用户名: 密码: 验证码:
亚麻极短纤维复合材料成型工艺与造型研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文通过对亚麻极短纤维复合材料制备原理、工艺与艺术表现的研究,探索了亚麻极短纤维复合材料在造型艺术领域中的应用。在艺术创作过程中,艺术造型材料是审美信息的转化和传递的载体。本文从现代生活方式的需要出发,将亚麻极短纤维与聚合物复合的材料作为承载主体,挖掘其潜质,运用重组、重构等宏观方法,从材质特性、成型工艺、结构造型、染色、后处理等几个方面,利用现有技术条件,采用传统工艺和现代科学方法,改变材料外观特征,进行了亚麻极短纤维复合材料的造型设计、色彩设计和肌理研究。
     建立了偏高岭土的分子结构单元模型,以及地质聚合物的活性聚合模型。研究了亚麻极短纤维复合材料抗压强度的影响因素。运用现代测试手段,对亚麻极短纤维复合材料的反应过程、反应产物的种类、以及地质聚合物反应产物结构演变过程进行分析,以建立亚麻极短纤维复合材料的艺术表现理论。
     本文对煅烧高岭土脱水过程进行了试验研究,利用DTA、XRD分析测试了相关数据,对偏高岭土的活性进行了分析;试验确定的偏高岭土具有高活性的适宜温度为650℃,保温时间为30min。
     制备了亚麻极短纤维地质聚合物复合材料。以制得材料的抗压强度位指标,确定了制备地质聚合物的激发剂种类,实验证明使用复合激发剂效果最好。用于激发偏高岭土的碱液的浓度为8mol/L,水玻璃与碱液的比例为8∶3。讨论了制备亚麻极短纤维地质聚合物复合材料的影响因素:确定了激发剂与偏高岭土的最佳比例为1∶1,偏高岭土的最少加入量为10%,偏高岭土占质量12.5%时抗压强度最好,亚麻极短纤维的含量在15%时制备的样品抗压强度好,最佳固液比为2∶2。
     采用手糊成型法制作了FRP模具,采用石膏浇铸法制作了艺术造型用成型模具,采用注浆成型法进行了亚麻极短纤维树脂基造型材料和亚麻极短纤维地质聚合物基造型材料成型试验,制做的艺术造型样品完全满足造型艺术表现力的要求。
     亚麻极短纤维地质聚合物复合材料具有良好的视觉质感,在材料的色彩配置、肌理配置、光泽配置方面,都可能产生强烈的材质美感。它可以改变艺术品的形态,丰富艺术品的外观效果,创造统一和谐的艺术效果。提高艺术品整体设计的装饰性,从而创造出艺术品设计的多样性。
     通过不同的成型工艺与着色工艺,可以形成丰富的天然色彩和人工色彩,在透明树脂基体材料中,色彩是通过亚麻极短纤维良好的染色能力来实现,复合后形成剔透斑斓的色彩效果。利用酸性染料,以NaCl为促染剂,在100℃水浴中,染色30分钟,亚麻极短纤维染色效果在饱和值并不很高的情况下能得到理想的色泽。
     亚麻极短纤维地质聚合物复合材料的本色是白色。在白色地质聚合物生料中加入适量金属氧化物,可直接烧成彩色地质聚合物原料。与同类水硬性造型材料相比,地质聚合物复合材料具有着色丰富、质感多变等特点,通过调整亚麻极短纤维含量并与不同烧制工艺配合,可改变其色彩和质量感,得到的产品色彩更加丰富,质量更轻。
     亚麻极短纤维复合材料通过不同的复合工艺,可以形成丰富的肌理。亚麻极短纤维与树脂基体复合后,若亚麻极短纤维比例较小,可以形成透光材料;加大其比例,则可以形成漫反光材料或者介于两者间的半反光材料。与地质聚合物基体复合后,则形成漫反光材料。通过两种以上不同材质构成复合造型方法,实现了相关作品的丰富表现力。
     亚麻极短纤维复合材料的研究尚属起步阶段。对亚麻极短纤维复合材料的配比、制备工艺、形成机理、应用开发等方面进行深入系统研究,不但具有较高的学术价值,同时,对于节省资源和环境保护方面都有十分重要的现实意义。在循环经济时代和建设节约性社会的今天,对亚麻极短纤维复合材料的研究和应用,是促进资源有效利用的一项重要课题,拥有巨大的市场潜力。必将对艺术造型领域产生深远和有益的影响。
This article is trying to probe into how extremely short cut flax staple fiber reinforced polymer can be applied in the area of modeling art through the research of its preparation principles, techniques, and artistic expressions. In the process of artistic creation, art modeling materials carry the transformation and convey of esthetic appreciation. Based on the practical need of modem life, taking advantage of current existence conditions and adopting traditional as well as modem scientific techniques in changing its appearance characteristics, we carried out modeling design, color scheme, and texture researching with extremely short cut flax staple fiber compound material as the carrier, during which we explored its potential by means of re-forming and reconstruction in terms of material characteristic, modeling techniques, structural molding, dyeing, and post treatment.
     We build up-models of meta-kaolin molecular structures and the living polymer models. We have also inspected the influencing factors to compression strength of extremely short cut flax staple fiber compound material. In order to set up the artistic expression theory of extremely short cut flax staple fiber compound material, we analyzed the process of extremely short cut flax staple fiber compound material, the type of the reactants, and the evolution process of the geo-polymer resultant reaction's structure with modem testing methods.
     This article carried out experiment on the process of calcinating kaolin dehydration. By making use the statistics of DTA and XRD testing method, we analyzed the activeness of meta-kaolin. And it showed that the temperature that can keep meta-kaolin highly active is 650℃and that the period of heat preservation is 30 minutes.
     We conducted the preparation of extremely short cut flax staple fiber compound material, getting the index of compression strength, fixing the types of geo-polymer excitant, and it showed that compound excitants work best. The consistency of lye that excite meta-kaolin is 8mol/L; the proportion of soluble glass and lye is 8: 3. the influencing factors of preparing extremely short cut flax staple fiber compound material were discussed, which indicated that the best proportion of excitants and meta-kaolin is 1: 1, with at least 10%of meta-kaolin in quantity and that when extremely short cut flax staple fiber compound materials account for 15%in content, the compression strength of preparing sample is the best, with the water-solid ratio 2: 2.
     FRP mold is made with hand lay-up modeling methods; modeling mold is made with plaster casting method. With the method of molding by casting, we conducted experiment on modeling of extremely short cut flax staple fiber compound material resin-based material and extremely short cut flax staple fiber geo-polymer-based modeling material. The art modeling samples completely meet the requirement of art expressing.
     Extremely short cut flax staple fiber geo-polymer material can generate perfect optical textile sensation in material color matching, texture arrangement, gloss deployment. It can transform and enrich the appearance of artworks, creating unified and harmonious artistic effect and promote ornamentation of the artwork as a whole.
     By using different modeling techniques and staining techniques, it and generate rich natural colors and artificial ones. And in the materials of transparent resin-based material, color is expressed by the good dying performance of extremely short cut flax staple fiber, which generates gorgeous color effect after being compounded. Through using acid dyes, with NaCl as the accelerating agent, in 100℃water dyed for 30 minutes, the extremely short cut flax staple fiber can get an ideal color though the saturation value is not that high.
     The original color of extremely short cut flax staple fiber geo-polymer compound material is white. You can get colored geo-polymer directly by putting MOX(metal oxide) into white raw geo-polymer. Compared with the same type of material of hydraulic property, geo-polymer compound material carries the characteristics of rich color and rich texture. By adjusting the content of extremely short cut flax staple fiber and coordinating different burning techniques, you can change its color and sense of weight, gaining more products with richer color and less weight.
     Extremely short cut flax staple fiber compound material can generate rich texture by using different compounding techniques. After compounded with resin-based material, extremely short cut flax staple fiber can become transparent material, and if enlarging its proportion, you can get diffusely-reflecting material or the type between the two——semi-reflecting materials. Diffusely-reflecting materials will be formed if it is compounded with geo-polymer materials. The abundant expressive force is realized by the above two compounding methods of different compound materials.
     The research of extremely short cut flax staple fiber reinforced geo-polymer material has just taken its initial steps. Further systematical research in the area of extremely short cut flax staple fiber compound material's proportioning, preparation techniques, molding mechanism, application development bears enormous academic value. Meanwhile, it is of realistic significance in the aspect of saving energy and protecting the environment. In an era of circular economy and in conservation-conscious society, it is a significant subject to promote the efficient use of resource, to research on and apply extremely short cut flax staple fiber and it is of great market promise, which will be sure to influence art modeling deeply and beneficially.
引文
[1] 林铭,谢拥群等.木塑复合材料的研究与发展趋势.林业机械与木工设备.2006,6:18~21
    [2] 宿务国家家具与装饰展组委会供稿.菲律宾宿务国际家具与装饰展回顾.家具.2005,1:78
    [3] 康云海,保卫民.关于把亚麻产业发展成为云南省新兴优势产业的思考与建议.学术探索.2004,2:122
    [4] 时凤琴,张文太.谈黑龙江省的亚麻资源优势及发展趋势.中国纤检.2003,3:29~30
    [5] 张学峰、冯菀蕙.黑龙江省亚麻出口问题与对策.黑龙江对外经贸.2003,9:12~13
    [6] 张双宝、赵立、鲍甫成、周海滨.玻璃纤维和亚麻屑增强三倍体毛白杨木质(刨花)复合材料的研究.林产工业2001,4:12,16
    [7] 李言荣,恽正中.材料物理学概论.北京:清华大学出版社,2001:68~69
    [8] 向阳.非制造汽车内饰材料发展前景.中国纺织.2006,1:202
    [9] 向阳.非制造汽车内饰材料发展前景.中国纺织.2006,1:203
    [10] 刘一星,赵广杰主编.木质资源材料学.中国林业出版社.北京:2004:320
    [11] 刘一星,赵广杰主编.木质资源材料学.中国林业出版社.北京:2004:316
    [12] Davidovits J..Properties of Geoploymer Cements. Proceedings First International Conferene on Alkaline Cement and Concrete[J]. KIEV Ukraine, 1994: 131~149
    [13] Davidovits J..Geopolymers and Geopolymeric materials[J]. J. of Ther. Anal, 1989, (35):429-441
    [14] J. Davidovits. Inorganic polymeric new materials, mater. Educ, 1994: 91-139。
    [15] 马鸿文,杨静,任玉峰.矿物聚合物材料:研究现状与发展前景.地学前沿,2002,9(4):398-407
    [16] 代新祥,文梓芸.碱激活造型材料研究进展[J].材料导报,2001,(9):42-44
    [17] 代新祥,文梓芸.新型土壤聚合物研究进展[J].合成材料老化与应用,2001,3(14):32~34
    [18] 郑娟荣,覃维祖.地聚物材料的研究进展[J].新型建筑材料.2002,4:11~12
    [19] 刘研,李宪洲.高岭土的深加工与新材料[J].世界地质,2004,2(23):16~18
    [20] 代新祥,文梓芸.土壤聚合物水泥[J].建筑石膏与凝胶材料.2001,6:57~62
    [21] 袁鸿昌,江尧忠.地聚合物材料的发展及其在我国的应用前景[J].硅酸盐通报.1998,2:46~52
    [22] 王玉江,李和平,任和平.土聚水泥的研究[J].硅酸盐通报.2003,2:70~75
    [23] MarfilS. A., Maiza P. J.. Zeolite Crystallization in Portland Cement Concrete due to Akali-Aggregate Reaction[J]. Cement and Concrete Research. 1993, 6(23):1283~1288
    [24] Chairaz A., Atwood R. C., Lee P. D.. Micro—Macro Modeling of Microstructure and Microporosity in Al—Si—Cu Alloys[J]. Mater. Sci. Forum. 2002, 7(662):396~402
    [25] S. Chandrasekhar, P. N. Pramada. Investigation on the Synthesis of Zeolite NaX from Kerala Kaolin[J]. Journal of Porous Materials, 1999, 6: 283~297
    [26] 文寨军,范磊,隋同波,等.偏高岭土的活化及性能研究[J].建材技术与应用.2002,5(12):3~7
    [27] Chi-sun Poon, Salman Azhar. Deterioration and Recoveryof Metakaolin Blended Concrete Subjected to High Temperature[J]. Fire Technology. 2003, 39: 35~45
    [28] 郑娟荣,覃维相.高活性偏高岭土:新一代混凝土矿物掺合料[J].混凝土与水泥制品.2001,10:15~16
    [29] J. H. Park, S. W. Kim, S. H. Lee, et al. Synthesis of Alumina Powders from Kaolin with and without Ultrasounds[J]. Journal of Materials Synthesis and Processing. 2002, 10(5):289~294
    [30] 陆秋艳.偏高岭土在我国的开发和使用前景[J].矿业快报.2004,7:
    [31] K. A. Gruber. Exploring the pozzolanic activity of high reactivity metakaolin[J]. World Cement. 1996, (1):78~80
    [32] Michael A. Caldamne. High-Reactivity Metalcaolin: A new generation mineral admixttrce. [J]Concrete International. 1994, 16(11):37~40
    [33] 卢迪芬,陈森凤,卢希龙,等.高活性偏高岭土微粉的制备及复合效应的研究[J].混凝土.2003,9:29~32
    [34] N. J. Coleman, W. R. Mcwhinnie. The Solid State Chemistry of Metakaolin-Blended Ordinary Portland Cement[J]. Journal of Materials Science. 2000, (35):2701~2710
    [35] 魏存弟,马鸿文,杨殿范,等.锻烧煤系高岭石的相转变[J].硅酸盐学报.2005,1:32~35
    [36] 丁铸,张德成,王向东.偏高岭土火山灰活性的研究与利用[J].硅酸盐通报.1997,4:35~37
    [37] Hua Xu, J. S. J. Van Deventer. The geopolymerisation of alumino-silicate Minerals[J]. Mineral Processing. 2000, 59:247~266
    [38] 刘丽妍,王瑞,焦晓宁,郭兴峰.亚麻针刺毡/不饱和树脂复合材料的制备与研究.玻璃钢/复合材料.2004.2
    [39] 倪文,王恩,周佳.地质聚合物—21世纪的绿色胶凝材料[J].新材料产业,2003,(6):24—28
    [40] 段宏伟,倪文,李建平,等.地质聚合物在新型建材中的应用[J].建筑石膏与胶凝材料,2004,(1):14-15
    [41] 代新祥,文梓芸,土壤聚合物造型材料[J].新型建筑材料,2001,(6):34-35
    [42] 代新祥,文梓芸,土壤造型材料的应用及研究现状[J].水泥,2001,(10):11-14
    [43] Davidovits, J. Properties of Geopolyme Cements[R], Proceedings First International Conference on Alkaline Cement and Concete. KIEV Ukraine, 1994: 1-19
    [44] 肖仪武、白志民.煅烧高岭土的火山灰活性.矿冶.2001,9:48~51
    [45] 马国清.电石渣的综合利用进展[J].西南科技大学学报.2005,20(2):50~52
    [46] 陈益兰,赵亚妮,李静,等.偏高岭土替代硅灰配制高性能混凝土[J].硅酸盐学报.2004,32(4):524~530
    [47] 曹征良,李伟文,陈玉伦.偏高岭土在混凝土中的应用[J].深圳大学学报(理工版).2004,4:183~188
    [48] M. Kaloumenous, E. Bsdogiannis, S. Tsivilis. Effect of the Kaolin Particle Size on the Pozzolanic Behaviour of the Metakaolinite Produced[J]. Journal of Thermal Analysis and Calorimetry. 1999, (56): 901~907
    [49] Hecl, Osbecr B., Makovicky E.. Pozzolanic Reac-Dons of Six Principal Minerals: Activation, Reactivity, Assess-Menu and Technological Effects[J]. Cem. Concr. Res.. 1995, 25(8): 1691~1702
    [50] 丁铸,张德成,吴科如,等.偏高岭土对水泥性能的影响[J].混凝土与水泥制品.1997,5:8~11
    [51] V. N. Antsiferov, V. G. Gilev, V. Y. Bekker, et al. A Study of Sialon Synthesis From Kaolin By Carbothermal Reduction and Simultaneous Nitriding[J]. Refractories and Industrial Ceramics. 2000, 5(41):338~344
    [52] M. P. Nandakumar, B. Mattiasson. Bacterial Destruction of Mica During Bioleaching of Kaolin and Quartz Sands by Bacillus Cereus[J]. World Journal of Microbiology Biotechnology. 2003, 7(19): 583~590
    [53] M. Hussain, R. J. Varley, Y. B. Cheng, et al. Investigation of Thermal and Fire Performance of Novel Hybridgeopolymer Composites[J]. Journal of Materials Science. 2004, 3(39): 4721~4726
    [54] P. Bankowski, L. Zou, R. Hodges. Using inorganic polymer to reduce leach rates of metals from brown coal flyash. Minerals Engineering. 2004, 17(2):159~166
    [55] Quillin K. C., Duerden S. L..Majumdar A. J.. Formation of Zeolites in OPG-PFA Mixes Cement and Concrete Research[J]. Cem. Coner. Res.. 1993, 23(4): 991~992
    [56] Helena Rodrigues, Richard Jones. A Different Lool at Garbage Collection for the WAM[J]. Lecture Notes in Computer Science. 2002, 23(5):179~193
    [57] M. Steveson, K. Sagoe-crentsil. Relationships between Composition Structureand Strength of Inorganic Polymers[J]. Journal of Materials Science. 2005, (40):2023~2036
    [58] M. L. Granizo, M. T. Blanco-varela. A Palomo. Influence of the Starting Kaolin on Alkali-Activated Materials Based on Metakaolin: Study of the Reaction Parameters by Isothermal Conduction Calorimetry[J]. Journal of Materials Science. 2000, (35):6309~6315.
    [59] M. L. Granizo, M. T. Blanco. Alkilne Activation of Metakaolin[J]. Journal of Thermal Analysis. 1998, (52):957~965
    [60] A. V. Navrotskii, I. A. Novakov, S. M. Makeev, et al. Effect of Molecular Weight of Poly-(1, 2-Dimethyl-5-Vinylpyridinium Methyl Sulfate) on Flocculation of Aqueous Kaolin Suspension[J]. Russian Journal of Applied Chemistry. 2001, 3(74):498~500
    [61] 中国玻璃钢工业协会编.玻璃钢简明技术手册.化学工业出版社,2004:103
    [62] 中国玻璃钢工业协会编.玻璃钢简明技术手册.化学工业出版社,2004:105
    [63] 中国玻璃钢工业协会编.玻璃钢简明技术手册.化学工业出版社,2004:132
    [64] 张锡.材料与加工工艺.化学工业出版社,2004:82
    [65] 中国玻璃钢工业协会编.玻璃钢简明技术手册.化学工业出版社,2004:66
    [66] 中国玻璃钢工业协会编.玻璃钢简明技术手册.化学工业出版社,2004:69
    [67] 张锡.材料与加工工艺.化学工业出版社,2004:83
    [68] 张锡.材料与加工工艺.化学工业出版社,2004:114
    [69] 张锡.材料与加工工艺.化学工业出版社,2004:115
    [70] 曹春生,陈丽萍,等.陶瓷雕塑造型与材料应用.武汉理工大学出版社.武汉.2006:31-33
    [1] 朝仓直己编著(日),林征,林华译.艺术设计的立体构成.中国计划出版社,2000
    [2] 刘宏曼,郭翔宇.黑龙江省亚麻比较优势与市场竞争分析.农业现代化研究,2004,5(5)
    [3] 邹宁宇编,玻璃钢制品手工成型工艺.化学工业出版社,2006
    [4] 贾霄云,张辉,任龙梅,等.内蒙古纤维亚麻生产、科研、开发的发展历史及对策.中国林业,2004,26(5):251-253
    [5] 康云海,保卫民.关于把亚麻产业发展成为云南省新兴优势产业的思考与建议.学术探索,2004,(2):121-125
    [6] 王清发,刘淑莲.采取有效措施加快吉林省亚麻纺织业的发展.农业科技管理,2004,23(2):34-35
    [7] 晓文.亚麻的大麻纤维在汽车上系列应用.汽车配件,2001(8):34-35
    [8] 李坚.木材保护学.东北林业大学出版社,哈尔滨:1999
    [9] 马钦忠著.雕塑空间公共艺术.学林出版社,2004
    [10] 徐人平.设计数学.化学工业出版社,北京:2006
    [11] 庄子平.图案配色经典.北京工艺美术出版社,北京:2005
    [12] 亚麻籽废料变成有用纤维.中国麻业.2003,25(3)
    [13] 朱斌.亚麻地板地坪施工技术.浙江建筑,2005,22(4)
    [14] 王瑞,刘丽妍,尹志强.亚麻非织造布的缝合加固及其复合材料成型性研究.中国塑料,2005,19(5)
    [15] 邱方初,周全宝.亚麻涤棉混纺针织纱的开发.棉纺织技术,2005,33(10)
    [16] 高莲欣.谈亚麻纤维.中国纤检,2003(8)
    [17] 王小娟,焦林,贺江平.茜草对亚麻织物染色的研究.毛纺科技,2005(11)
    [18] V.S.Borland,高翼强等(译).麻从植物到织物.国外纺织技术,(224)
    [19] 王小娟,焦林,贺江平.天然染料茜草对亚麻织物的染色性能研究.印染期刊,2005,22(10)
    [20] 魏铭森,陈蓉娟.亚麻粘胶摩擦纱织物性能的研究.纺织学报,2004,25(2)
    [21] 郝高云,阎世勇,郑旗,等.Modal纤维与亚麻纤维混纺纱的开发.棉纺织技术,2002,30(7)
    [22] 李崇丽.亚麻嵌线色织格布的开发.毛纺科技,2004(4)
    [23] 吴东瑜.亚麻大提花墙布织物的设计探讨黑龙江纺织》,2004(1)
    [24] 付兴,李明,李科梅,等.亚麻纤维特点及其与产量品质关系研究进展.中国亚麻,2004,26(2)
    [25] 沈艳萍.生产亚麻粘胶粗平布的工艺实践.棉纺织技术,2001,29(3)
    [26] 唐丽娟.亚麻废纱的再利用.黑龙江纺织技术,2001(2)
    [27] 许红恩.法国开发亚麻纤维的新用途.纺织信息周刊,2004(22)
    [28] 陈雪梅,孙竹勤.纯亚麻仿灯芯绒织物的研制.棉纺织技术,26(2)
    [29] 吕丽华,姜风琴,委英超.纯亚麻牛仔布的开发与设计.毛纺科技,2004(8)
    [30] 王瑞,刘丽妍,郭兴峰.亚麻纤维毡不饱和聚酯树脂复合材料成型工艺研究.天津工业大学学报,2004,23(3):19-21
    [31] 李竹君,林平发,亚麻段染色织布的开发与生产.广西纺织科技,2004,33(3)
    [32] 委英超,姜风琴,耿俊新.透心硅油在亚麻纺织品柔软整理中的应用.毛纺科技,2004(10)
    [33] 刘学.宽幅亚麻装饰织物的品种开发.黑龙江纺织,2004(3)
    [34] 焦晓宁等.针刺工艺对亚麻非织造布及其复合材料性能的影响.中国塑料,2004,18(9)
    [35] 王瑞.亚麻纤维非织造布复合材料的研究与开发.纺织学报,24(5)
    [36] 郑来久,张宁.基于亚麻黄麻织物阻燃整理的研究.纺织学报,24(60)
    [37] 蒋少军,吴红玲.亚麻粗纱染色的工艺研究与生产实践.上海纺织科技—染整,20036,31(3)
    [38] 季英超,姜风琴,邓丽丽.亚麻织物的生物抛光整理.印染,2003(5)
    [39] 缪勤华.亚麻棉混纺织物缩水率的控制.印染,2003(12)
    [40] 薛文州,亚麻麻棉混纺T恤面料的编织工艺研究.针织工业,2003(1)
    [41] 王启祥,亚麻纤维开发利用初探.中国麻业,2003,25(4)
    [42] 张宪荣著.设计符号学,化学出版社,2004
    [43] 吴翔.边缘与突破—对工业产品设计教学琐见.河北美术出版社
    [44] 尹定邦主编.不断扩展的设计—日本GK集团设计理念与实践.湖南科技出版社,2004
    [45] 陈慎任等著.设计形态语义学—艺术形态语义.化工出版社,2005
    [46] 黄英杰等编著.构成艺术.同济大学出版社,2004
    [47] 贾倍思著.型和现代主义,中国建筑工业出版社,2003
    [48] Zeitgenossisches deutsches Kunthandwerk. Prestel-Verlag, Munchen1990.1991

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700