用户名: 密码: 验证码:
成像光谱岩矿识别方法技术研究和影响因素分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在遥感地质应用中,岩矿光谱和空间分布的精细特征是空间与光谱高分辨率遥感的优势所在。随着传感器性能的提高,尤其是光谱分辨率的提高,大为改善了岩矿信息识别与提取的技术环境。但是,由于高光谱分辨率的成像光谱波段带宽很窄,在岩矿光谱信息遥感、识别与提取的过程中岩矿信息极易受诸多因素的制约和影响。本文围绕在岩矿光谱信息的获取、光谱特征信息识别与提取的过程中,分析与岩矿光谱特征信息息息相关的组成成分、内部结构与构造,以及与之发生相互作用的外部环境或过程;通过理论、模型、模拟和试验测试分析相结合的方法,开展分析研究岩矿的各种矿物组分、结构类型、化学成分,风化作用,岩矿颗粒度、高温模拟,遥感的大气分子组分、传感器的几何观测条件、平台的运动姿态、传感器的光学传递函数、探测器的光谱响应以及光谱、空间分辨率与信噪比等对岩矿光谱特征信息识别与提取的影响。系统地分析研究新疆东天山试验区成像光谱遥感矿物光谱信息识别与提取的实用化方法技术。并阐述了高分辨率的岩矿光谱特性在多光谱技术中应用分析,通过本论文的研究工作取得了以下主要成果:
     一、岩矿光谱特性及其变异性
     1、通过分析研究试验区岩石、矿物和矿石矿光谱特征,归纳总结了河北张家口的崇礼—赤城和新疆东天山地区岩浆岩、沉积岩和变质岩和不同矿床的光谱特征,不同地层中光谱差异性及其成因;分析了东坪、黄土梁两金矿区以及三道沟多金属矿的褐铁矿化、粘土蚀变强度和类型,初步探讨了三个矿床成因温度。
     2、从观测几何光学位置关系出发,分析总结了光源的方位和入射角、仪器观测方位和观测角影响岩矿的光谱特性:入射光方位、入射角的变化和观测方位、观测角的变化都会引起岩矿光谱反射率值的变化,但其特征吸收谱的强弱程度不变;总结了岩矿在室内外测量条件下和不同入射光谱辐照度条件下岩矿光谱特性的差异性。
     3、对岩矿的颗粒度、风化程度和温度试验等各种因素引起的岩石光谱变异性特征和规律进行了较全面的研究;对岩矿的光谱特征参量在各种条件下的稳定性进行了有效地分析评价:也较深入地探讨了遥感地质研究中的“同物异谱”和“异物同谱”现象的发生、影响及减轻或消除的可能途径;提出了成像光谱岩矿识别的深层次的定量化分析应尽量利用高光谱分辨率的岩矿光谱特征数据的技术思路,为开展精细的岩矿分类与识别提供了有效的事实依据和技术指导。
     4、通过岩石矿物高温模拟实验的光谱特征与参量分析,结合岩石、矿物的晶体结构的稳定性以及形成条件,对岩矿在模拟高温条件下的光谱特性的变异性进行了初步探讨。随着岩矿温度的升高,其光谱行为表现为吸收谱带相变宽变浅;反之,其光谱特性表现为吸收谱带变深,且尖锐:并且吸收谱带波长位置向长波发生飘移。
     二、影响遥感岩矿光谱特征信息识别与提取的因素分析
     1、大气传输
     总结了大气的成份与分层结构,探讨了大气的传输理论模型,开展了岩矿光谱反射辐射特性在不同大气厚度层中的模拟分析,从而深刻地认识了大气对光谱传输的复杂性和多变性;该工作的开展对发展和开发高光谱遥感岩矿光谱特性的恢复方法,提高高光谱遥感中光谱重建精度,还原出岩矿本质光谱特性极具重要意义。
     2、岩矿光谱信息遥感的方向性
     尽管岩矿光谱特性的二向性问题并不影响岩矿的特征谱带,影响的仅为反射率值的大小。但是在遥感影像中,确实影响不同航带上的岩矿信息识别和提取。通过从理论上分析形成方向反射
In the geological application of remote sensing, the subtle features of Rocks and Minerals(r.m.) of spectrum and space distribution is it's the superiority to remote sensing with high resolution. With the higher performances for the improved sensor, special for the spectral resolution, with the more improved the technique environment for distinguishing and extraction the r.m. information. But, for there is very narrow bandwidth to high spectral resolution imaging spectrometer, in the remote sensing, extraction and discrimination r.m. spectral information process, spectral information of r.m. is easy effected and controlled by a few factors. The paper moves round the for the remote sensing, extraction and discrimination r.m. spectral information process, such as the component, interior structure, and the exterior background ,or process with closer to spectral characteristic information of rocks and minerals, by the method combined for the theory, model, simulation and measurement, develops analyzing the factors of the mineral composition all of r.m., type of structure, chemical composition, weathered action, grain size, high temperature, atmospheric component of gases molecule, geometric measurement condition, the movement situation of platform, optical transfer function(OPT),response function of detector, and the resolution of spectral, space and ratio of signal-noise etc. effect the extraction and distinguishing the spectral properties information for r.m.. In the basement for more systematic researching spectral information of r.m., the paper expounds the application analysis of spectral properties of r.m. with high spectral resolution in multi-spectral technology for remote sensing, and systematic investigates the methodology with practical effect for the extraction and discrimination spectral information of r.m. using airborne imaging spectrometric remote sensing data at the Hami area in Xinjiang autonomy.The main results have been obtained by the work of researching in this paper:1. Spectral characteristic and differences of the rocks and minerals①The spectral features, differences and formation cause of igneous, sedimentary, metamorphic rocks difference deposits is summarized by analyzing the spectral signatures of rocks, minerals and ores in test area;the intensity and type of limonite, clay altered among the dong-ping and huang-tu-liang Au deposits and san-dao-gou multi-metal deposits, and preliminarily discusses the forming temperature of the deposits of 3.②From the geometric relation with optical position of measurement, analyzing and summing up the influence of r.m. spectral features to changes of incident angle and azimuth, reflected and viewing angle: the spectral reflectance changes, but the absorption features isn't changed by the changes of incident angle and azimuth, reflected and viewing angle;and summarized the spectral differences under inside and outdoor, different irradiance in solar spectra.③completely investigating the differences and law of rock and minerals effected by its grain size, weathered extent and temperature;the stability of spectral features and feature parameters r.m in all of different condition is evaluated;the phenomenon to" different spectra with equal to material "and " different materials with equal to spectra", effect and reduce or the method of elimination are discussed profoundly;meanwhile, the technique principle of hyperspectral resolution features in the quantitative application in r.m. distinguish is suggested, the actual factor and technique guiding principle are provided in order to develop the precision classification and discrimination.④preliminarily make an inquiry into the spectral differences under high condition about r.m. by trial analysis the features and its parameters. The feature absorption become the more wide and more shallow with increasing temperature;Contrary, the feature absorption become the more deep and more narrow with reducing temperature, and the wavelength of feature absorption moves to long wavelength with temperature change.2. Analyzing factors of effecting the spectral information extraction and identification in remotesensing①atmospheric transfer: the component and structure of atmosphere are summarized, the model and theory of atmospheric transfer are analyzed, and the spectra simulation of different altitude is done by 6s model;The complex and changes of incident flex and reflected spectrum from r.m. is profoundly recognized;This work is very important signification for development resuming method of high spectral remote sensing of r.m., improved the spectral construction precision of imaging spectrometer remote sensing and being restored original state the internal spectral feature of rocks and minerals.②the direction reflection of remote sensing spectral properties of rocks and mineralsThe direction reflection doesn't effect the feature absorption of r.m., but effects its reflectance. In
    remote sensing image, spectral information extraction and recognition in different flight lines is influenced by direction reflection properties. The principle of direct reflection is analyzed from theory, and the calculation about revising radiance different is developed. The complex and all of change .multi-effects and un-stability are sufficiently recognized to remote sensing radiance distort. The reflection property is comprehensive effects of earth surface geographical complex, atmospheric variable property and movement of viewing. Specially, the phenomenon is distinctly displayed in airborne imaging spectrometer remote sensing.(3) sensorThe effects to r.m. spectral information extraction discrimination by spectral and geometric resolution and ratio of signal-noise are considered. On the basis of spectral features and differences of r.m., different spectral resolution requirement in quantitative analysis for the surveying of rocks & minerals, abundance of minerals and component analysis is proposed, and resolution become gradually high.Theoretically analyzing the effecting pixels' geometric formation from the platform situation position parameters of aircraft, extraction reflectance from different ground resolution is done using HyMap and OMIS-I imaging spectrometer data. Effect to extracting analyzing target's spectra is more intensity with lower space resolution for the mixing pixels occur. In imaging spectrometer, because of making use of r.m. hyperspectral absorption identification the miners and rocks, space resolution isn't considered for the main factor. It is possible for improved the band's signal-noise.Theoretically analysis showing the ratio signal-noise(S/N) is important and complex specification for imaging spectrometer, and is controlled by a few factors. So as to obtain more subtle spectra characteristic of r.m., high value of S/N about imaging spectrometer data is inquired;The need for S/N is dependent on intensity of r.m.'s spectral absorption, response precision of detector, bandwidth and high reflection radiance;The more intensity absorption needs lower value of S/N. But the weaker absorption recognization, the higher value of S/N.3. The spectral information of rocks & minerals application in multi-spectral remote sensingBy means of the resources satellite sensor band in our country, the high spectral features, band selection and its combined, simulation and application result are done. On the base of completely analysis and summary the reflected signatures of rocks & minerals, peculiarity of spectral information application, ores spectral features of main deposits, simulation analysis with different spectral resolution is developed, the differences between spectral features with different deposits and spectral resolution are evaluated;The band selection is objective to requirement of multi-spectral information in geological survey, evaluation of mineral resources;By way of investigation the airborne imaging spectrometer data, simulation of selected band, verification and comparison of application, the technological produces of simulation wide band using high spectral resolution data is established;Preliminarily selecting multi-spectral band wavelength position, bandpass and number of band in order to meet mineral resources survey is provided scientific basis for designing sensor band of post series resources satellite in our country.4. The technique method for rocks & minerals spectral extraction and discriminationin imaging spectrometer remote sensingSince development of imaging spectrometer technology, the identification method technique and application of direct making use of rock and minerals spectra has become the research hot spot in geological remote sensing, and its application effect in geological remote sensing has displayed. In order to promote practice and engineering progress of imaging spectrometer remote sensing spectral information extraction and discrimination technique method applied in geological investigation, and development to technique production direction, this work is the first to develop practice rock & minerals spectral information extraction and identification method techniques using imaging spectrometer HyMap data with bands of 128 in dong-tian-shan test area of Xinjiang autonomy. The minerals distribution image with chlorite, muscovite, carbonate, kaolinite and serpentine, 3180km area, standard scaled of 1:50,000 is mapped, and the chart with important geological forming deposit of about 300km2 is mapped displaying seven minerals with scale of 1:10,000.By means of this research, preliminarily the method technique process on rock and minerals spectral information extraction and identification is created;The minerals distribution map in test area will provided mineralization altered information for profound analyzing and evaluating formation potentiality;This method technique will promote action for imaging spectrometer technological applied in geological production progress. Meanwhile, this technique will be ready technological ability for airborne and space-borne remote sensing data applied widely in future.
引文
1.白云来,2000,新疆哈密黄山—镜儿山铜镍成矿系统的地质构造背景[J],甘肃地质学报,9(2):1-7.
    2.白云来,1993,新疆黄山地区蛇绿岩块的地质、地球化学特征及构造意义[J],新疆地质11(1):34-42.
    3.陈述彭,1997,遥感地学分析的时空维,遥感学报,1(3):161-171.
    4.陈述彭,童庆禧,郭华东,1998,遥感信息机理研究,科学出版社,北京.
    5.陈宜元,吴美蓉等,2000,中巴资源卫星数据应用评价文集[M],国防科工委系统工程一司,5-30.
    6.陈秋林,薛永祺,2000,OMIS成像光谱数据信噪比的估算[J],遥感学报,(4).
    7.地质部情报研究所编,1980,遥感专辑(第一辑)[M],北京:地质出版社,38-156.
    8.地矿部科技司等编,1995,《当代地质科学技术进展》,中国地质大学出版社出版.
    9.丁暄,童庆禧,郑兰芬等,1992,光谱遥感找矿理论、技术与应用,地球化学,(1):1-8.
    10.方国庆,1991,新疆东部大地构造特点及演化[J],西北地质12(3):6-12.
    11.甘甫平,王润生等,2000b,基于波形特征组合的主成分成像光谱遥感技术及其应用,地质科学,35(3):376-384.
    12.甘甫平,王润生等,2000c,高光谱遥感信息提取与地质应用前景,国土资源遥感,第三期(总45期):38-44.
    13.甘甫平,王润生等,2000a,利用成像光谱遥感技术识别和提取矿化蚀变信息—以河北赤城-崇礼地区为例,现代地质,14(4):465-469.
    14.甘甫平,2001,遥感岩矿信息提取基础与技术方法研究,中国地质大学(北京)博士学位论文.
    15.甘甫平,王润生等,2003,基于光谱变异的遥感岩矿蚀变信息提取,地球学报(增刊),76(24):315-318.
    16.甘甫平,王润生,马蔼乃,张宗贵,2003,基于光谱匹配滤波的蚀变信息提取,中国图像图形学报,vol.8(A),No:147-150.
    17.甘甫平,王润生等,2003,基于特征谱带的高光谱遥感矿物谱系识别,地学前缘,10(2):445-454.
    18.甘甫平,王润生,马蔼乃,张宗贵,李梦霞,2003,遥感地质信息提取集成与矿物遥感地质分析模型,遥感学报,Vol.7(3):207-213.
    19.郭华东,2000,感知天地——信息获取与处理技术,科学出版社,北京.
    20.郭小方,1998,成像光谱遥感地质研究的理论基础和数据处理方法技术研究,北京大学博士论文.
    21.郭小方,王润生,2000,机载成像光谱图像边缘辐射畸变校正,中国图像图形学报,5(1):16-20.
    22.韩心志,焦世举,1994,航天光学遥感辐射度学,哈尔滨工业大学出版社.
    23.韩春明,毛景文,杨建民等,2002,东天山晚古生代内生金属矿床类型和成矿作用的动力学演化规律,地质学报,76(2):222-234.
    24.靳华,王晓丹,赵荣椿,2000,基于小波变换和ODPSF的纹理图像分割方法,中国图像图形学报,5(10):857-860.
    25.李小文,1989,地物的二向性反射和方向谱特性,环境遥感,205-219.
    26.莱昂(Lyon R.J.P),1996a&1996b,风化及其它荒漠漆表层对高光谱分辨率遥感的影响(一)和(二),环境遥感,11(2):138-150.;11(3):186-194.
    27.李先悻,李行,洛启义等,1991,新疆铂族元素成矿地质条件及找矿方向[J],中国地质科学 院西安地质矿产研究所所刊,(33):1-93.
    28.刘建贵,1999,高光谱遥感城市地物与人工目标的识别与提取,中国科学院遥感应用所博士学位论文.
    29.刘建贵、郑兰芳、童庆喜,1999,遥感影像信噪比的估算[J],应用基础与工程科学学报,(7).
    30.刘庆生,1999,基于光谱特征的岩性信息提取和分类方法研究,中国科学院遥感应用所博士学位论文.
    31.刘志杰,韩先菊,1995,金矿化蚀变信息提取实验研究,第九届全国遥感技术学术交流会论文集,成都.
    32.马鸿文,1999,结晶岩热力学软件,地质出版社出版.
    33.麦伟麟,1979,光学传递函数及其数理基础,国防工业出版社出版.
    34.毛景文,杨建民,韩春明等,2002,东天山铜多金属矿床成矿系统和成矿地球动力学模型,地球科学,27(4):413—424.
    35.毛景文,杨建民,屈文俊等,2002,新疆黄山东铜镍硫化物矿床Re-Os同位素测定及其地球动力学意义,矿床地质,(4):323-330.
    36.闽祥军,朱永豪,朱振海,田庆久,1999,MAIS图像大气订正及其在岩矿制图中的应用[J],遥感技术与应用,Vol.14:No.2:1-9.
    37.潘兆橹,1993,结晶学与矿物学(第三版)上下册,地质出版社,北京.
    38.浦瑞良,宫鹏,2000,高光谱遥感及其应用,高等教育出版社,北京.
    39.秦克章,2000,新疆中亚型造山带与成矿作用,中国科学院地质与地球物理研究所,71-157.
    40.邵辉,王建宇,薛永祺,1998,推扫式超光谱成像仪(PHI)关键技术,遥感学报,2(4):251-253.
    41.斯维恩P.H.,戴维S.M.主编,1984,遥感定量方法,科学出版社出版.
    42.童庆禧,刘洪臣等,1994,中国金矿研究新进展[M],北京:地震出版社,7-61.
    43.童庆禧,1990,中国典型地物波谱及其特征分析,科学出版社出版.
    44.童庆禧等,1997,《卫星遥感与政府决策》,宇航出版社.
    45.唐文周,赵福岳,张瑞江等,2000,地质矿产资源与地质灾害对资源卫星的需求分析报告.
    46.武汉地质学院矿物教研室编,1979,《结构学及矿物学》上、下册,地质出版社出版.
    47.王晋年,郑兰芬,童庆禧,1996,成像光谱图像光谱吸收鉴别模型与矿物填图研究,环境遥感,Vol.11,No.1,20-31.
    48.王建宇,2002,机载成像光谱仪性能指标和发展分析,104-109.
    49.王润生等,1992,地质勘查图像综合与分析,地质出版社,北京.
    50.王润生等,1999,成像光谱方法技术开发应用研究,国土资源部“九五”重点科研项目报告,航空物探遥感中心.
    51.王喜鹏,张养贞,1998,应用神经网络模型分解混合像元[J],遥感学报,2(1):51-56.
    52.王润民,李思楚,1987,新疆哈密黄山东铜镍硫化物矿床成岩成矿物理化学条件[J],成都地质学院学报,14(3):1-10.
    53.王志刚,1993,光谱角度填图方法及其在岩性识别中的应用,遥感学报,3(1):60-65.
    54.吴培中,1999,星载成像高光谱的特性与应用[J],国土资源遥感,(3)31-39.
    55.徐明星,李忠权,1992,新疆黄山含矿镁铁质—超镁铁杂岩体的岩学特征及成因探讨,成都地质学院学报,19(1):77-84.
    56.宣家斌编,1995,航空与航天摄影技术,175-199.
    57.杨凯,2003,东天山高光谱矿物填图阶段性报告.
    58.杨金中,2003,天山-北山成矿带遥感异常分布图编制报告(内部).
    59.杨雅秀,张乃娴等,1994,中国粘土矿物,地质出版社出版.
    60.尹宏,1993,大气辐射学基础,气象出版社出版.
    61.袁见齐,朱上庆,翟裕生,1985,矿床学,地质出版社,北京.
    62.庄培仁、赵不亿主编,1986,《遥感技术及其地质应用研究》,地质出版社出版.
    63.张永生编,2000,遥感影像信息系统[M],北京:科学出版社,65-66.
    64.张兵,郑兰芬,童庆禧,1997,成像光用技术应用植被精细光谱分析[R],遥感信息开放研究实验室年报,323—327.
    65.张满郎,1996,金矿蚀变信息提取中的主成分分析,遥感技术与应用,11(3):1-5.
    66.张宗贵,1995,地物光谱测试方法与标准数据生成方法报告,地矿部航遥中心.
    67.张宗贵,郭小方,田庆久,甘甫平,杨苏明,2002,质矿产资源调查对后续资源卫星传感器的优化设计和数据处理方法研究[R].
    68.张宗贵,王润生,2000,基于谱学的成像光谱遥感技术发展与应用[J],土资源遥感,No:16-24.
    69.赵英时等,2003,遥感应用分析原理与方法,科学出版社出版,36-66.
    70.朱亮璞,1994,遥感地质学,地质出版社,北京.
    71. A.Berk,L.S.Bemstein,G.EAnderson,P.K.Acharya,D.Crobertson,J.H.Chetwy,andS.M.Adler-Golden, 1998,MODTRAN Cloud and Multiple Scattering Upgrades with application to AVIRIS,REMOTE SENSING ENVIRON.,65:367-375.
    72. A.R.Haryvey,J.Beale,A.H.Greenaway,T.J.Hanlon,J.Williams,2000,Technology option for spectrometry,Proceedings of SPIE Vol.4132:1324.
    73. Adams, J.B., M.O. Smith, and A.R. Gillespie, 1993, Imaging Spectroscopy: Interpretation based on spectral mixture analysis, in Remote Geochemical Analysis: Elemental and Mineralogical Composition (C. M. Pieters, and P.A.J. Englert, eds.), Cambridge University Press, Cambridge, 145-166.
    74. Bernard V.Brower, David H.Hadcock,Joseph P.Reitz,2000,Spectrally and spatially adaptive hyperspectral data compression,proceedings of SPIE,Vol.2821:55-63.
    75. Ben-Dor E., and Kruse F. A., 1995, Surface mineral mapping of Makhtesh Ramon Negev, Iserel using GER 63 channel scanner data, Int. J. Remote Sensing, Vol.16, No.18, 3529-355
    76. Berk, A., L.S. Bernstein, and D.C. Robertson, 1989, "MODTRAN: A moderate resolution model for LOWTRAN 7", Final report, GL-TR-0122, AFGL, Hanscomb AFB, MA, 42pp.
    77. Burns, R., 1993, Mineralogical Applications of Crystal Field Theory, Second Edition, Cambridge University Press, Cambridge, 551p.
    78. C.COBURN,A.ROBERTS and K.BACH,2001,INT.J.REMOTE SENSING, vol.22, No.18: 3863-3870.
    79. Carlson R.W, Anderson M S, Johnson R E, et al. Hydrogen Peroxide on the Surface of Europa[J]. Science, 1999, 283: 2062-2064.
    80. Carr J.R. and Matanawi K., 1999, Correspondence analysis for principal components transtormation ofmultispectral and hyperspectral digital images, PE & RS, 65(8):909-914
    81. Carrere V. and Chadwick O., 1990,An AVIRIS survey of quaternary surfaces formed on Carbonate Provenance Alluvium, Mojave desert, Southern Nevada, Presented in the 2nd AVIRJS Worshops, 4-5 June, 1990, JPL Published,82-93.
    82. Carrere V, Leprieur C, Gu X F. Stmospheric Correction and Ground Reflectance Recovery for AVIRIS Data:MAG Europe'91 [J].Photogrammetric & Remote Sensing, 1995, 61:1233-1238.
    83. Charles Ichoku. A Review of Mixture Modeling Techiques for Subpixel Land Cover Estimation[J].Remote Sensing Reviews, 1996, 13:161-163.
    84. Carrere V. and Chadwick O., 1990,An AVIRIS survey of quaternary surfaces formed on Carbonate Provenance Alluvium, Mojave desert, Southern Nevada, Presented in the 2nd AVIRIS Worshops,4-5 June, 1990, JPL Published,82-93
    85. Crosta A. P., Sabine C, et al, 1998, Hydrothermal altertion mapping at Bodie, California, Using AV1RIS hypersperctral data, Remote sens. Environ., 65:309-319
    86. Crosta A. P., Sabine C, et al, 1998, Hydrothermal altertion mapping at Bodie, California, Using AVIRIS hypersperctral data, Remote sens. Environ., 65:309-319.
    87. Clark, R. N., Chapter 1: Spectroscopy of Rocks and Minerals, and Principles of Spectroscopy, in Manual of Remote Sensing, Volume 3, Remote Sensing for the Earth Sciences, (A.N. Rencz, ed.) John Wiley and Sons, New York, p 3- 58, 1999.
    88. Clark, R.N., G A. Swayze, K. E. Livo, R. F. Kokaly, S. J. Sutley, J. B. Dalton, R. R.McDougal, and C. A. Gent., Imaging Spectroscopy: Earth and Planetary Remote Sensing with the USGS Tetracorder and Expert Systems, Journal of Geophysical Research, In Press, 2003.
    89. Clark, R.N. and T.V.V. King, 1987, Causes of Spurious Features in Spectral Reflectance Data: Proceedings of the Third Airborne Imaging Spectrometer Data Analysis Workshop, JPL Publication 87-30, 132-137.
    90. Clark, R.N., and Roush, T.L., 1984, Reflectance spectroscopy: Quantitative analysis techniques for remote sensing applications, J. Geophys. Res., 89, 6329- 6340.
    91. Clark, R.N., F.P. Fanale, and M.J. Gaffey, 1986, Surface Composition of Satellites, in Satellites (J. Burns and M.S. Matthews, eds.), Univ. of Arizona Press, Tucson, 437-491.
    92. Clark, R.N., T.V.V. King, M. Klejwa, G. Swayze, and N. Vergo, 1990a, High Spectral Resolution Reflectance Spectroscopy of Minerals, J. Geophys Res. 95,12653-12680.
    93. Clark, R.N., A.J. Gallagher, and G.A. Swayze, 1990b, Material Absorption Band Depth Mapping of Imaging Spectrometer Data Using a Complete Band Shape Least-Squares Fit with Library Reference Spectra, Proceedings of the Second Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) Workshop. JPL Publication 90-54, 176-186.
    94. Clark, R.N., G.A. Swayze, and A. Gallagher, 1993a, Mapping Minerals with Imaging Spectroscopy, U.S. Geological Survey, Office of Mineral Resources Bulletin 2039, pp. 141-150.
    95. Clark, R.N., G.A. Swayze, A. Gallagher, T.V.V. King, and W.M. Calvin, 1993b, The U. S. Geological Survey, Digital Spectral Library: Version 1: 0.2 to 3.0 μm, U.S. Geological Survey, Open File Report 93-592, 1326 pages.
    96. Cloutis, E.A., M.J. Gaffey, 1991, Pyroxene Spectroscopy revisited: Spectral-Compositional Correlations and relationships to goetherometry, J. Geophys Res., 96, 22809-22826.
    97. Cloutis B A. Remote Sensing of Cold Deserts: Spectral Reflectance Properties of Weathered Rock Surfaces. Proceedings of the Seventh Thematic Conference on Remote Sensing for Exploration Geology, ERIM, Calgary, Albera, Canada, 1989, 478-500.
    98. Collins W,et al.Airborne bio-geophysical mapping of hidden mineral deposits. Ecinomic Geology, 1983,78:737-749.
    99. Curran P J. Imaging spectrometry. Progress in physical Geography 18.2, 1994:247-266.
    100. Crowley, J.K. and Vergo, N., 1988, Near-infrared reflectance spectra of mixtures of kaolin group minerals: use in clay studies, Clays and Clay Min., 36, 310-316.
    101. Douglas GGoodin,Jincheng Gao.and Geoffrey M.Henebry,2004,The Effect of Solar Illumination Angle and Sensor View angle on Observed Patterns of Spatial Structure in Tallgrass Prairie,IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING Vol.42,NO.1
    102. Drake N A. Reflectance spectra of evaporite minerals (400 -2500 nm): applications for remote sensing. Int. J. Remote Sens., 1995, 16: 2555-2571.
    103. Drake N. A., Mackin S., et al, 1998, Mapping vegetation, soil, and geology in semiarid shrublands using spectral matching and mixture modeling of SWIR AVIRIS imagery , Remote Sens. Environ., 68:12-25.
    104. Duke, E.F., 1994, Near infrared spectra of muscovite, Tschermak substitution, and metamorphic reaction progress: implications for remote sensing, Geology, 22, p. 621-624.
    105. E.A.CLOUTIS,1996, Hyperspectral geological remote sensing: evaluation of analytical techniques, INT.J.REMOTE SENSING, vol. 17,No. 12:2215-2224.
    106. ENVI User's Guide. Research Systems, Inc, 2000:899-907.
    107. E.Ben-Don, F.A.Kruse, A.B. lefkoff et.al., Comparison of three Calibration Techniques for Utilization of GER63-channel. Aircraft, Scanner Data of Makhtesh. Ramon, Negev, Israel, PE&RS, pp. 1339-1354.
    108. Farmer, V.C., 1974, The Infra-Red Spectra of Minerals, (V.C. Farmer, ed.) Mineralogical Society, London, 539pp.
    109. Friedl M.A.,Brodley C.E. & Strahler H.,1999,Maximizing land cover classification accuracies produced by decision trees at continental to global scales, IEEE Trans. Geosci.Remote Sens., 37(2):967-977
    110. Fuping Gan, Runsheng Wang, Ainai Ma, 2002,Alteration Extraction Based on Spectral Match Filter (SMF) Using Remote Sensing Data, International Conference on Computer Graphyics and Spatial Information System, China Meteorological Press, Beijing, 2002,pp504-508.
    111. Fuping Gan, Runsheng Wang, Ainai Ma, 2003,Spectral Identification Tree (SIT) for Mineral Extraction Using AVIRIS Data,The Third International Asia-Pacific Environmental Remote Sensing of the Atmosphere, Ocean, Environment, and space,23-27 October 2002, Proceeding of SPIE Vol.4897[EI].
    112. G.R. Hunt, J.W. Salisbury and C. J. Lenhoff. Visible and Near-Infrared Spectra of Rocks and Minerals: I-XH (Silicate, Carbonate, Oxides and Hydroxides, Sulphides and Sulphates, Halides, phosphates, arsenates, vanadates and borates Minerals, Acidic-intermediate-basic-ultrabasic igneous rocks, Sedimentary rocks, Meteorites rocks). Modern Geology[J], 1970-1977,Vol. 1: 283-300, Vol. 2: 195-205, Vol. 3:1-14, 121-132, Vol. 4:85-106,217-224, Vol. 5:15-22.
    113. Gaffey, S.J., 1986, Spectral reflectance of carbonate minerals in the visible and near infrared (0.35-2.55 μm): Calcite, aragonite and dolomite, Am. Mineral. 71,151-162.
    114. Gaffey, S.J., L.A. McFadden, D. Nash, and CM. Pieters, 1993, Ultraviolet, Visible, and Near-infrared Reflectance Spectroscopy: Laboratory spectra of Geologic Materials, in Remote Geochemical Analysis: Elemental and Mineralogical Composition (C. M. Pieters, and P.A.J. Englert, eds.), Cambridge University Press, Cambridge, 43-78.
    115. Galen Gisler. Neural Network Identification of Spectral Signatures[C].the Proceedings of the 11th Thematic Conf. & Workshop on Applied Geologic Remote Sensing,Las Vegad, Nevada, 1996.
    116. Go B.C., Goetz A F H. Column Atmospheric Water Vapour Retrievals from Sirborne Imaging Spectrometer Data[J].JGR 1990,95D:3549-3564
    117. Goetz, A.F.H, G. Vane, J.E. Solomon, and B.N. Rock, 1985, Imaging spectrometry for earth remote sensing, Science, 228, 1147-1153.
    118. Goetz A F H, Rowan L C. Geological remote sensing. Science, 1981,211: 781-791.
    119. Goetz A F H,Gao B C, Wessman C A, et al. Estimation of Biochemical Constituents from Fresh Green Leaves by Spectral Matching Techniques[C]. Intemational Geoscience and Remote Sensing Symposium, the Proceedings of Remote Sensing Science for the Nineties(IGARS'90),CoIlege Park, Maryland, USA, 1990,2:971-974.
    120. Goguen, J.D., 1981, A Theoretical and Experimental Investigation of the Photometric Functions of Particulate Surfaces. Ph.D. Thesis, Cornell Univ., Ithaca.
    121. Green, Robert O., James E. Conel, Veronique Carrere, Carol J. Bruegge, Jack S. Margolis, Michael Rast, and Gordon Hoover, 1990, Determination of the In-Flight Spectral and Radiometric Characteristics of the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS), in Proceedings of the Second Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) Workshop, JPL Publication 90-54, pp. 15-22.
    122. Green A. A.,Berman M., Switzer E, et al, 1988, A transformation for ordering multispectral data in terms of image quality with implications for noise removal, IEEE Trans. Geosci. Remote Sens.,26(1):65-74.
    123. Gross H.N.& Schott J.R.,1998,Application of spectral mixture analysis and image fusion techniques for image sharpening, Remote Sens. Environ.63:85-94.
    124. Hapke, B., 1981, Bidirectional reflectance spectroscopy 1, Theory, J. Geophys. Res. 86,3039-3054.
    125. Haertel V.and Landgrebe D.a., 1999,On the classification of classes with nearly equal spectral response in remote sensing hyperspectral image data,IEEE Trans.Geosci. Remote Sens., 37(5):2374-2386
    126. Harsanyi J.C.and Chang C., 1994, Hyperspectral image classification and dimensionlity reduction: an orthogonal subspace projection approach, IEEE Trans. Geosci,Remote Sens.,32(4):779-785.
    127. Hecht, E., 1987, Optics, Addison-Wesley Publishing, Reading MA, 676pp.
    128. Helmut Gunzler, 2000, Hans-Ulrich Germlich,IR Spectroscopy An Introduction,Translated by Mary-Joan Blfimich,Published by WLLEY-VCH Verlay Gmbh,69469 weinheim (Federal Republic Germany).
    129. Hansen M., Dubayah R & Defries R, 1996,Classification trees: an alternative to traditional land cover classifiers, Int.J.Remote Sensing, 17(5): 1075-1081.
    130. Hunt, G.R., 1977, Spectral signatures of particulate minerals, in the visible and near-infrared, Geophysics 42, 501-513.
    131. Hunt, G.R., 1979, Near-infrared (1.3-2.4μm) spectra of alteration minerals-Potential for use in remote sensing, Geophysics 44, 1974-1986.
    132. Hunt, G.R., 1982, Spectroscopic properties of rocks and minerals, in Handbook of Physical properties of rocks, Volume I, (R. S. Carmichael, ed.) CRC Press, Boca Raton, 295-385.
    133. Hunt, G.R., Salisbury, J.W. and Lenhoff, C.J., 1970-1973, Visible and near infrared spectra of minerals and rocks. Ⅰ-Ⅵ. Additional silicates, Mod. Geology 4, 85-106.
    134. Hunt G R. Electromagnetic Radiation: The communication link in remote sensing. In: B. Siegal and A. Gillespie (Eds). Remote Sensing in Geology, New York, Wiley:702-720.
    135. http://speclib.jpl.nasa.gov, http://speclab.cr.usgs.gov, http://asterweb.jpl.nasa.gov.
    136. Imaging Spectroscopy, 1995, Interpretation Based on Spectral Mixture Analysis, pp. 145-165.
    137. I.V.Mishin and V.N.Ovechkin,2003,SIMULATION OF PHOTOMETRIC CONDITIONS BY AERIAL AND SPACE PHOTOGRAPHY OF THE EARTH'S SURFACE, Mapping Sciences and Romote Sensing,vol.40,No.4:268-278.
    138. Jinm ⅡKim. Estimation Class Mixture Proportion Within a Pixel Using the Fuzzy Partitioning Method[C].the Proceedings of 11th Thematic Conf. And Wokshop on Applied Geologic Remote Sensing, Las Vegas Nevada, 1996.
    139. John F.Mustard, 1992,Chemical analysis of actinolite from reflectance spectra, American Mineralogist,Vol.77:345-358.
    140. Johnson, P., M. Smith, and S. Taylor-George, 1983, A semi-empirical method for analysis of the reflectance spectra of binary mineral mixtures. J. Geophys. Res., 88, 3557-3561.
    141. Johnson P.M., M.O. Smith, and J.B. Adams, 1992, Simple Algorithms for remote determination of mineral abundances and particle sizes from reflectance spectra, J. Geophys. Res., 97, 2649-2657.
    142. John W.Wliams,Isabel M.J.Sargent,and Giles M.Foody,2000,General approach to assessing the value of hyperspectral imagery and its application to sensor concept evaluation,Proceesings of SPIE, Vol.4132.1-12.
    143. King, T.V.V. and Clark, R.N., 1989, Spectral characteristics of serpentines and chlorites using high resolution reflectance spectroscopy, J. Geophys. Res. 94, 13997-14008a..
    144. Kathryn S, Kierein-Young, Fred A Kruse.Quantitative Investigations of Geologic Surfaces Utilizing AVIRIS and AIRSAR Data for Death Valley California[C].Proceedings of the 8th Thematic Conference On Geologic Remote Sensing, Denver, Colorado, US A, 1991,495-506.
    145. King, T.V.V. and W.I. Ridley, 1987, Relation of the Spectroscopic Reflectance of Olivine to Mineral Chemistry and Some Remote Sensing Implications, J. Geophys. Res. 92, 11457-11469.
    146. Kondratyev K Ya, Radiation in the atmosphere, Academic Press, N.Y, U.S.A.
    147. Korb A R, Dybwad P, Wadsworth W. Portable FTIR spectrometer for field measurements of radiance and emmissivity. Applied Optics, 1996,35:1679-1692.
    148. Kruse, F.A., 1997, Chapter 15: Visible / Infrared Sensors and Case Studies, this volume. 149. Kruse F A, Lefkoff A B.Knowledge-Based Geologic Mapping with Imaging Spectrometers[J].Remote Sensing Reviewd, 1993,8:3-28.
    150. Kruse F.A., Baugh W. M. and Atkinson W. W., 1994, Mapping alteration minerals in drill core using a field spectrometer and hyperspectral image analysis techniques, Presented at the tenth thematic conference on geologic remote sensing, San Antonio, TX 9-12 may 1994 , II -37- II -43.
    151. K.Staenz,J.Secker,B.C.Gao,C.Davis,C.Nadeau,2002,Radiative transfer applied to hyperspectral data for the retrieval of surface reflectance,ISPRS Journal of Photogrammetry & Remote Sensing,57:194-203.
    152. Lee C, and Landgrebe D. A.,1993,Analysis high-dimensional multispectral data., IEEE Trans. Geosci. Remote Sens.,31(4):792-800
    153. Lee J. B., Woodyatt S., and Berman M., 1990,Enhancement of high spectral resolution remote-sensing data by a noise-Adjust principal components transform, IEEE Trans. Geosci. Remote Sens.,28(3):295-304
    154. Loughlim W.P. Principle component analysis for alteration mapping[C].Proceedings of the Eight Thematic Conference on Geological Remote Sensing. Denver ,Colorado, 1991:295-306.
    155. Lucey, P.G., and R.N. Clark, 1985, Spectral Properties of Water Ice and Contaminants, in Ices in the Solar System, (J. Klinger et al., eds.), D. Reidel Publishing Company, 155-168.
    156. Lumme, K. and Bowell, E., 1981, Radiative Transfer in the Surfaces of Atmosphereless Bodies. I. Theory., Astr. Journ., 86, 1694-1704.
    157. Mark Folkman Jay Pearlman,Lushalan Liao,and Peter Jarecke,2001,Proceedings of SPIE, Vol.4151: 40-51.
    158. Miller H R, Freeamntle J R, Belarger M J,et al. Potential for Determination of Leaf Chlorophyll Content Using AVIRIS[C]. Proceedings of the 2nd Airborone Visable-Infrared Imaging Spectrometer(AVIRIS), 1990.
    159. Morris, R.V., H.V. Lauer, C.A. Lawson, E.K. Jr. Gibson, G.A. Nace, and C. Stewart, 1985, Spectral and other physiochemical properties of submicron powders of hematite (-Fe2O3), maghemite (-Fe_2O_3), maghemite (Fe_3O_4), goethite (-FeOOH), and lepidochrosite (-FeOOH), J. Geophys. Res. 90, 3126-3144.
    160. Mustard, J. F., and C. M. Pieters, 1987, Quantitative abundance estimates from bidirectional reflectance measurements, Proc. 17th Lunar Planet. Sci. Conf., J. Geophys. Res., 92, E617-E626.
    161. Mustard, J. F., and C. M. Pieters, 1987, Abundance and distribution of serpentinized ultramafic microbreccia in Moses Rock dike: Quantitative application of mapping spectrometer data, J. Geophys. Res. 92, 10,376-10,390.
    162. Mustard, J.F. and J.M. Sunshine, 1997, Chapter 5: Spectral Analysis, this volume.
    163. Mustard, J. F., 1992, Chemical composition of actinolite from reflectance spectra, American Mineralogist 77, 345-358.
    164. Pohl C.,1998,Tools and methods used in data fusion, Future trends in remote sensing, Gudmandsen (ed), Balkema, Rotterdam.pp 391-339.
    165. Post, J.L. and P.N. Noble, 1993. The near-infrared combination band frequencies of dioctahedral smectites, micas, and illites, Clays and Clay Minerals. 41, 639-644.
    166. Price J.C.,1999,Combining multi-spectral data of differing spatial resolution ,LEEE Trans .Geosci. Remotes Sens., 37(3);1199-1204.
    167. Ravi, P.Gupta et.al., 1991, Remote Sensing Geology, Chapter 3:Spectra of Minerals and Rocks,pp. 19-34.
    168. Robert O Green, et al. Imaging Spectroscopy and AVIRIS[J]. Photogrammtric Engineering & Remote Sensing, 1998,64:227-248.
    169. Robinson G.D.,Gross H.N. & Schott J.R.,200, Evaluation of two applications of spectral mixing models to image fusion ,Remote Sens, Environ., 71 : 272-281.
    170. Salisbury, J.W., 1993, Mid-infrared spectroscopy: Laboratory data, in Remote Geochemical Analysis: Elemental and Mineralogical Composition (C. M. Pieters, and P.A.J. Englert, eds.), Cambridge University Press, Cambridge, 79-98.
    171. Schowengerd R A. Remote sensing models and methods for image processing,Chapter one and Chapter three. USA: ACAMEMIC Press. :40-70.
    172. Shipman, H. and J.B. Adams, 1987, Detectability of minerals on desert alluvial fans using reflectance spectra, J. Geophys. Res., 92, 10391-10402.
    173. Slawomir Blonski,Gerald Gasser Jeffrey Russell,Robert Ryan,Greg Terrie,and Vicki Zanoni, 2002,SYNTHESIS OF MULTISPECTRAL BANDS FROM HYPERSPECTRAL DATA: VALIDATION BASED ON IMAGES ACQUIRED BY AVIRIS,HYPERION,ALI,AND ETM+,
    174. Stoner E R, Baumgardner M F. Characteristic variations in reflectance on surface soils, Soil Sci. Soc.Am. J. 1981,45: 1161-1165.
    175. Sunshine, J.M., CM. Pieters, and S.R. Pratt, 1990, Deconvolution of mineral absorption bands: an improved approach, J. Geophys. Res., 95, 6955-6966.
    176. Swayze, G.A., 1997, The hydrothermal and structural history of the Cuprite Mining District, Southwestern Nevada: an integrated geological and geophysical approach, Ph D. Dissertation, University of Colorado at Boulder, Boulder, Colorado, 430p.
    177. Swayze, G.A., R.N. Clark, A.F.H Goetz, N.S. Gorelick, and T.G. Chrien, 1997, Spectral Identification of surface materials using imaging spectrometer data: evaluating the effects of detector sampling, bandpass, and signal to noise ratio using the U.S.G.S. Tricorder Algorithm, to be submitted to J Geophys. Res. in two parts (Part I and Part II).
    178.T.Cocks,R.Jenssen,A.Stewart,I.Wilson and T.Shields,1998,THE HYMAP? HYPERSPECTRAL SENSOR:THE SYSTEM,CALIBRATION AND PERFORMANCE,Proceedins of 1th EARSEL Workshop on Imaging Spectroscopy,Zurich,Oct.,1998.
    179. Varbel J.,2000, Multispectral imagery advanced band sharpening study,PE&RS, 66(1) :73-79.
    180. Veverka J, et al. NEAR at Eros: Imaging and Spectral Results[J]. Science, 2000, 289: 2088 -2097.
    181. Warner T.A. and Shank M. C, 1997, Spatial autocorrelation analysis of hyperspectral imagery for feacture selection, Remote Sens. Environ., 60:58-70.
    182. Y.GU and J.M.ANDERSON,2003,Geometric processing of hyperspectral image data acquired by VIFIS on board light aircraft,INT.J.REMOTE SENSING,Vol.24,No.23:4681-4698.
    183. [19] Zagolski F. and Gastellu-etchgorry J. P., 1995,Atmospheric corrections of AVIRIS images with a procedure based on an inversion of the 5s model, Int. J. Remote Sensing,16(16):3115-3146.
    184. Z. QIN,A.KARNIRLI,2001,A mono-window algorithm for retrieving land surface temperature from Landsat TM data and its application to the Israel-Egypt border region, INT.J.REMOTE SENSING, vol.22,No.l8:3719-3746.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700