,含水率越大,应力松弛量越大;绝干材随着温度升高,应力松弛量略有增加,但没有含水率的影响显著;绝干材在变形相同时,有胶比无胶的应力松弛量大。杨木单板的应力松弛行为可以用由Maxwell模型和弹簧并联组成的三元件模型来模拟。
     (2)竹材径向压缩蠕变行为
     探讨了毛竹在恒定压力下与不同温度、含水率的关系,确定出其对应的蠕变模型,同时研究了带节竹材蠕变性能的影响。结果表明:在压应力小于屈服极限时,所选用的Burger模型可以用来模拟竹材径向压缩的短期蠕变行为;四元件参数值均随着温度和含水率的增加而减小;竹材带节后其蠕变黏性变形量增大。
     (3)杨木层积材尺寸稳定性、树脂浸渍量及流变学
     用不同因素制备浸胶杨木单板层积材。主要分析了影响单板层积材尺寸稳定性的因素,并分析了影响应力松弛及尺寸稳定性的因素。结果表明,压力和温度对杨木单板层积材尺寸稳定性影响最为显著,结合应力松弛及尺寸稳定性分析可以得出制备单板层积材的最优工艺,同时以浸渍环氧胶的杨木单板为原料制备单板层积材(LVL)。分别探讨杨木单板在不同固含量的环氧树脂中,浸渍不同时间的浸渍量,不同浸渍量对LVL应力松弛行为、2hTS和顺纹抗压强度的影响。结果表明:①当环氧浸渍液的固含量相同时,随着浸渍时间的延长,杨木单板的树脂浸渍量逐渐增加,而后趋于稳定;②在相同的浸渍时间内,杨木单板在较高固含量的环氧浸渍液中的树脂浸渍量均高于低固含量的环氧浸渍液:③随着LVL板中含胶量的增加,杨木LVL的密度和顺纹抗压强度均为先增加后稳定;2hTS则为先减小后稳定;④在本试验范围内,杨木单板在压力为2、4、6MPa下的最优浸渍量均为50%。
     (4)竹木复合在冷压热固化中最佳压力选择
     以浸渍环氧胶的杨木单板和分级竹片为原料制备竹木复合单板层积材(LVL)。探讨了不同压力对LVL的影响,测试了竹木组坯方式为4竹5木下实验不同压力LVL的物理力学值,得到在本实验竹木组坯方式下,最优的压力范围为3~5MPa。
Bamboo/wood preservation is an important issue of current wood industrial development. In this paper, for the wind blade spar with bamboo and wood composite materials in cold thermal curing of the rheological model and the start of this paper to the poplar, bamboo stripes and rheological behavior of compression were carried out research and evaluation, but also on the Poplar veneer Laminated wood, bamboo and wood composite LVL suppression techniques, the amount of resin impregnation, the optimal pressure, etc. were studied. The results are as follows:
     (1) Viscoelastic Behavior of poplar under radical compression
     A study on the different thickness of Poplar (Populus nigra) veneer. The effects of the different strain levels、temperature、moisture content and the adhesive on stress relaxation of poplar veneer were explored. The results showed that: 25±2 degree,under the same deformation, The amount of Stress relaxation in proportional to Moisture Content ;0% Moisture Content, As the temperature increases, The amount of Stress relaxation increase slightly;0% moisture content,under the same deformation,Poplar veneer with adhesive have a greater amount of Stress relaxation,And the Stress relaxation of poplar veneer behavior can be used by the Maxwell model and spring model composed of three components to simulate.
     (2) Creep behavior of bamboo under radical compression
     Discussed the bamboo (Phyllostachs edulis) under a constant pressure with different temperatures、different moisture content relationship, Identified the corresponding creep model, also studied bamboo with node compression creep performance. The results showed that: Under the compressive stress less than the yield limits, Burger model can be used to simulate bamboo radial compression of the short-term creep behavior; The four–element model parameters were as the temperature and the Moisture content decreased. Bamboo node creep results showed that the bamboo with node permanent creep deformation increases.
     (3) The analysis for Poplar LVL Dimensional stability、Resin impregnation and Rheology
     Use different way prepare Poplar LVL. Mainly analyzes the factors that impact LVL dimensional stability,and analysis the factors that impact stress relaxation and dimensional stability. The results show that pressure and temperature on Poplar LVL dimensional stability of the most significant.And strengthened laminated veneer lumber (LVL). was manufactured using Poplar(Populus nigra) veneer as raw materials, Poplar veneer were impregnated in epoxy resins with different solid contents, and then to calculate the amounts of resin impregnation with different time durations; The effects of the impregnation amount on LVL stress relaxation、2hTS and longitudinal compressive strength were also explored. The results showed that :(1) When the solid contents of the epoxy resin were the same, the impregnation increment of the Poplar veneer increased with the impregnation time and then became stable;(2) When the impregnation time durations were the same, the impregnation increments of the Poplar veneer impregnated in epoxy resin with higher solid contents were higher than those in epoxy resin with lower solid contents;(3) AS the impregnation increment increased, The density of Poplar LVL and longitudinal compressive strength increased and then stabilized, 2hTS decreased and then stabilized.(4) Within the scope of the experiment, Poplar veneer were impregnated in epoxy resins with solid content of 55%>5h,LVL can reach better requirement. (4)The optimal pressure of Bamboo/wood composite under Cold compression and Thermal curing
     Strengthened laminated veneer lumber (LVL) was manufactured using Poplar (Populus nigra) veneer and bamboo as raw materials, Explored the impact of different pressures on the LVL,When the Assembly patterns is 4, 5 Bamboo Wood,The density of LVL、2h TS、longitudinal compressive strength on properties of the bamboo/wood composite LVL were explored, Under the experimental conditions , The Optimal pressure range is 3~5MPa.
引文
1江泽慧,孙正军,任海青.先进生物质复合材料在风力发电叶片中的应用「J」.复合材料学报,2006,26(3):127-129
    2黄晓东,江泽慧,孙正军.风机叶片的发展概况和趋势「J」.太阳能,2007(4):37-39
    3 George M. The large developments and trends of wind turbine blades「J」.Reinforced plastics,2003,47(3):10
    4 George M.Composite Material----The first realization of wind energy「J」.Reinforced Plastics ,2003,47(5):29
    5 Dayton A.Griffin Blade System Design Studies.Vo1.I:Composite Technologies for Large Wind Turbine Blades[R].SAND2002—1 879, Kirkland, W ashington: Global EnergyConcepts LLC,2002:16—17.
    6陈余岳,张锦南.玻璃钢/复合材料风力机叶片的开发「J」.上海电力,2007(4):371-374
    7钟方国,赵鸿汉.风力发电发展现状及复合材料在风力发电上的应用[J].纤维复合材料, 2006(3):48-54.
    8 MARSH G.The large developments and trends of wind turbine lades[J].Reinforced Plastics, 2003,47(3):10.
    9 MARSH G.Composite material-The first realization of wind energy[J].Reinforced Plastics, 2003,47(5):29.
    10江泽慧,王戈等,竹木复合材料的研究及发展[J].林业科学研究,2002,15(6):712-716
    11岳金方,左春丽,周宇.竹木复合材是良好的家具和家装用材[J].人造板通讯,2004,(5):
    17-18
    12华勄坤.中国竹质复合材料的发展[J].人造板通讯,2001.(10):3-5
    13孙正军,程强,江泽慧.竹质工程材料的制造方法与性能[J].复合材料学报,2008,24(1):
    80-83
    14孙正军,程强,江泽慧.分级竹丝复合材料的原理与性质[J].复合材料学报,2008,25(1):84-87
    15 R.Z. Poore“Advanced Blade Manufacturing Project”,pp5, SAND99 - 8258, Seattle, WA 98109,Oct.1999.
    16何翠花.竹木胶合板的试制报告[J].木材工业.1991,5(4):50~5l.
    17张齐生,孙丰文.竹木复合集装箱底板的研究[J].林业科学.1997,33(6):546~554.
    18张齐生,孙丰文,李燕文.竹木复合集装箱底板使用性能的研究[J].南京林业大学学报.1997,21(1):27~32.
    19鲍逸培.竹木复合集装箱底板开发与研究[J].建筑人造板.1997,(3):13~l6.
    20钱俊,叶良明,金永明.速生杉木与竹黄篾复合板的研究[J].建筑人造板.1999,(2):35~37.
    21杜春贵.高档竹木复合混凝土模板研究[J].木材加工机械.2004(1):9~14.
    22 Xu Heng,Chiaki Tanaka,Tetsuya Nakao.Mechanical properties of plywood reinforced by bamboo and jute[J].Forest Products Journal,1998,48(1):81~85.
    23 Subyakto,Bambang Subiyanto,Sandra A Azis..Cultivation and utilization of bamboo in Indonesia[J],Journal of Bamboo Research,1997,16(2):1~ 7.
    24吴纯初,侯伦灯,林元辉,邓邵平.废锯屑—竹丝刨花板的研究[J].福建林学院学报.1992,12(4),417~422.
    25张齐生,朱一辛.结构用竹木复合空心板的初步研究[J].林产工业.1997,24(3):6~9.
    26殷苏州,李北冈,胡德彪.竹材覆面定向刨花板性能的研究[J].木材工业1997,11(4):8~11.
    27王思群,华毓坤.改善竹木胶合的研究[J].林产工业.1992,19(6):6~9.
    28王思群,华毓坤,董士琴.竹木复合定向刨花板强度性能的研究[J].木材工业.1991,5(3):6~l0.
    29 Lee A W C,Bai X S.Ba|lgi A P.Flexural properties of bamboo-reinforced southern pine OSB beam[J].Forest Products Journal,1997,47(6):74~78.
    30吴章康,张宏健,黄素涌,等.竹木复合中密度纤维板工艺条件的研究[J].木材工业.2000,14(3):7~10.
    31范毛仔,许若璇,杨爱和.碎单板竹片平行胶合材的研究[J].木材工业,1995,9(1):10~13.
    32郑忠福.单板贴面竹编竹材层积材的生产工艺研究[J].建筑人造板.1995,(1):13~15.
    33饶文彬.木竹重组材加工机理的研究[D].南京:南京林业大学,2003.
    34张心安、朱一辛,程丽美,等.竹增强单板层积材的动态和静态弯曲性能[J].南京林业大学学报.2006,30(1):69~71.
    35朱一辛、关明杰,张晓冬.竹材增强杨木单板层积材冲击性能的研究[J].南京林业大学学报.2005,29(6):99~102.
    36朱一辛,张心安,关明杰.环境温湿度对竹材增强LVL力学性能的影响[J].南京林业大学学报.2006,30(6):37~40.
    37许斌,蒋身学.竹木复合层积材横纹静摩擦系数的研究[J].林业科技开发.2000,14(6):22~23.
    38张齐生,朱一辛.结构用竹木复合空心板的初步研究[J].林产工业.1997,24(3):6~9.
    39王逢瑚,木质材料流变学.东北林业大学出版社.1997
    40李大纲。意杨木材弯曲蠕变特性的逐步研究。四川农业大学学报,1998,16(1).99-101
    41陈士英.等竹材刨花板蠕变性能的研究.木材工业,1999,13(5),3-6
    42 C.B Pierce et al .Creep in chipboard .part 2;The use of fitted response curves for comparative and predictive purposes. Wood science and Technollogy .1979,13 ,265-282
    43史贵荣,木材的粘弹性及蠕变模型。北京林业大学学报1988,10(2),88-93
    44 J.M.W.Dinwooddie et al. Creep in chipboard .Part 7: Testing the efficacy of models on 7-10 years data and evaluating optimum period of prediction .Wood Science and Technology .1990,24 181-189
    45邵卓平.应用变参数Maxwell模型拟合中密度纤维板蠕变.木材工业。2002,16(3),9-11,18
    46邵卓平.木质材料变参数流变模型的研究.林业科学,2003,39(5),106-110
    47张斌等.小兴安岭几个主要树种的蠕变特性.东北林业大学学报,1988,16(2),71-77
    48卢宝贤等.几个主要树种的蠕变特性.力学与实践.1996 18 (1),36-38
    49刁海林等.马尾松,尾赤桉木材蠕变特性常数研究.广西科学,2003,10(2),150-153
    50 Salmen,N.L.1984.Viscoelastic properties of in situ lignin under water-saturated conditions J.Mater.Sci. 19:3090-3096
    51 Kelley,S.S,Rials,T.G,Glasser,W.G.1987..Relaxation behavior of the amorphous components of wood .J.Mater.Sci.22:617-624
    52Wolcott,M.P,Kamke,F.A,Dillard,D.A.1990.Fundamentalsofflakeboard manufacture:viscoelastic behaviour of the wood component.Wood Fiber Sci, 22:345-361
    53顾继友,高振华等.2003.制造工艺因素对刨花板吸水厚度膨胀率的影响.林业科学,39(1):132-139
    54Anjaneya Prasad Penneru,Krishnan Jayaraman and Debes Bhattacharyya .2006.Viscoelastic behaviour of solid wood under compressive loading .Holzforschung, 60:294-298
    55 Jeroenvan Houts,Debes Bhattacharyya and Krishnan Jayaraman.2003.Viscoelastic Behaviour of Wood Fibers.Holzforschung, 57:391-399
    56尹思慈. 1996.木材学.北京:中国林业出版社, 106
    57 A.Oudjehance,F.Lam,S.Avramidis.A continue model of the interaction between manufacturing variables and consolidation of wood composite mats[J].Wood Sci and Tech.1998(32):381-391
    58G.Von Hass,A,Fruhwald.Rheological behaviour of fiber,particle and strand mats[J].Holz als Roh-und Werkstoff 2001(58):415-418
    59陈士英,龙玲,张宜生.竹材刨花板蠕变性能的研究[J].木材工业,1999,Vol.13(5):3-6
    60顾继友,高振华,王逢瑚等.刨花板厚度方向变形研究Ⅲ.刨花板厚度方向变形模型及规律的确定[J].林业科学,2002,Vol.38(4):134-140
    61涂道伍,邵卓平,徐斌.竹材横纹热压流变学性质的研究[J].竹子研究汇刊,2007,Vol.26(4):46-49
    62邵卓平.竹材在压缩大变形下的力学行为I.应力-应变关系[J].木材工业,2003,Vol.17(2):12-14
    63涂道伍,徐斌,邵卓平.竹材横纹压缩的应力松弛[J].林产工业,Vol.34(5):14-17
    64尹思慈.木材学.北京:中国林业出版社,1996
    65曾其蕴,李世红.竹节对竹材力学强度影响的研究.林业科学,1992,28(3):247-252
    66李世红,付绍云等.竹子-一种天然生物质复合材料的研究.材料研究学报,1994,Vol.8(2):188-191
    67顾继友等.刨花板厚度方向变形研究Ⅰ.尺寸稳定之化学热力学研究初步「J」.林业科学,2002,38(2):152-156
    68顾继友等.刨花板厚度方向变形研究Ⅱ.刨花板厚度方向变形模型的建立及释因「J」.林业科学,2002,38(3):160-166
    69 S.P.S.Rawat,M.C.Breese and D.P.Khali.Chemical kinetics of stress relaxation of compressed wood blocks「J」.Wood Science and Technology,1998,32:95-99
    70 Bonfield PW,Mundy J.Robson DJ.Dinwoodie JM (1996):The modelling of time-dependent deformation in wood using chemical kinetics .Wood Sci.Technol.30:105-111
    71陈中秀等.化工热力学「M」.北京:化学工业出版社,2001
    72张一帆.单板层积材的应用和发展前景「J」.林产工业,2001,28(3):9-12
    73 Jeroen van Houts,Debes Bhattacharyya and Krishnan Jayaraman. Viscoelastic Behaviour of Wood Fibers「J」.Holzforschung,2003,57:391-399
    74 Ross,P.J.Taguchi Techniques for Quality Engineering Loss Function, Orthogonal Experiments, Parameter and Tolerance Design「J」.McGraw-Hill,1988,New York.279pp
    75 Lochner, R.H.and J.E. Matar.Designing for Quality.An Introduction to the Best of Taguchi and Western Methods of Statistical Experimental Design「J」.Quality Resources,1990,New York.243pp
    76陈玲,江泽慧等.2种风电叶片竹木复合材料原材料树脂浸渍量研究「J」.西北林学院学报,2008,23(6):170-172
    77钱俊,叶良明等.速生杉木的改性研究-UF树脂浸渍后热压法改性「J」.木材工业,2001,15(2):14-17
    78张占宽,刘君良.密实型杨木强化单板层积材制造工艺及应用前景分析「J」.林业机械与木工设备,2005,7(33):28-30
    79 Charles R. Frihart. Adhesive Bonding and Performance Testing of Bonded Wood Products「J」. Journal of ASTM International,2005,2(7): Paper ID JAI12952 1-12
    80 M.T.Paridah,L.L.Ong1,A.Zaidon,etal. IMPROVING THE DIMENSIONAL STABILITY OF MULTILAYERED STRAND BOARD THROUGH RESINIMPREGNATION「J」. Journal of Tropical Forest Science,2006,18(3):166-172

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700