用户名: 密码: 验证码:
马尾松不同厚度单板制造结构胶合板工艺技术及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
马尾松(Pinus massoniana Lamb.)是我国亚热带地区特有的、资源丰富的乡土树种,是我国松树资源中分布最广、数量最多、用途广泛的主要树种之一,是我国重要用材树种。开发结构胶合板可以适应木材原料变化的现状,充分利用人工林资源,提高木材利用率。大力发展用速生树种制造高强度、高弹性、耐气候、耐室外四季变化的自然条件的结构胶合板,对我国具有现实意义。本研究以马尾松不同厚度单板制结构胶合板为研究对象,对其进行性能进行研究,探讨单板厚度对性能的影响。
     本文首先研究了马尾松单板的物理力学性质、吸水厚度膨胀率及润湿性,之后对马尾松不同厚度单板制造的结构胶合板的力学性能、尺寸稳定性及胶合性能进行了研究。
     本研究得出以下结论:
     (1)随着马尾松单板厚度的增加,其密度及顺纹弹性模量和静曲强度有增加的趋势,单板的也逐渐增加。
     (2)随着马尾松单板厚度的增加,其润湿性变好。在相同厚度的情况下,松面的润湿性优于紧面,顺纹方向的润湿性优于横纹,早材优于晚材。
     (3)随着组成单板厚度增加,板坯的中间层的升温速率逐渐升高。
     (4)随着涂胶量增大,胶合板的胶合强度增大,当达到某一值之后,趋于稳定或略有下降。在涂胶量相同情况下,随着单板厚度增加,胶合强度降低。而且随着单板厚度增加,较优涂胶量增大。
     (5)随着热压时间增加或热压温度升高或胶合板密度的升高,马尾松胶合板的吸水厚度膨胀率逐渐降低。随着组成单板厚度的增加,吸水厚度膨胀率逐渐升高。
     (6)随着热压时间延长或热压温度升高或胶合板密度增加,胶合强度,静曲强度及弹性模量均逐渐增加,之后趋于稳定或略有下降。
     (7)得出马尾松结构胶合板的较优工艺为:涂胶量为A类(1.7mm)350g/m2,B类(3.2mm)400g/m2,C类(5mm)和D类(7mm)均为500g/m2;热压时间为1.0-1.2min/mm,热压温度为140℃左右,胶合板密度为0.75g/ cm3左右。
     (8)芯层厚度百分比对弹性模量与静曲强度影响较大。芯层厚度百分比越小,顺纹弹性模量和静曲强度逐渐越高,横纹弹性模量和静曲强度越低。
     (9)通过数字散斑法进行应变分析得出,在胶合强度拉伸测试中,发生最大变形的区域在裂隙处,即在裂隙处破坏。在弯曲测试中,从位移场相关系数的图可以看出,其相关系数均在0.95以上,有很好的相关性。因此,利用数字散斑的方法,可以从微小的应变过程分析和推断木材破坏位置。
     (10)马尾松结构胶合板大板弯曲刚度近似服从Weibull分布。
     (11)采用不同标准测试MOE和MOR的结果存在差异。
     (12)建立了马尾松结构胶合板快速预测模型,预测结果与ASTM D3043方法D的结果相关性较好。
     (13)单位面积上涂胶量随组成单板厚度增加逐渐减少。厚单板组坯的结构胶合板的顺纹弹性模量及静曲强度高。可以使用在对顺纹弹性模量及静曲强度要求高的地方。而且随着单板厚度的增加,组坯形式可以更加多样以满足不同的需要。因此厚单板制造结构胶合板优势明显,有发展前景。
As specific and resource-rich native tree species in subtropical regions in China, Masson pine (Pinus massoniana Lamb.) is the most extensively distributed, it is the largest in number, and its use is extensive. It is the important commercial species in China. The development of the structural plywood can meet the changes in the situation of wood raw materials, the plantation resources can be used well, and the timber utilization can be improved. It has great meaning to develop structural plywood with high strength, high flexibility, resistance to climate, and resistance to outdoor conditions with fast-growing tree species. In this study, the performances of structural plywood made of Masson pine veneer with different thickness are researched. The effect of the veneer thickness on the performances of the plywood is discussed.
     In this study the physical and mechanical properties, thickness swelling after soaked in water, and the wettability of veneer are studied at first. Then the mechanical properties, dimensional stability, and bond performance of structural plywood made of Masson pine veneer with different thickness are researched.
     The conclusions are as follows:
     (1) With the increase of the thickness of veneer, veneer density increase, the MOE and MOR parallel to grain also increase.
     (2) With the increase of the veneer thickness, the wettability becomes good. When the veneer thickness is same, the wettability of loose side is better than that of the tight side, the wettability parallel to grain is better than that perpendicular to grain, the wettability of early wood is better than that of late wood.
     (3) With the increase of the veneer thickness, the heating rate of middle layer increases.
     (4) The bond strength increases with the increase of the glue spread. When the glue spread reached some value, the bond strength gets stable or decreases slightly. When the glue spread is same, the bond strength decreases with the increase of the veneer thickness. The thicker the veneer is, the more the glue spread is.
     (5) The water absorption thickness swelling decreases with the increase of the hot-press time, temperature or plywood density. The thickness swelling after soaked in water increases with the increase of veneer thickness.
     (6) With the increase of the hot-press time, temperature or plywood density, the bond strength, modulus of elasticity (MOE) and modulus of rupture (MOR) increase gradually, then get stable or decrease slightly.
     (7) The best technology is as follows: the glue spread of A-type veneer (1.7mm) is 350g/m2, B-type (3.2mm) is 400g/m2, C-type (5mm) and D-type (7mm) are 500g/m2; hot pressing time is 1.0-1.2min/mm, hot-pressing temperature is about 140℃, the plywood density is about 0.75g/cm3.
     (8) The percentage of core layer thickness has great effect on the MOE and MOR. The smaller the percentage of core layer thickness is, the larger the MOE and MOR parallel to grain are, the lower the MOE and MOR perpendicular to grain are.
     (9) The Digital Speckle Correlation Method (DSCM) is used to study the tiny strain of the Masson pine structural plywood. In the bonding strength test, In the middle region where the deformation is larger, the largest deformation is not coherent. That is affected by lathe-check. When the bonding strength tests are carried out, the region where the deformation is largest is at the lathe-check. In the bending test, from the correlation coefficient diagram of the displacement field, we can notice that the correlation coefficient is above 0.95, the correlation is good. Therefore, the place where the timber is damaged can be analyzed and deduced from the tiny strain process by using DSCM.
     (10) The data of he bending test of big panel similarly obey Weibull distribution.
     (11) The performances of Masson pine structural plywood that are tested according to different testing methods are different.
     (12) The prediction model of MOE of Masson pine structural plywood is built. The predicted value is correlated with the results of ASTM D3043 method D.
     (13) With the increase of veneer thickness the glue spread in unit area decreases gradually. The MOE and MOR parallel to grain of the structural plywood made of thick veneer is high. That can be used in the situation where the demand of MOE and MOR parallel to grain is high. With the increase of veneer thickness the assembly is various to meet different demand. The advantage of structural plywood made of thick veneer is obvious. The structural plywood made of thick veneer has great foreground.
引文
[1]江泽慧.中国林业工程.济南:济南出版社, 2002
    [2]联合国粮食及农业组织. 2009世界森林状况. 2009
    [3]联合国粮食及农业组织.统计数据. 2009
    [4]周政贤.中国马尾松林.北京:中国林业出版社, 2000
    [5]秦国峰.马尾松培育及利用.北京:金盾出版社, 1997
    [6]洪伟.马尾松人工林经营模式及其应用.北京:中国林业出版社, 1999
    [7]费本华,王戈,任海青等.我国发展木结构房屋的前景分析.木材工业, 2002, 16(5): 6-9
    [8]张奇.以现代营销理念发展结构胶合板.建筑人造板, 2001, (1): 14-15
    [9]孙成志,谢国恩,曹葆卓等.马尾松全树材性与制浆的研究.林业科学, 1986, (1): 5-7
    [10]王章荣,陈天华,周志春等.马尾松木材性状在林分间和林分内个体间的差异.南京林业大学学报, 1988, (2): 38-42
    [11]周志春,金国庆,泰国峰.马尾松幼龄材密度、管胞长度的地理遗传变异及性状相关.林业科学研究, 1990, 3(4): 393-397
    [12]黄光霖,周志春.马尾松人工林管胞长度的株间和株内变异.林业科学研究, 1993, 6(2): 222-227
    [13]徐有明,林汉,万伏红.马尾松纸浆材材性变异和采伐林龄的确定.浙江林学院学报, 1997, 14(1): 8-15
    [14]骆秀琴,姜笑梅,殷亚方等.人工林马尾松木材性质的变异.林业科学研究, 2002, 15(1): 28-33
    [15]费本华,张波,余雁等.马尾松纤维的力学性能研究.中国造纸学报, 2006, 21(4): 1-4
    [16]张波.马尾松木材管胞形态及微力学性能研究.中国林业科学研究院硕士学位论文, 2007
    [17]邓恢,谢少华.马尾松间伐材材性的研究.福建林学院学报, 1999, 19(2): 133-137
    [18]夏玉芳,谌红辉.造林密度对马尾松木材主要性质影响的研究.林业科学, 2002, 38(2): 113-118
    [19]杨学亮,叶友章,陈金辉等.马尾松单板脱脂试验研究.福建林业科技, 1990, (1): 11-17
    [20]叶友章,洪成器.马尾松单板脱脂技术的研究.木材工业, 1998, 7(1): 49-50
    [21]林启模,胡淑宜.马尾松单板脱脂的工艺研究.福建林学院学报, 1990, 10(3): 237-242
    [22]林启模,胡淑宜. L-M马尾松单板脱脂的工艺与设备研制.福建林学院学报, 1994, 14(3): 262-266
    [23]余光.用于马尾松单板脱脂处理的新工艺.林产工业, 1993, 20(3): 22-23
    [24]董会军,杜国兴.马尾松板材的脱脂处理.林业科技开发, 2001, 15(6): 24-26
    [25]丁可力.浅议利用改性技术处理马尾松家具用材之工艺.福建林业科技, 2004, 31(1): 109-111
    [26]余光.马尾松家具用材改性处理的几个问题.林业科技开发, 2004, 18(1): 41-42
    [27]杨哲,解林坤,彭万喜等.马尾松板材的强碱性脱脂技术.林业科技开发, 2004, 18(2): 39-40
    [28]李志钢,黄军.马尾松板材脱脂保色工艺研究.湖南林业科技, 2008, 35(1): 23-25
    [29]张美,齐俊,魏象.汽相法马尾松脱脂技术研究.湖北林业科技, 2007, 21(1): 54-56
    [30]张美,齐俊,魏象.汽相法马尾松脱脂技术研究.林业科技开发, 2007, (1): 40-42
    [31]汪佑宏,赵先菊,刘杏娥等.气蒸及热压温度对马尾松材树脂分布影响.林业科技开发, 2008, 22(3): 20-22
    [32]罗建举.木材蓝变色的防治处理技术.木材工业, 1996, 10(5): 15-17
    [33]欧阳明八,何显进.防止马尾松木材蓝变的技术措施.木材工业, 1994, 8(2): 41-42
    [34]骆土寿,施振华. TMO防霉剂防止马尾松锯材发霉和蓝变试验研究.林业科技通讯, 1995, (3): 21-22
    [35] S Ross. NP-1 Sapstain Control Chemical. The Proceedings of Lumber Protection in the 90’s. Vancouver, Canada, 1992: 25-30
    [36] Katarina R Stepec. Rodewod 200 EC一A New Antisapstain Product. The Proceedings of Lumer Protection in the 90’S Vancouver. Canada, 1992: 37-42
    [37] Engelhardt. Temporary Protection of Sawn Wood against Fungi. The Proceeding s of Lumer Protection in the 90’S Vancouver. Canada, 1992, 54-57
    [38]蒋明亮.橡胶木防霉防蓝变药剂的现场试验.木材工业, 2001, 15(2): 17-19
    [39]陈昌华,陈中豪.尾叶桉蓝变的原因及预防.中国造纸学报, 1997, 12: 1-4
    [40]宋桢,尤纪雪,于桦等.山毛榉的防霉、防变色处理.林产工业, 2001, 28(6): 28, 37
    [41]杨文斌,郑德勇,陈瀚.铁杉的防变色及干燥.东北林业大学学报, 2000, 28(4): 91-94
    [42]施振华,骆土寿,李云.八种防霉剂对橡胶木和竹材霉菌及蓝变菌的毒性试验.木材工业, 1994, 8(3): 34-38
    [43]傅深渊,刘志坤,王学利等.马尾松材的防霉研究.林产工业, 2000, 27(5): 13-15
    [44]解林坤,刘元,胡云楚等.松木防蓝变和脱色处理技术的研究.林产工业, 2005, 32(1): 20-23
    [45]陈光华,于积英,廖可军.马尾松材改性作木模材的研究.中南林学院学报, 1994. 14(2): 140-147
    [46]筱莉,岳翠银.马尾松、麻栎、江南桤木用聚乙二醇改性的研究.木材工业, 1994, 8(2): 17-20
    [47]王敏.马尾松胶合板几个工艺问题的改进.北京木材工业, 1998, 18(1): 9-11
    [48]林利民,武广明,朱忠明.结构胶合板性能要求及生产工艺特点.林业科技, 2000, 25(6): 36-38
    [49] Evangelos J. Biblis; Shan-Tung Hsu; Yen-Ming Chiu. Comparison of certain structural properties among 3-ply, 4-ply and 5-ply, 1/2-inch southern pine plywood sheathing. Wood and Fiber Science, 1972, 4(1): 13-19
    [50] Biblis, E.J. Properties of structural plywood from southern red oak and mixtures of southern oak, sweetgum, and southern pine. Forest Products Journal, 1999, 49(9): 25-28
    [51] Iwakiri, S.; Nielsen, I.R.; Alberti, R.A.R. Evaluation of the influence of veneer composition in structural plywood of Pinus elliottii and Eucalpytus saligna. Cerne, 2000, 6(2): 19-24
    [52] Park HanMin; Fushitani M. Effects of component ratio of the face and core laminae on static bending strength performance of three-ply cross-laminated wood panels made with sugi (Cryptomeria japonica). Wood and Fiber Science, 2006, 38(2): 278-291
    [53] Yoshida, H.; Taguchi, T. Effects of manufacturing conditions upon the mechanical properties of structural plywood. Journal of the Hokkaido Forest Products Research Institute, 1978, (4): 6-10
    [54] McNatt J.D. Static bending properties of structural wood-based panels: large-panel versus small-specimen tests. Forest Products Journal, 1984, 34(4): 50-54
    [55] McNatt J Dobbin; Robert W. Relationships between small specimen and large panel bending tests on structural wood-based panels. Forest Products Journal, 1990, 40(9): 36-44
    [56] Nakamura N.; Okuma M. Development of continuous MOE tester for structural plywood and evaluation of the strength performance of plywood by the machine, 1: Development of continuous MOE tester for structural plywood. Journal of the Japan Wood Research Society, 1985, 31(12): 998-1003
    [57] Nakamura N.; Okuma M. Development of continuous modulus of elasticity tester for structural plywood, 2: Evaluating the strength performance of plywood by the machine. Journal of the Japan Wood Research Society, 1986, 32(9): 685-690
    [58] S. Karshenas; J.P. Feely. Structural properties of used plywood. Construction and Building Materials, 1996, 10(8): 553-563
    [59] R C Tang; J P pu. Edgewise bending properties of laminated veneer lumber: Effect of veneer grade and relative humidity. Forest Products Journal, 1997, 47(5): 64-70
    [60] Todd F Shupe; Chung Y Hse; Leslie H Groom; et al. Effect of silvicultural practice and veneer gradelayup on some mechanical properties of loblolly pine LVL. Forest Products Journal, 1997, 47(9): 63-69
    [61] Fridley K.J.; Tang R.C. Shear effects on the creep behavior of wood composite I-beams. Forest Products Journal, 1992, 42(6): 17-22
    [62] Hoyle, R.J.; R.J. Tichy; R.Y. Itani. Composite wood panel deflection under concentrated load. Wood Science, 1982, 15(2): 65-77
    [63] Laufenberg, T.L.; D.P. Xu. Concentrated load and impact behavior of wood-based panel. Proceeding of the 23rd International Particleboard/Composite Materials Symposium. Washington State University, Pullman,WA. 1989
    [64] Thomas, W.H. Bending behavior of OSB decking under concentrated load. PhD thesis. Department of Civil Engineering, University of Surrey, Guildford, Surrey, England. 1996
    [65] Thomas, W.H. Concentrated load capacity & stiffness of oriented strand board: Calculation versus test. Journal of Structural Engineering, 2002, 128(7): 908-912
    [66] Yan Zhang, Ning Yan, Paul Cooper. Predicting concentrated static load performance of oriented strand board. Forest Products Journal, 2005, 55(12): 148-152
    [67] Zheng Chen, Ning Yan, Paul Cooper. Effect of panel properties on the concentrated static load (CSL) performance of oriented strand board (OSB). Holz als Roh- und Werkstoff, 2008, 66(3): 207-212
    [68] Wenzel, R. N. Resistence of solid surface to wetting by water. Industry Engineer Chemistry, 1936, 28: 988-994
    [69] Freeman, H. A. Relation between physical and chemical properties of wood and adhesion. Forest Product Journal, 1959, 9(12): 451-458
    [70] Gray, V. R. The wettability of wood. Forest Product Journal, 1962, 12(9): 452-461
    [71] Herczeg, A. The Wettability of wood. University of California, 1964
    [72] Chen, C. Effect of extractive removal on adhesion and wettability of some tropical woods. 1970, 20(1): 36-40
    [73] Hse, C. Y. Properties phenolic adhesives as related to bond quality in southern pine plywood. Forest Product Journal, 1971, 21(1): 44-52
    [74] Hse, Chung-Yun. Wettability of southern pine veneer by phenol formaldehyde wood adhesives. Forest Products Journal, 1972, 22(1): 51-56
    [75] Jordan, D. L.; Wellons, J. D. Wettability of dipterocarp veneers. Wood Science, 1977, 10(1): 22-27
    [76] James R. McSween; Terry Sellers Jr. Evaluation of sweetgum, yellow poplar and swamp tupelo for use in structural plywood. Forest Products Journal, 1985, 35(7/8): 27-33
    [77] Kajits, H. Wettability of the surface of some American softwoods species. Mokuzai Gakk, 1992, 38: 516-521
    [78] M. Okuma. Plywood properties influenced by the glue line. Wood Science and Technology, 1996, 10: 57-68
    [79] G. Vázquez; J. González-álvarez; F. López-Suevos; et al. Effect of veneer side wettability on bonding quality of Eucalyptus globulus plywoods prepared using a tannin–phenol–formaldehyde adhesive. Bioresource Technology, 2003, (87): 349-353
    [80] Gindl Wolfgang; Sretenovic Aleksandra; Vincenti Angela; et al. Direct measurement of strain distribution along a wood bond line. Part 2: Effects of adhesive penetration on strain distribution. Holzforschung, 2005, 59(3): 307-310
    [81] Dolan, James Daniel. The dynamic response of timber shear walls. Canada: The University of British Columbia, 1989
    [82] Booth, L.G. Predicting the bending strength of structural plywood. Part 1: A theoretical model. Journal of the Institute of Wood Science, 1990, 12(1): 14-47
    [83] Booth, L.G.; Hettiarachchi, M.T.P. Predicting the bending strength of structural plywood. Part 2: An experimental verification. Journal of the Institute of Wood Science, 1990, 12(1): 48-58
    [84] Hettiarachchi, M.T.P. Predicting the bending strength of structural plywood. Part 3: Incorporating the effect of knots. Journal of the Institute of Wood Science, 1990, 12(2): 83-92
    [85] Francisco Arriaga-Martitegui; Fernando Peraza-Sánchez; Luis García-Esteban. Characteristic values of the mechanical properties of radiata pine plywood and the derivation of basic values of the layers for a calculation method. Biosystems Engineering, 2008, 99(11): 256-266
    [86]朱茵茵,周雪平.混凝土模板胶合板工业发展趋向.建筑人造板, 2001, (3): 11-12
    [87]糜嘉平.木胶合板模板的发展前景.人造板通讯, 2004, (2): 19-21
    [88]林利民,刘汉杰,刘晓江.国产木材集装箱胶合板底板发展前景.中国木材, 2000, (2): 31
    [89]武广明,林利民,朱忠明.汽车箱底板用无接头胶合板生产工艺技术.林业科技, 2001, 26(1): 48-49
    [90]吕斌,付跃进,杨帆等.结构胶合板几种力学检测方法的探讨.木材工业, 2004, 18(5): 21-23
    [91]吕斌,付跃进,虞华强等.结构胶合板蠕变检测方法的研究.木材工业, 2004, 18(4): 16-19
    [92]王春明,闫超,林利民等.木结构用胶合板胶合耐久性的试验研究.中国人造板, 2007, (1): 11-14
    [93]林利民,刘文华,关崇贵.落叶松材性及胶合板生产.建筑人造板, 1999, (3): 23-25
    [94]王戈,费本华,林利民等.轻型木结构建筑覆板的集中静载性能.木材工业, 2005, 19(4): 9-11
    [95]王戈,林利民,唐伟等.轻型木结构用落叶松胶合板覆板的冲击载荷性能试验研究.林业科技, 2005, 30(5): 35-38
    [96]费本华,王戈,林利民等.轻型木结构用落叶松胶合板覆板均布载荷性能试验研究.林业科技, 2005, 30(5): 35-38
    [97]林利民,唐伟,王厚军等.轻型木结构建筑胶合板覆板的握钉力性能.木材工业, 2005, 19(5): 4-6
    [98]林利民,唐伟,徐兰英等.轻型木结构用落叶松胶合板覆板的尺寸稳定力性能.林业科技, 2005, 30(5): 39-41
    [99]林利民,王戈,王春明等.工字搁栅用落叶松单板类足尺翼缘和腹板基材生产工艺及性能的评价.林业科技, 2008, 33(1): 36-39
    [100]欧年华.木材表面化学特征的ESR和ESCA分析.北京林学院学报, 1982, (3): 168-176
    [101]李坚.木质材料的界面特性与无胶胶合技术.哈尔滨:东北林业大学出版社, 1989
    [102]陈广琪,华毓坤.竹材表面润湿性的研究.南京林业大学学报, 1992, 16(3): 77-81
    [103]程瑞香,顾继友.改善难胶合材胶合性能的方法.木材加工机械, 2001, (3): 2-4
    [104]洪中立.复合胶合板的研究.Ⅰ.组成部分对复合胶合板特性的影响.南京林产工业学院学报, 1983, (1): 99-113
    [105]洪中立.复合胶合板的研究.Ⅱ.结构形式对复合胶合板特性的影响.南京林产工业学院学报, 1983, (2): 92-105
    [106]张齐生,孙丰文,王建和.竹材碎料复合板的结构和工艺的研究.林业科学, 1995, 31(6): 536-542
    [107]张齐生,孙丰文.竹木复合集装箱底板的研究.林业科学, 1997, 33(6): 546-554
    [108]张齐生,孙丰文,李燕文.竹木复合集装箱底板使用性能的研究——与阿必东胶合板底板的对比分析.南京林业大学学报, 1997, 21(1): 27-32
    [109]孙丰文,李燕文,张齐生.竹材复合板的试件尺寸对静曲强度和弹性模量测试值的影响.林产工业, 1998, 25(4): 4-5
    [110]孙丰文.竹材碎料复合板的结构设计与弯曲性能预测理论.南京林业大学学报, 1999, 23(3):45-50
    [111]孙丰文.竹木复合集装箱底板静曲强度的预测模型.南京林业大学学报, 2006, 30(5): 10-14
    [112]那斌,卢晓宁.胶合板弹性特性预测.建筑人造板, 2002(1): 31-33
    [113]卢晓宁,陈宇聪,陈颖.速生杨木单板顺纹弹性模量预测模型.南京林业大学学报, 2002, 26(3): 9-13
    [114]卢晓宁,黄河浪,杜以诚.速生杨木单板横纹弹性模量预测模型.南京林业大学学报, 2003, 27(2): 21-24
    [115]卢晓宁,王志强,杜以诚等.速生杨木单板面内剪切模量预测模型.南京林业大学学报, 2006, 30(1): 93-94
    [116]肖翠蓉,唐羽章.复合材料工艺学.北京:国防科技大学出版社, 1990
    [117]沈观林,胡更开.复合材料力学.北京:清华大学出版社, 1994
    [118]王耀先.复合材料结构设计.北京:化学工业出版社, 2001
    [119]张双保,周宇,赵立.木质复合材料研究(二)——木质复合材料研究现状及发展趋势.中国木材, 1997, (4): 17-20
    [120]华毓坤.国外结构人造板研究现状与发展趋势.木材工业, 2004, 18(5): 1-4
    [121]许国强.用马尾松小径材生产胶合板应注意的几个问题.林业机械, 1994, (2): 20-21
    [122]王敏.马尾松胶合板几个工艺问题的改进.北京木材工业, 1998, 18(1): 9-11
    [123]木材无卡轴旋切机.中国.发明专利. ZL 00106076.7. 2002
    [124]陆仁书.胶合板制造学.北京:中国国林业出版社, 2000
    [125]张奇,冯红.国产内胶合板与进口胶合板的差距及单板柔化措施.中国木材, 1994, (1): 26-27
    [126]陆肖宝.意大利杨木单板整平的初步探讨.林产工业, 1997, 24(2): 18-19
    [127]李新功,王道龙,何文.单板旋切过程的柔化处理.木工机床, ,2003, (3): 10-11
    [128]傅建军,刘新宇,孙中文.木材旋切板料平直机的设计.中国机械工程学会年会,北京, 2002
    [129]黄晓东.意大利杨木单板柔化处理的研究.西北林学院学报, 2004, 19(4): 150-151
    [130]木材旋切单板应力降解机.中国.实用新型专利. ZL 01280006.6. 2003
    [131] M. Y. Cech; M. Goulet. Transverse compression treatment of wood to improve its drying behavior. Forest Products Journal, 1968, 18(5): 90-91
    [132] R. Wingate-Hill, R. B. Cunningham. Compression drying of sapwood. Wood and Fiber Science, 1986, 18(2): 315-326
    [133] Haygreen, J. G. Potential for compression drying of green wood chip fuel. Forest Product Journal,1981, 31(8): 43-54
    [134] Haygreen, J. G. Mechanics of compression drying slid wood cubes and chip mats. Forest Product Journal , 1982, 32(10): 30-38
    [135] Liu, Z.; J. G. Haygreen. Drying rates of wood chips during compression drying. Wood and Fiber Science, 1985, 17(2): 214-217
    [136]蔡杰.加拿大杨木单板的挤压脱水干燥.南京林业大学硕士学位论文, 2004
    [137]木材旋切单板应力降解机.中国.实用新型专利. ZL 01280006.6. 2003
    [138]华毓坤.人造板工艺学.北京:中国林业出版社, 2002
    [139]许芳亭.关于旋切理论中的几个问题.中南林学院学报, 1982, 2(2): 67-72
    [140]许芳亭.单板名义厚度的研究.林业科学, 1991, 27(5): 577-578
    [141]刘淑琴.旋切轨迹与单板厚度均匀性的理论研究.东北林业大学学报, 1995, 23(4): 66-71
    [142]陈桂华.旋切过程中单板厚度变化的理论研究.林业机械与木工设备, 2002, 30(3): 10-12
    [143]余养伦.竹桉复合材料优化重组技术的研究.中国林业科学研究院硕士学位论文, 2007
    [144]李坚.木材科学.北京:高等教育出版社, 2002
    [145]于文吉.竹材表面性能及力学性能变异规律的研究.中国林业科学研究院博士学位论文, 2001
    [146]程传煊.表面物理化学.北京:科学出版社, 1999
    [147]董元彦,李宝华,陆福绥.物理化学.北京:科学出版社, 2001
    [148]胡福增,郑安呐,张群安.聚合物及其复合材料的表界面.北京:中国轻工业出版社, 2001
    [149]顾继友.胶粘剂与涂料.北京:中国林业出版社, 1999
    [150]张洋,华毓坤.麦秸表面的湿润性研究.木材工业, 2001, 15(2): 6-8
    [151] Zisman, W. A. Constitution effects on adhesion and adhesion. New York: Elsevier Publ, 1962
    [152] Berg, J. V. Role of acid-base interactions in wetting and relates phenomena. New York: Marcel Dekker, Inc., 1993
    [153] Collett, B. M. A review of surface and interfacial adhesion in wood science and related field. Wood Science and Technology, 1972, 18(6): 1-42
    [154]江泽慧,于文吉,余养伦.竹材表面润湿性研究.竹子研究汇刊, 2005, 24(4): 44-47
    [155] Sheldon Q. Shi. Dynamic adhesive wettability of wood. Wood and Fiber Science, 2001, 33(1): 58-68
    [156]王戈,余养伦,于文吉.温度变化对酚醛胶在竹材表面动态润湿性的影响.北京林业大学学报, 2007, 29(3): 149-153
    [157]俞汉清.表面粗糙度及测量.北京:中国标准出版社, 1985
    [158] Hse, Chung-Yun. Wettability of southern pine veneer by phenol formaldehyde wood adhesives. Forest Products Journal, 1972, 22(1): 51-56
    [159] Panshin, A.J.; C. De Zeeuw. Textbook of Wood Technology. New York: Mcgraw-Hill Book Company, 1980
    [160] Dai C; P.R. Steiner. Compression behavior of randomly formed wood flake mats. Wood and Fiber Science, 1993, 25(4): 349-358
    [161] Hillis, W.E. High temperature and chemical effects on wood stability. Part I: General.consideration. Wood Science and Technology, 1984, 18(3): 281-293
    [162] Markku R. Wood heat treatment replacing chen1icals. Asian Timber, 2004 (9/10): 36-38
    [163] Mehmet Akgu1, Esat Gumuskaya, Suleyman Korkut. Crysta1line structure of heat-treated Scots pine [Pinus sylvestris L] and Uludag fir[Abies nordmanniam (Stev) subsp. Bornmuelleriana (Mattf)] wood. Wood Science and Technology, 2007 (41): 281-289
    [164] Derwood E. Brady; Frederick A. Kamke. Effects of hot-pressing parameters on resin penetration. Forest Product Journal, 1997, 47(5): 71-76
    [165] Yamaguchi I. A laser-speckle strain gangue. Journal of Physics E: Scientific Instruments, 1981, 14: 1270-1273
    [166] Peter W.H.; Ranson W.F. Digital imaging technique in experimental stress analysis. Optic Engineering, 1982, 21(3): 427-431
    [167]金观昌.计算机辅助光学测量.北京:清华大学出版社, 1997
    [168]江泽慧,费本华,张东升等.数字散斑相关方法在木材科学中的应用.中国工程科学, 2003, 5(11): 1-7

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700