用户名: 密码: 验证码:
(一)耐热β葡萄糖苷酶在毕赤酵母中的重组表达、纯化、性质分析和低乳糖巴氏牛奶的生产工艺研究 (二)Dihydro-CDDO-trifluoroethyl amide通过靶向激活Nrf2负性调节LPS诱导的炎症反应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景
     乳糖不耐症是近年来引起广泛关注的一种疾病,大多数患者由于乳糖酶表达异常,在进食牛奶和乳制品后不能将乳糖水解为葡萄糖和半乳糖,导致乳糖在肠道堆积并被肠道菌群发酵后,产生腹痛、腹胀、腹泻、恶心和呕吐等胃肠道症状及其他全身性症状。
     乳糖不耐症的患者出于对以上不适症状的恐惧,一般都拒绝食用牛奶和乳制品,从而丧失了一种优质的高蛋白质和高矿物质食品,他们当中的很多人因为维生素D和钙的摄入量不足,发生了骨质疏松甚至骨折等病变,很大程度上影响了他们的身体健康。
     由于乳糖是由一分子半乳糖和一分子葡萄糖构成的二糖,因此无论半乳糖苷酶或葡萄糖苷酶都可以将其水解成单糖。基于这一特点,许多科研人员都尝试利用外源性的半乳糖苷酶或葡萄糖苷酶水解牛奶中的乳糖。由此而产生的低乳糖牛奶因为乳糖含量很低,饮用后不会发生明显的胃肠道症状,故可以无障碍的被乳糖不耐症的患者接受。
     许多生物体如动物、植物、细菌、真菌(包括酵母菌)都能合成乳糖酶,目前广泛应用于工业生产的乳糖酶是来自于真菌(包括酵母菌)的半乳糖苷酶,但是它们基本上都存在两个明显的不足之处——第一是耐热性不好,遇高温后会失活,故需要在巴氏消毒之后加入,增加了牛奶污染的几率;第二是酶活性受到产物的抑制,在水解过程中随着半乳糖和葡萄糖的浓度升高,水解效率会逐步降低,导致乳糖的水解不充分和酶添加量的被动增加,提高了低乳糖牛奶生产的成本。
     由于半乳糖苷酶的以上不足之处,人们逐渐将目光投向了葡萄糖苷酶,尤其是耐热的葡萄糖苷酶。高度嗜热的古细菌Pyrococcus furiosus可以自然合成多种耐高温酶,如淀粉酶、葡萄糖苷酶和甘露糖苷酶等,其中的β葡萄糖苷酶耐热性极佳,在100℃的高温下经过85个小时还能具有一半以上的活性。这为其应用于巴氏消毒条件下低乳糖牛奶的生产奠定了基础。
     在本实验中,我们将从Pyrococcus furiosus中分离出来的β葡萄糖苷酶基因celB导入到毕赤酵母中进行异源表达,并对重组蛋白进行了纯化、性质分析和巴氏消毒条件下低乳糖牛奶的生产工艺研究,希望能为工业化生产食品级低乳糖巴氏消毒牛奶提供一定的理论依据。
     目的
     1.在毕赤酵母中重组表达从耐高温的古细菌Pyrococcus furiosus中分离出来的β葡萄糖苷酶基因,并对重组表达的蛋白进行纯化和性质分析;
     2.在巴氏消毒条件下,使用重组表达的β葡萄糖苷酶水解牛奶中的乳糖,并对不同的参数进行分析。
     方法
     1. β葡萄糖苷酶基因片段的获取、质粒构建及向毕赤酵母中的转化。
     2.分批补料式发酵法培养毕赤酵母及蛋白表达和酶活性情况测定。
     3. SDS-PAGE法检测目的蛋白。
     4.重组β葡萄糖苷酶的分离和纯化。
     5.重组β葡萄糖苷酶的酶活性测定。
     6.温度对重组β葡萄糖苷酶活性和稳定性的影响。
     7. pH值对重组β葡萄糖苷酶活性和稳定性的影响。
     8.金属离子对重组β葡萄糖苷酶活性的影响。
     9.在巴氏消毒条件下,重组β葡萄糖苷酶对牛奶中乳糖水解工艺的研究。
     结果
     1.重组β葡萄糖苷酶的表达。
     经过120个小时的连续发酵培养,菌体湿重达到了312g/L,经Bradford法测定发酵液上清中蛋白表达量为740mg/L,β葡萄糖苷酶活性达到271U/mL。SDS-PAGE后经考马斯亮蓝染色显示在分子量120kDa处出现逐渐增强的特异性蛋白条带,此条带与预计的β葡萄糖苷酶双体的分子量大小相符。
     2.重组β葡萄糖苷酶的纯化。
     发酵液离心后,将上清通过DEAE阴离子交换层析柱进行纯化,通过一步法纯化工艺,可使蛋白纯度较前提高1.9倍,且酶活性保存大于80%。
     3.重组β葡萄糖苷酶的性质分析。
     通过对重组酶进行性质分析发现——(1)重组酶的最适反应温度是100℃,在30-120℃之间孵育1小时对酶活性的影响不足20%;(2)重组酶的最适反应pH值为6.0,在pH值5.0-8.0之间孵育1小时酶活性至少还存在80%;(3)除铜离子可以降低重组酶22%的活性之外,其他金属离子对重组酶的活性影响很小。
     4.巴氏消毒条件下,重组β葡萄糖苷酶对低乳糖牛奶的生产工艺研究。
     (1)在常规巴氏消毒条件下(65摄氏度30分钟),62U/mL的重组酶即可水解牛奶中70%以上的乳糖,而498U/mL的重组酶可以水解牛奶中90%以上的乳糖;(2)在快速巴氏消毒条件下(65摄氏度20分钟),重组酶对牛奶中乳糖的水解能力与常规巴氏消毒条件类似;(3)高浓度的反应产物(5%葡萄糖)对重组酶的活性影响很小。
     结论
     1.本研究首次在毕赤酵母中重组表达了从耐高温的古细菌Pyrococcus furiosus中分离出来的β葡萄糖苷酶,并对重组酶进行了纯化和性质分析;
     2.本研究初步建立了在巴氏消毒条件下使用该重组酶生产低乳糖牛奶的工艺,这一方法改善了此前需要在巴氏消毒之后再向牛奶中添加乳糖酶的生产方法,可以降低微生物污染的发生率。
     背景
     固有免疫是机体抵抗病原微生物感染的第一道防线。巨噬细胞作为固有免疫中的一个重要成分,通过分泌不同功能的细胞因子、小分子炎症介质和胞外酶类物质,直接或间接的参与炎症反应和免疫调节的过程。尽管巨噬细胞活化后,产生的促炎性细胞因子、小分子炎症介质和胞外酶类物质在清除微生物感染中发挥着重要的作用,但是巨噬细胞过度活化,促炎性物质的过度产生,将导致炎症迁延不愈,成为多种慢性疾病共同的发病基础。因此,严格的控制促炎性细胞因子和其他炎症介质的产生和清除显得尤为重要。
     转录因子Nuclear factor-erythroid2-related factor2(Nrf2),是具有亮氨酸拉链结构(basic leucine zipper)的Cap'n'collar (CNC)家族的重要成员。大量文献报道,Nrf2在多个不同的组织器官(如肺、肝脏、胃肠道、膀胱、肾脏、大脑、皮肤、卵巢和心脏等)中均具有调节细胞防御来抑制疾病侵袭的作用,因此,Nrf2成为治疗和预防人类疾病的重要药物靶点之一。
     许多天然的和人工合成的化合物具有不同程度的Nrf2激活作用,如姜黄素、茶多酚、白藜芦醇和安卡黄素等。但是到目前为止,来源于齐墩果酸的三萜类化合物仍然是最强的Nrf2激活子,因此,选择和合成低毒性高活力的三萜类化合物及其衍生物就成为目前研究的一个热点。
     Dihydro-CDDO-trifluoroethyl amide (Dh404)是最新合成的来源于齐墩果酸的三萜类化合物之一,其对Nrf2具有强有力的激活作用。目前研究显示,其在小鼠和大鼠中的耐受性良好,且可以显著改善实验动物的肥胖、2型糖尿病及压力负荷引起的心肌重构等。但是,其在抑制炎症方面的作用及机制尚未得到充分阐明。因此,我们建立了LPS诱导巨噬细胞损伤的体外模型,观察了Dh404对LPS所诱导炎症的抑制作用,并探讨了其可能的保护机制,为将来临床应用Dh404提供了新的理论依据。
     目的
     1.建立RAW264.7细胞和小鼠骨髓来源巨噬细胞在LPS刺激下的炎症损伤模型;
     2.观察Dh404对RAW264.7细胞和小鼠骨髓来源巨噬细胞在LPS刺激下炎症的变化情况,并探讨其可能的保护机制。
     方法
     1.培养RAW264.7细胞和小鼠骨髓来源巨噬细胞进行实验研究。
     2.LDH检测Dh404对RAW264.7细胞活性的影响。
     3.双荧光素酶报告基因检测NFκB和Neh2转录活性。
     4. Q-PCR检测基因表达。
     5. Western blot检测蛋白表达。
     6.免疫荧光检测蛋白表达。
     7.流式细胞术检测骨髓来源巨噬细胞的诱导情况。
     8.应用SPSS统计软件进行单因素方差分析,P<0.05有统计学差异。
     结果
     1.Dh404对RAW264.7细胞活性的影响。
     10nM、25nM、50nM、100nM和200nM的Dh404均不对RAW264.7细胞产生毒性作用,而在500nM、1000nM和2000nM的浓度下,细胞活性下降。因此,在随后试验中均采用对细胞无毒性的200nM的Dh404进行研究。
     2.Dh404抑制炎症标记物iNOS、MCP-1和MIP-1β的表达。
     与LPS (1ug/mL)组相比,LPS (1ug/mL)+Dh404(200nM)组可以显著降低iNOS在mRNA和蛋白水平的表达。同时,我们发现,Dh404可以显著降低LPS诱导的MCP-1和MIP-1β的基因表达水平,提示其具有抑制炎症的作用。
     3.Dh404的作用独立于MAPKs信号途径。
     与对照组相比,LPS (1ug/mL)组可以明显升高MAPKs(包括ERK,P38和JNK)的磷酸化表达水平,但是LPS (1ug/mL)+Dh404(200nM)组对LPS诱导的MAPKs表达升高没有明显的抑制作用。
     4.Dh404的作用独立于JAK-STAT信号途径。
     与对照组相比,LPS (1ug/mL)组可以明显升高JAK-STAT信号途径(包括JAK1,JAK2和STAT3)的磷酸化表达水平,但是LPS(1ug/mL)+Dh404(200nM)组对LPS诱导的JAK-STAT表达升高没有明显的抑制作用。
     5.Dh404的作用独立于NFκB途径。
     与对照组相比,LPS (1ug/mL)组可以明显降低IκBa的蛋白表达水平,但是LPS(1ug/mL)+Dh404(200nM)组的IκBa蛋白表达水平并无明显恢复;LPS(lug/mL)组可以明显升高NFκB的荧光素酶表达水平,但是LPS(1ug/mL)+Dh404(200nM)组的NFkB的荧光素酶表达水平并无明显降低;LPS (1ug/mL)组可以明显升高炎症因子IL-1β、IL-6和TNFa的表达水平,但是LPS(1ug/mL)+Dh404(200iM)组对LPS诱导的炎症因子IL-1β、IL-6和TNFa的表达也没有明显的影响。
     6.Dh404增强Nrf2途径。
     与对照组相比,Dh404(200nM)组可以迅速增强Nrf2蛋白在胞浆及胞核的累积表达量,同时增强NQO1和HO-1的基因及蛋白表达量,提示Dh404可以明显激活RAW264.7细胞中Nrf2通路的表达。
     但是,Dh404(200nM)组并不升高Nrf2的基因表达水平,提示Dh404对Nrf2的调节作用发生在转录后水平;双荧光素酶报告基因检测也提示,Dh404(200nM)组不能升高Neh2的表达水平,说明Dh404不能直接分离Neh2和Keap1的结合,提示Dh404不是通过直接分离Nrf2与Keap1的结合来发挥增强Nrf2途径的作用。
     7.Dh404通过靶向作用于Nrf2负性调节LPS诱导的炎症反应。
     分别用LPS(1ug/mL)和LPS(1ug/mL)+Dh404(200nM)来刺激Nrf2野生型和Nrf2基因敲除型小鼠骨髓来源的巨噬细胞后观察相关炎症标记物的基因和蛋白表达情况,结果发现:(1)在Nrf2敲除小鼠骨髓来源的巨噬细胞中,LPS诱导的炎症反应明显强于野生型小鼠,提示Nrf2本身具有抑制炎症的作用;(2)在加入Dh404进行干预之后,野生型小鼠中LPS诱导的炎症标记物水平明显下降,而在Nrf2敲除小鼠中Dh404的抗炎作用则几乎完全丧失,这提示Dh404是通过靶向作用于Nrf2负性调节LPS诱导的炎症反应。
     结论
     1.Dh404可以抑制RAW264.7细胞和小鼠骨髓来源巨噬细胞中LPS诱导的炎症反应;
     2.Dh404抑制LPS诱导的巨噬细胞炎症的作用独立于MAPKs、JAK-STAT和NFκB信号途径;
     3.Dh404具有增强转录因子Nrf2及其下游基因表达的作用。
     4.Dh404靶向作用于Nrf2负性调节LPS诱导的炎症反应。
Background
     Lactose intolerance is increasingly recognized by the people in the world in the past few years. In vivo, lactase is an enzyme secreted by intestinal villi that hydrolyses the disaccharide lactose into glucose and galactose and is essential for the digestion of bovine milk which contains an average of4.8%lactose. Deficiency for this gene leads to malabsorption of lactose and subsequent fermentation of lactose by the gut flora. Lactose intolerance develops when afflicted individuals experience abdominal pain, diarrhea, bloating, flatulence, and other gastrointestinal symptoms following lactose consumption.
     Avoidance of dairy products by lactose intolerant individuals often leads to insufficient calcium and vitamin D consumption and may cause adverse health outcomes, especially reduced bone mineral density and fractures.
     Since lactose is a disaccharide composed of glucose and galactose, it can be hydrolyzed into these monosaccharides using either a beta-glucosidase or a beta-galactosidase. Based on this theory, researchers tried to use extrinsic lactase to hydrolyze the lactose in the milk. Consumption of lactose-free milk, which can be produced by adding lactase enzyme directly to milk, provides a means of maintaining good health while avoiding the symptoms of lactose intolerance.
     Lactase can be synthesized from many sources including animals, plants, bacteria, fungi and yeast. Now, the lactase enzymes most commonly used in the industry are beta-galactosidases from fungi and yeast, which have two major defects. One is the beta-galactosidases commonly used in the industry are mesophilic enzymes, which can be easily denatured by pasteurization conditions and has to be added after the pasteurization. Another is they are generally inhibited as glucose concentration increases. Undoubtedly, this two major defects increase the incidence of pollution and the cost of company.
     Although pasteurization conditions denature many enzymes, several thermostable lactase have been identified. Hyperthermophilic archeaeon Pyrococcus furiosus harbors several hydrolytic enzyme activities, notably, it has a thermostable beta-glucosidase with a half-life of85h at100℃. This beta-glucosidase serves as a model system to use for lactose hydrolysis since it displays extreme stability and high catalytic activity in the presence of lactose.
     In the present study, we cloned the Pyrococcus furiosus beta-glucosidase gene into the pGAPZaA vector and electrotransformed it into the pichia pastoris X-33strain for large-scale production of heterologous proteins by high-density cell culture. We then do the purification, characterization and analyzed the lactose hydrolytic action of this beta-glucosidase under pasteurization conditions in order to establish a new method for the production of low lactose pasteurized milk. Our system provides a method for high level production of "food grade" thermostable lactase that is appropriate for use in the milk industry during the process of pasteurization, eliminating the need to add enzyme following pasteurization and eliminating the risk of microbial contamination.
     Objectives
     1. Expression, purification and enzyme characterization of a recombinant thermostable beta-glucosidase from Pyrococcus furiosus in Pichia pastoris.
     2. Hydrolysis of lactose in milk under pasteurized conditions use the recombinant thermostable beta-glucosidase and analyse parameters.
     Materials and methods
     1. Cloning and gene expression.
     2. Fed-batch fermentation.
     3. SDS-PAGE analysis.
     4. Purification of beta-glucosidase.
     5. Enzyme assay of the recombinant beta-glucosidase.
     6. Effect of temperature on beta-glucosidase activity and stability.
     7. Effect of pH on beta-glucosidase activity and stability.
     8. Effect of metal ions on beta-glucosidase activity.
     9. Hydrolysis of lactose in milk at the condition of pasteurization.
     Results
     1. The expression of recombinant beta-glucosidase.
     The biomass accumulated at120h was312g/L, enzyme expression reached its peak with a yield of740mg/L, and the corresponding beta-glucosidase activity was271U/mL. A protein corresponding to recombinant beta-glucosidase, with a molecular mass of approximately120kDa, was detected upon performing SDS-PAGE analysis with Coomassie Brilliant Blue staining.
     2. Purification of recombinant beta-glucosidase.
     After the one-step weak anion exchange chromatography to isolate the target protein, resulted in1.9fold purification and80.8%recovery from the supernatant.
     3. Enzyme characterization of recombinant beta-glucosidase.
     Optimum temperature was100℃, and at30℃the activity decreased to nearly7%of the maximum activity. Beta-glucosidase was stable and retained more than80%of its maximum activity from30℃to120℃. Beta-glucosidase presented optimum activity at pH6.0and nearly inactivated at pH4.0and9.0. Beta-glucosidase was stable and retained more than80%of its maximum activity from pH5.0to pH8.0when pre-incubated at37℃for1h. Although Cu2+can reduce the relative activity to78%, other metal cations have only negligible effects on the activity of the recombinant enzymes.
     4. Hydrolysis of lactose in milk under pasteurization conditions.
     Using62U/mL of recombinant beta-glucosidase achieved70%hydrolysis and increasing to498U/mL of recombinant enzyme resulted in greater than90%hydrolysis. We also tested the efficiency of hydrolysis of this enzyme from5-30minutes and found that after20minutes, the amount of hydrolysis was similar to30minutes. The effect of glucose concentration on hydrolysis was also tested, and we found that even high concentrations of glucose had minimal influence on the hydrolysis of lactose, demonstrating that the enzyme had a relatively good tolerance to glucose.
     Conclusions
     1. This report is the first on the cloning, expression, purification, and characterization of the beta-glucosidase from Pyrococcus furiosus in Pichia pastoris.
     2. In this study, we established a new method to produce low lactose milk using this enzyme under pasteurized conditions. This method highlights the potential for low lactose milk production without additional steps required to add enzymes following pasteurization, and thus, decreases the risk of microbial contamination to a great extent.
     Background
     Innate immunity is the body's first line to defense against microbial infection. As an important component of innate immunity, macrophages involved in the inflammatory process indirectly or directly through the secretion of cytokines, mediators and extracellular enzymes of different functions in the inflammatory responses. Although activation of macrophages and secretion of proinflammatory cytokines and mediators are important for the elimination of invading microorganisms, uncontrolled activation may leads to autoimmune and inflammatory diseases. Therefore, strictly control macrophage activation and secretion of proinflammatory cytokines and mediators are very important.
     Nuclear factor-erythroid2-related factor2(Nrf2), a member of the Cap'n'collar (CNC) family of basic-leucine zipper transcription factors, is the major regulator of cellular defenses against various pathological stresses in a variety of organ systems including lung, liver, gastrointestinal tract, bladder, kidney, brain, skin, ovary, and heart, Nrf2has evolved to be an attractive drug target for the treatment and prevention of human disease.
     Several natural or synthetic compounds have been studied to target Nrf2-mediated signaling for treatment and prevention, such as curcumin, tea polyphenol, resveratrol and ankaflavin. Of these, the synthetic triterpenoid derivatives of oleanolic acid seem to be the most promising drug candidates.
     The synthetic oleanolic triterpenoid of dihydro-CDDO-trifluoroethyl amide (Dh404) is a novel and potent Nrf2activitor. Dh404is well tolerated in mice and rats, and has been shown to improve obesity, type II diabetes, cardiac maladaptive remodeling and dysfunction. However, the effect of Dh404-Nrf2signaling axis about inflammation is unclear. Herein, we established a macrophage damage model in vitro to observe the effects of Dh404on LPS induced inflammation. The study can help development of new drugs for inflammation by regulating the Nrf2signaling and provide new evidence for the clinical application of Dh404.
     Objectives
     1. To establish LPS induced inflammation damage model in RAW264.7macrophages and mouse bone marrow derived macrophages.
     2. To observe the effects of Dh404on anti-inflammation, and further explore the possible protective mechanisms.
     Materials and methods
     1. Culture RAW264.7macrophages and mouse bone marrow derived macrophages to do the following experiments.
     2. Cell viability measured by LDH assay.
     3. Transcriptional activity of NF κB and Neh2detected by Dual-Luciferase reporter assay system.
     4. Gene expression detected by Q-PCR.
     5. Protein expression detected by Western blot.
     6. Protein expression detected by immunofluorescence.
     7. Bone marrow derived macrophage identified by Flow cytometry.
     8. Statistical analysis.
     All data are expressed as X±SD, the differences between groups were compared using ANOVA analysis. SPSS statistical software was used for statistical analysis, and P<0.05was considered statistically significant.
     Results
     1. The effects of Dh404on cell viability.
     lOnM,25nM,50nM,100nM and200nM of Dh404could not influence the viability of RAW264.7macrophages, however, cell viability was decreased in the concentration of500nM,1000nM and2000nM. Therefore,200nM of Dh404was used in subsequent trials for further study.
     2. Dh404inhibit the expression of iNOS, MCP-1and MIP-1β.
     Compared with LPS (1ug/mL) treatment group, the mRNA and protein expression of iNOS were significantly decreased by LPS (1ug/mL)+Dh404(200nM) treatment. At the same time, the mRNA expression of MCP-1and MIP-1β were also significantly decreased by LPS (1ug/mL)+Dh404(200nM) treatment, indicating that Dh404inhibited the LPS-induced inflammation in RAW264.7macrophages.
     3. Dh404treatment minimally regulates MAPKs pathway in RAW264.7macrophages.
     Compared with the control group, the phosphorylated protein expression of MAPKs (ERK, P38and JNK) were significantly increased by LPS (1ug/mL) treatment, but the phosphorylated protein expression of MAPKs were not decreased by LPS (1ug/mL)+Dh404(200nM) treatment.
     4. Dh404treatment minimally regulates JAK-STAT pathway in RAW264.7macrophages.
     Compared with the control group, the phosphorylated protein expression of JAK-STAT (JAK1, JAK2and STAT3) were significantly increased by LPS (1ug/mL) treatment, but the phosphorylated protein expression of JAK-STAT were not decreased by LPS (1ug/mL)+Dh404(200nM) treatment.
     5. Dh404treatment minimally regulates NFkB pathway in RAW264.7macrophages.
     Compared with the control group, the protein expression of IκBa was significantly decreased by LPS (lug/mL) treatment, but it was not increased by LPS (1ug/mL)+Dh404(200nM) treatment; the luciferase assay of NFκB was significantly increased by LPS (1ug/mL) treatment, but it was not decreased by LPS (1ug/mL)+Dh404(200nM) treatment; the gene expression of IL-1β, IL-6and TNFa were significantly increased by LPS (1ug/mL) treatment,but they were not decreased by LPS (lug/mL)+Dh404(200nM) treatment.
     6. Dh404activates Nrf2in RAW264.7macrophages.
     Compared with the control group, Dh404(200nM) treatment rapidly increased Nrf2protein expression and increased Nrf2downstream genes expression, such as NAD(P)H:quinine oxidoreductase (NQO)1and heme oxygenase1(HO-1), at the mRN A and protein levels, indicating that Dh404can upregulates Nrf2pathway in RAW264.7macrophages.
     But Dh404(200nM) treatment was not increased the gene expression of Nrf2, indicating that Dh404's regulation is posttranscriptional level; at the same time, Dh404(200nM) treatment was not increased the luciferase assay of Neh2, indicating that Dh404's regulation is not through the separation of Nrf2and Keapl.
     7. Dh404suppresses LPS induced inflammatory responses via Nrf2.
     (1) Compared to Nrf2WT mice, the expression level of iNOS, MCP-1and MIP-1βin the Nrf2-/-mice bone marrow derived macrophages were much higher both in basal condition and in LPS-inflamed condition.(2) Dh404dramatically inhibited LPS-induced expression of iNOS, MCP-1and MIP-1β in bone marrow derived macrophages from WT mice, however, the anti-inflammatory effect of Dh404was blocked in LPS-inflamed bone marrow-derived macrophages from Nrf2-/-mice. These results clearly demonstrate that Nrf2is an essential mediator for Dh404induced resolution of inflammatory responses in macrophages.
     Conclusions
     1. Dh404could inhibit the inflammatory responses induced by LPS in RAW264.7macrophages and mouse bone marrow derived macrophages.
     2. Dh404treatment minimally regulates MAPKs, JAK-STAT and NFκB pathway in RAW264.7macrophages.
     3. Dh404could activate Nrf2and the downstream genes expression.
     4. Dh404suppresses LPS induced inflammatory responses via Nrf2.
引文
1. Carter SL, Attel S. The diagnosis and management of patients with lactose-intolerance. Nurse Pract 2013;38:23-28.
    2. Swallow DM. Genetics of lactase persistence and lactose intolerance. Annu Rev Genet 2003;37:197-219.
    3. Boll W, Wagner P, Mantei N. Structure of the chromosomal gene and cDNAs coding for lactase-phlorizin hydrolase in humans with adult-type hypolactasia or persistence of lactase. Am JHum Genet 1991;48:889-902.
    4. Harvey CB, Fox MF, Jeggo PA, Mantei N, Povey S, Swallow DM. Regional localization of the lactase-phlorizin hydrolase gene, LCT, to chromosome 2q21. Ann Hum Genet 1993;57:179-185.
    5. Zecca L, Mesonero JE, Stutz A, Poiree JC, Giudicelli J, Cursio R, et al. Intestinal lactase-phlorizin hydrolase (LPH):the two catalytic sites; the role of the pancreas in pro-LPH maturation. FEBS Lett 1998;435:225-228.
    6. Skovbjerg H, Sjostrom H, Noren O. Purification and characterisation of amphiphilic lactase/phlorizin hydrolase from human small intestine. Eur J Biochem 1981;114:653-661.
    7 Mantei N, Villa M, Enzler T, Wacker H, Boll W, James P, et al. Complete primary structure of human and rabbit lactase-phlorizin hydrolase: implications for biosynthesis, membrane anchoring and evolution of the enzyme. EMBO J 1988;7:2705-2713.
    8. Campbell AK, Waud JP, Matthews SB. The molecular basis of lactose intolerance. Sci Prog 2005;88:157-202.
    9. Kretchmer N. Lactose and lactase--a historical perspective. Gastroenterology 1971;61:805-813.
    10. Vesa TH, Marteau P, Korpela R. Lactose intolerance. JAm Coll Nutr 2000;19:165S-175S.
    11. Matthews SB, Waud JP, Roberts AG, Campbell AK. Systemic lactose intolerance:a new perspective on an old problem. Postgrad Med J 2005;81:167-173.
    12. Schirru E, Corona V, Usai-Satta P, Scarpa M, Oppia F, Loriga F, et al. Genetic testing improves the diagnosis of adult type hypolactasia in the Mediterranean population of Sardinia. Eur J Clin Nutr 2007;61:1220-1225.
    13. Morales E, Azocar L, Maul X, Perez C, Chianale J, Miquel JF. The European lactase persistence genotype determines the lactase persistence state and correlates with gastrointestinal symptoms in the Hispanic and Amerindian Chilean population:a case-control and population-based study. BMJ Open 2011;1:e000125.
    14. Madry E, Fidler E, Sobczynska-Tomaszewska A, Lisowska A, Krzyzanowska P, Pogorzelski A, et al. Mild CFTR mutations and genetic predisposition to lactase persistence in cystic fibrosis. Eur J Hum Genet 2011;19:748-752.
    15. Enattah NS, Sahi T, Savilahti E, Terwilliger JD, Peltonen L, Jarvela I. Identification of a variant associated with adult-type hypolactasia. Nat Genet 2002;30:233-237.
    16. Olds LC, Sibley E. Lactase persistence DNA variant enhances lactase promoter activity in vitro:functional role as a cis regulatory element. Hum Mol Genet 2003;12:2333-2340.
    17. Nguyen HN. [Lactose intolerance]. Dtsch Med Wochenschr 2000;125:612.
    18. Suchy FJ, Brannon PM, Carpenter TO, Fernandez JR, Gilsanz V, Gould JB, et al. NIH consensus development conference statement:Lactose intolerance and health. NIH Consens State Sci Statements 2010;27:1-27.
    19. Heyman MB. Lactose intolerance in infants, children, and adolescents. Pediatrics 2006;118:1279-1286.
    20. Grand RJ, Montgomery RK. Lactose malabsorption. Curr Treat Options Gastroenterol 2008;11:19-25.
    21. Hutyra T, Iwanczak B. [Lactose intolerance:pathophysiology, clinical symptoms, diagnosis and treatment]. Pol Merkur Lekarski 2009;26:148-152.
    22. Usai-Satta P, Scarpa M, Oppia F, Cabras F. Lactose malabsorption and intolerance:What should be the best clinical management? World J Gastrointest Pharmacol Ther 2012;3:29-33.
    23. Enattah NS, Sulkava R, Halonen P, Kontula K, Jarvela I. Genetic variant of lactase-persistent C/T-13910 is associated with bone fractures in very old age. JAm Geriatr Soc 2005;53:79-82.
    24. Nicklas TA, Qu H, Hughes SO, He M, Wagner SE, Foushee HR, et al. Self-perceived lactose intolerance results in lower intakes of calcium and dairy foods and is associated with hypertension and diabetes in adults. Am J Clin Nutr 2011;94:191-198.
    25. Savaiano DA, Boushey CJ, McCabe GP. Lactose intolerance symptoms assessed by meta-analysis:a grain of truth that leads to exaggeration. JNutr 2006;136:1107-1113.
    26. Sun S, Li X, Nu S, You X. Immobilization and characterization of beta-galactosidase from the plant gram chicken bean (Cicer arietinum). Evolution of its enzymatic actions in the hydrolysis of lactose. JAgric Food Chem 1999;47:819-823.
    27. Ladero M, Santos A, Garcia-Ochoa F. Kinetic modeling of lactose hydrolysis with an immobilized β-galactosidase from Kluyveromyces fragilis. Enzyme and Microbial Technology 2000;27:583-592.
    28. Chen W, Chen H, Xia Y, Yang J, Zhao J, Tian F, et al. Immobilization of recombinant thermostable P-galactosidase from Bacillus stearothermophilus for lactose hydrolysis in milk. Journal of Dairy Science 2009;92:491-498.
    29. Dong YN, Liu XM, Chen HQ, Xia Y, Zhang HP, Zhang H, et al. Enhancement of the hydrolysis activity of β-galactosidase from Geobacillus stearothermophilus by saturation mutagenesis. Journal of Dairy Science 2011;94:1176-1184.
    30. Ghosh M, Pulicherla KK, Rekha VP, Raja PK, Sambasiva Rao KR. Cold active beta-galactosidase from Thalassospira sp.3SC-21 to use in milk lactose hydrolysis:a novel source from deep waters of Bay-of-Bengal. World J Microbiol Biotechnol 2012;28:2859-2869.
    31. Petzelbauer I, Kuhn B, Splechtna B, Kulbe KD, Nidetzky B. Development of an ultrahigh-temperature process for the enzymatic hydrolysis of lactose. IV. Immobilization of two thermostable beta-glycosidases and optimization of a packed-bed reactor for lactose conversion. Biotechnol Bioeng 2002;77:619-631.
    32. Splechtna B, Petzelbauer I, Kuhn B, Kulbe KD, Nidetzky B. Hydrolysis of lactose by beta-glycosidase CelB from hyperthermophilic archaeon Pyrococcus furiosus:comparison of hollow-fiber membrane and packed-bed immobilized enzyme reactors for continuous processing of ultrahigh temperature-treated skim milk. Appl Biochem Biotechnol 2002;98-100:473-488.
    33. Schneider RE, Corona E, Rosales F, Schneider FE, Rodriguez O, Pineda O. Effect of temperature on the lactose hydrolytic capacity of a lactase derived from Kluyveromyces lactis. Am J Clin Nutr 1990;51:197-201.
    34. Pivarnik LF, Senecal AG, Rand AG. Hydrolytic and transgalactosylic activities of commercial beta-galactosidase (lactase) in food processing. Adv Food Nutr Res 1995;38:1-102.
    35. Le Luyer B, Makhoul G, Duhamel JF. [A multicentric study of a lactose free formula supplemented with Saccharomyces boulardii in children with acute diarrhea]. Arch Pediatr 2010;17:459-465.
    36. Rech R, Ayub MAZ. Simplified feeding strategies for fed-batch cultivation of Kluyveromyces marxianus in cheese whey. Process Biochemistry 2007;42:873-877.
    37. Nagy Z, Kiss T, Szentirmai A, Biro S. Beta-galactosidase of Penicillium chrysogenum:production, purification, and characterization of the enzyme. Protein Expr Purif 2001;21:24-29.
    38. Flood MT, Kondo M. Toxicity evaluation of a beta-galactosidase preparation produced by Penicillium multicolor. Regul Toxicol Pharmacol 2004;40:281-292.
    39. Haider T, Husain Q. Preparation of lactose-free milk by using salt-fractionated almond (Amygdalus communis) β-galactosidase. Journal of the Science of Food and Agriculture 2007;87:1278-1283.
    40. Li SC, Han JW, Chen KC, Chen CS. Purification and characterization of isoforms of beta-galactosidases in mung bean seedlings. Phytochemistry 2001;57:349-359.
    41. Carrillo-Lopez A, Cruz-Hernandez A, Carabez-Trejo A, Guevara-Lara F, Paredes-Lopez O. Hydrolytic activity and ultrastructural changes in fruit skins from two prickly pear (Opuntia sp.) varieties during storage. JAgric Food Chem 2002;50:1681-1685.
    42. Lazan H, Ng SY, Goh LY, Ali ZM. Papaya beta-galactosidase/galactanase isoforms in differential cell wall hydrolysis and fruit softening during ripening. Plant Physiol Biochem 2004;42:847-853.
    43. Chotinsky D, Toncheva E, Profirov Y. Development of disaccharidase activity in the small intestine of broiler chickens. Br Poult Sci 2001;42:389-393.
    44. Jost B, Vilotte JL, Duluc I, Rodeau JL, Freund JN. Production of low-lactose milk by ectopic expression of intestinal lactase in the mouse mammary gland. Nat Biotechnol 1999;17:160-164.
    45. Yeh KY, Yeh M, Holt PR. Intestinal lactase expression and epithelial cell transit in hormone-treated suckling rats. Am JPhysiol 1991;260:G379-384.
    46. Sung HW, Chen CN, Liang HF, Hong MH. A natural compound (reuterin) produced by Lactobacillus reuteri for biological-tissue fixation. Biomaterials 2003;24:1335-1347.
    47. Arunachalam KD. Role of bifidobacteria in nutrition, medicine and technology. Nutrition research 1999;19:1559-1597.
    48. Picard C, Fioramonti J, Francois A, Robinson T, Neant F, Matuchansky C. Review article:bifidobacteria as probiotic agents-physiological effects and clinical benefits. Aliment Pharmacol Ther 2005;22:495-512.
    49. Oliveira C, Guimaraes PM, Domingues L. Recombinant microbial systems for improved beta-galactosidase production and biotechnological applications. Biotechnol Adv 2011;29:600-609.
    50. Tanaka Y, Kagamiishi A, Kiuchi A, Horiuchi T. Purification and properties of beta-galactosidase from Aspergillus oryzae. J Biochem 1975;77:241-247.
    51. Genari AN, Passos FV, Passos FM. Configuration of a bioreactor for milk lactose hydrolysis. J Dairy Sci 2003;86:2783-2789.
    52. Boon MA, Janssen AE, van't Riet K. Effect of temperature and enzyme origin on the enzymatic synthesis of oligosaccharides. Enzyme Microb Technol 2000;26:271-281.
    53. Rodriguez AP, Leiro RF, Trillo MC, Cerdan ME, Siso MI, Becerra M. Secretion and properties of a hybrid Kluy veromyces lactis-Aspergillus niger beta-galactosidase. Microb Cell Fact 2006;5:41.
    54. Nakagawa T, Ikehata R, Uchino M, Miyaji T, Takano K, Tomizuka N. Cold-active acid beta-galactosidase activity of isolated psychrophilic-basidiomycetous yeast Guehomyces pullulans. Microbiol Res 2006;161:75-79.
    55. Simos G, Georgatsos JG. Lactose-hydrolyzing beta-glycosidases of barley meal. Biochim Biophys Acta 1988;967:17-24.
    56. Krisch J, Bencsik O, Papp T, Vagvolgyi C, Tako M. Characterization of a beta-glucosidase with transgalactosylation capacity from the zygomycete Rhizomucor miehei. Bioresour Technol 2012;114:555-560.
    57. Schroder C, Elleuche S, Blank S, Antranikian G. Characterization of a heat-active archaeal beta-glucosidase from a hydrothermal spring metagenome. Enzyme Microb Technol 2014;57:48-54.
    58. Fiala G, Stetter KO. Pyrococcus furiosus sp. nov. represents a novel genus of marine heterotrophic archaebacteria growing optimally at 100 C. Archives of Microbiology 1986;145:56-61.
    59. Bryant FO, Adams MW. Characterization of hydrogenase from the hyperthermophilic archaebacterium, Pyrococcus furiosus. J Biol Chem 1989;264:5070-5079.
    60. Costantino HR, Brown SH, Kelly RM. Purification and characterization of an alpha-glucosidase from a hyperthermophilic archaebacterium, Pyrococcus furiosus, exhibiting a temperature optimum of 105 to 115 degrees C. J Bacteriol 1990;172:3654-3660.
    61. Brown SH, Costantino HR, Kelly RM. Characterization of Amylolytic Enzyme Activities Associated with the Hyperthermophilic Archaebacterium Pyrococcus furiosus. Appl Environ Microbiol 1990;56:1985-1991.
    62. Consalvi V, Chiaraluce R, Politi L, Vaccaro R, De Rosa M, Scandurra R. Extremely thermostable glutamate dehydrogenase from the hyperthermophilic archaebacterium Pyrococcus furiosus. Eur J Biochem 1991;202:1189-1196.
    63. Blamey JM, Adams MW. Purification and characterization of pyruvate ferredoxin oxidoreductase from the hyperthermophilic archaeon Pyrococcus furiosus. Biochim Biophys Acta 1993;1161:19-27.
    64. Kengen SW, Luesink EJ, Stams AJ, Zehnder AJ. Purification and characterization of an extremely thermostable beta-glucosidase from the hyperthermophilic archaeon Pyrococcus furiosus. Eur J Biochem 1993;213:305-312.
    65. Brown SH, Kelly RM. Cultivation Techniques for Hyperthermophilic Archaebacteria:Continuous Culture of Pyrococcus furiosus at Temperatures near 100 degrees C. Appl Environ Microbiol 1989;55:2086-2088.
    66. Blumentals, II, Brown SH, Schicho RN, Skaja AK, Costantino HR, Kelly RM. The hyperthermophilic archaebacterium, Pyrococcus furiosus. Development of culturing protocols, perspectives on scaleup, and potential applications. Ann N Y Acad Sci 1990;589:301-314.
    67. Hoaki T, Nishijima M, Kato M, Adachi K, Mizobuchi S, Hanzawa N, et al. Growth requirements of hyperthermophilic sulfur-dependent heterotrophic archaea isolated from a shallow submarine geothermal system with reference to their essential amino acids. Appl Environ Microbiol 1994;60:2898-2904.
    68. Voorhorst WG, Eggen RI, Luesink EJ, de Vos WM. Characterization of the celB gene coding for beta-glucosidase from the hyperthermophilic archaeon Pyrococcus furiosus and its expression and site-directed mutation in Escherichia coli. J Bacteriol 1995;177:7105-7111.
    69. Sessitsch A, Wilson KJ, Akkermans AD, de Vos WM. Simultaneous detection of different Rhizobium strains marked with either the Escherichia coli gusA gene or the Pyrococcus furiosus celB gene. Appl Environ Microbiol 1996;62:4191-4194.
    70. Smith JD, Robinson AS. Overexpression of an archaeal protein in yeast: secretion bottleneck at the ER. Biotechnol Bioeng 2002;79:713-723.
    71. Smith JD, Tang BC, Robinson AS. Protein disulfide isomerase, but not binding protein, overexpression enhances secretion of a non-disulfide-bonded protein in yeast. Biotechnol Bioeng 2004;85:340-350.
    72. Smith JD, Richardson NE, Robinson AS. Elevated expression temperature in a mesophilic host results in increased secretion of a hyperthermophilic enzyme and decreased cell stress. Biochim Biophys Acta 2005;1752:18-25.
    73. Cregg JM, Tolstorukov I, Kusari A, Sunga J, Madden K, Chappell T. Expression in the yeast Pichia pastoris. Methods Enzymol 2009;463:169-189.
    74. Murasugi A. Secretory expression of human protein in the Yeast Pichia pastoris by controlled fermentor culture. Recent Pat Biotechnol 2010;4:153-166.
    75. Ramon A, Marin M. Advances in the production of membrane proteins in Pichia pastoris. Biotechnol J 2011;6:700-706.
    76. Damasceno LM, Huang CJ, Batt CA. Protein secretion in Pichia pastoris and advances in protein production. Appl Microbiol Biotechnol 2012;93:31-39.
    77. Gasser B, Prielhofer R, Marx H, Maurer M, Nocon J, Steiger M, et al. Pichia pastoris:protein production host and model organism for biomedical research. Future Microbiol 2013;8:191-208.
    78. Nogueira ES, Schleier T, Durrenberger M, Ballmer-Hofer K, Ward TR, Jaussi R. High-level secretion of recombinant full-length streptavidin in Pichia pastoris and its application to enantioselective catalysis. Protein Expr Purif 2014;93:54-62.
    79. Wu M, Liu W, Yang G, Yu D, Lin D, Sun H, et al. Engineering of a Pichia pastoris Expression System for High-Level Secretion of HSA/GH Fusion Protein. Appl Biochem Biotechnol 2014;172:2400-2411.
    80. Zhao Q, Liu F, Hou Z, Yuan C, Zhu X. High Level Production of beta-Galactosidase Exhibiting Excellent Milk-Lactose Degradation Ability from Aspergillus oryzae by Codon and Fermentation Optimization. Appl Biochem Biotechnol 2014;172:2787-2799.
    81. Khatri NK, Gocke D, Trentmann O, Neubauer P, Hoffmann F. Single-chain antibody fragment production in Pichia pastoris:Benefits of prolonged pre-induction glycerol feeding. Biotechnol J 2011;6:452-462.
    82. Padkina MV, Parfenova LV, Gradoboeva AE, Sambuk EV. [Heterologous interferons synthesis in yeast Pichia pastoris]. Prikl Biokhim Mikrobiol 2010;46:448-455.
    83. Pham TH, Quyen DT, Nghiem NM, Vu TD. Cloning, expression, purification, and properties of an endoglucanase gene (glycosyl hydrolase family 12) from Aspergillus niger VTCC-F021 in Pichia pastoris. JMicrobiol Biotechnol 2011;21:1012-1020.
    84. Topakas E, Moukouli M, Dimarogona M, Vafiadi C, Christakopoulos P. Functional expression of a thermophilic glucuronyl esterase from Sporotrichum thermophile:identification of the nucleophilic serine. Appl Microbiol Biotechnol 2010;87:1765-1772.
    85. Zhang R, Fan Z, Kasuga T. Expression of cellobiose dehydrogenase from Neurospora crassa in Pichia pastoris and its purification and characterization. Protein Expr Purif2011;75:63-69.
    86. Cieslinski H, Kur J, Bialkowska A, Baran I, Makowski K, Turkiewicz M. Cloning, expression, and purification of a recombinant cold-adapted beta-galactosidase from antarctic bacterium Pseudoalteromonas sp.22b. Protein Expr Purif2005;39:27-34.
    87. Pan Q, Zhu J, Liu L, Cong Y, Hu F, Li J, et al. Functional identification of a putative beta-galactosidase gene in the special lac gene cluster of Lactobacillus acidophilus. Curr Microbiol 2010;60:172-178.
    88. Christakopoulos P, Goodenough PW, Kekos D, Macris BJ, Claeyssens M, Bhat MK. Purification and characterisation of an extracellular beta-glucosidase with transglycosylation and exo-glucosidase activities from Fusarium oxysporum. Eur J Biochem 1994;224:379-385.
    89. Karnchanatat A, Petsom A, Sangvanich P, Piaphukiew J, Whalley AJ, Reynolds CD, et al. Purification and biochemical characterization of an extracellular beta-glucosidase from the wood-decaying fungus Daldinia eschscholzii (Ehrenb.:Fr.) Rehm. FEMS Microbiol Lett 2007;270:162-170.
    90. Riou C, Salmon JM, Vallier MJ, Gunata Z, Barre P. Purification, characterization, and substrate specificity of a novel highly glucose-tolerant beta-glucosidase from Aspergillus oryzae. Appl Environ Microbiol 1998;64:3607-3614.
    91. Saha BC, Freer SN, Bothast RJ. Production, Purification, and Properties of a Thermostable beta-Glucosidase from a Color Variant Strain of Aureobasidium pullulans. Appl Environ Microbiol 1994;60:3774-3780.
    92. Yoon JJ, Kim KY, Cha CJ. Purification and characterization of thermostable beta-glucosidase from the brown-rot basidiomycete Fomitopsis palustris grown on microcrystalline cellulose. J Microbiol 2008;46:51-55.
    1. Schiffrin EL. Immune mechanisms in hypertension and vascular injury. Clin Sci (Lond) 2014;126:267-274.
    2. Lin L, Knowlton A A. Innate immunity and cardiomyocytes in ischemic heart disease. Life Sci 2014;100:1-8.
    3. Fredman G, Spite M. Recent advances in the role of immunity in atherosclerosis. Circ Res 2013;113:elll-114.
    4. Donath MY, Dalmas E, Sauter NS, Boni-Schnetzler M. Inflammation in obesity and diabetes:islet dysfunction and therapeutic opportunity. Cell Metab 2013;17:860-872.
    5. Thwaites R, Chamberlain G, Sacre S. Emerging Role of Endosomal Toll-Like Receptors in Rheumatoid Arthritis. Front Immunol 2014;5:1.
    6. Rodrigues MC, Sanberg PR, Cruz LE, Garbuzova-Davis S. The innate and adaptive immunological aspects in neurodegenerative diseases. J Neuroimmunol 2014;269:1-8.
    7. Sykiotis GP, Bohmann D. Stress-activated cap'n'collar transcription factors in aging and human disease. Sci Signal 2010;3:re3.
    8. Mignotte V, Wall L, deBoer E, Grosveld F, Romeo PH. Two tissue-specific factors bind the erythroid promoter of the human porphobilinogen deaminase gene. Nucleic Acids Res 1989;17:37-54.
    9. Mohler J, Vani K, Leung S, Epstein A. Segmentally restricted, cephalic expression of a leucine zipper gene during Drosophila embryogenesis. Mech Dev 1991;34:3-9.
    10. Bowerman B, Eaton BA, Priess JR. skn-1, a maternally expressed gene required to specify the fate of ventral blastomeres in the early C. elegans embryo. Cell 1992;68:1061-1075.
    11. Chan JY, Han XL, Kan YW. Cloning of Nrfl, an NF-E2-related transcription factor, by genetic selection in yeast. Proc Natl Acad Sci U S A 1993;90:11371-11375.
    12. Caterina JJ, Donze D, Sun CW, Ciavatta DJ, Townes TM. Cloning and functional characterization of LCR-F1:a bZIP transcription factor that activates erythroid-specific, human globin gene expression. Nucleic Acids Res 1994;22:2383-2391.
    13. Luna L, Johnsen O, Skartlien AH, Pedeutour F, Turc-Carel C, Prydz H, et al. Molecular cloning of a putative novel human bZIP transcription factor on chromosome 17q22. Genomics 1994;22:553-562.
    14. Moi P, Chan K, Asunis I, Cao A, Kan YW. Isolation of NF-E2-related factor 2 (Nrf2), a NF-E2-like basic leucine zipper transcriptional activator that binds to the tandem NF-E2/AP1 repeat of the beta-globin locus control region. Proc Natl Acad Sci USA 1994;91:9926-9930.
    15. Kobayashi A, Ito E, Toki T, Kogame K, Takahashi S, Igarashi K, et al. Molecular cloning and functional characterization of a new Cap'n'collar family transcription factor Nrf3. J Biol Chem 1999;274:6443-6452.
    16. Derjuga A, Gourley TS, Holm TM, Heng HH, Shivdasani RA, Ahmed R, et al. Complexity of CNC transcription factors as revealed by gene targeting of the Nrf3 locus. Mol Cell Biol 2004;24:3286-3294.
    17. Chenais B, Derjuga A, Massrieh W, Red-Horse K, Bellingard V, Fisher SJ, et al. Functional and placental expression analysis of the human NRF3 transcription factor. Mol Endocrinol 2005;19:125-137.
    18. Kansanen E, Kuosmanen SM, Leinonen H, Levonen AL. The Keap1-Nrf2 pathway:Mechanisms of activation and dysregulation in cancer. Redox Biol 2013;1:45-49.
    19. McWalter GK, Higgins LG, McLellan LI, Henderson CJ, Song L, Thornalley PJ, et al. Transcription factor Nrf2 is essential for induction of NAD(P)H:quinone oxidoreductase 1, glutathione S-transferases, and glutamate cysteine ligase by broccoli seeds and isothiocyanates. J Nutr 2004;134:3499S-3506S.
    20. Itoh K, Tong KI, Yamamoto M. Molecular mechanism activating Nrf2-Keap1 pathway in regulation of adaptive response to electrophiles. Free Radic Biol Med 2004;36:1208-1213.
    21. Dhakshinamoorthy S, Jaiswal AK. Functional characterization and role of INrf2 in antioxidant response element-mediated expression and antioxidant induction of NAD(P)H:quinone oxidoreductase1 gene. Oncogene 2001;20:3906-3917.
    22. Osburn WO, Wakabayashi N, Misra V, Nilles T, Biswal S, Trush MA, et al. Nrf2 regulates an adaptive response protecting against oxidative damage following diquat-mediated formation of superoxide anion. Arch Biochem Biophys 2006;454:7-15.
    23. Wilson LA, Gemin A, Espiritu R, Singh G. ets-1 is transcriptionally up-regulated by H2O2 via an antioxidant response element. FASEB J 2005;19:2085-2087.
    24. Dhakshinamoorthy S, Porter AG. Nitric oxide-induced transcriptional up-regulation of protective genes by Nrf2 via the antioxidant response element counteracts apoptosis of neuroblastoma cells. J Biol Chem 2004;279:20096-20107.
    25. Park EY, Kim SG. NO signaling in ARE-mediated gene expression. Methods Enzymol 2005;396:341-349.
    26. Zhang DD, Lo SC, Cross JV, Templeton DJ, Hannink M. Keapl is a redox-regulated substrate adaptor protein for a Cul3-dependent ubiquitin ligase complex. Mol Cell Biol 2004;24:10941-10953.
    27. Huang H-C, Nguyen T, Pickett CB. Phosphorylation of Nrf2 at Ser-40 by protein kinase C regulates antioxidant response element-mediated transcription. Journal of Biological Chemistry 2002;277:42769-42774.
    28. Numazawa S, Ishikawa M, Yoshida A, Tanaka S, Yoshida T. Atypical protein kinase C mediates activation of NF-E2-related factor 2 in response to oxidative stress. American Journal of Physiology-Cell Physiology 2003;285:C334-C342.
    29. Bloom DA, Jaiswal AK. Phosphorylation of Nrf2 at Ser40 by protein kinase C in response to antioxidants leads to the release of Nrf2 from INrf2, but is not required for Nrf2 stabilization/accumulation in the nucleus and transcriptional activation of antioxidant response element-mediated NAD (P) H:quinone oxidoreductase-1 gene expression. Journal of Biological Chemistry 2003;278:44675-44682.
    30. Buckley BJ, Marshall ZM, Whorton A. Nitric oxide stimulates Nrf2 nuclear translocation in vascular endothelium. Biochemical and biophysical research communications 2003;307:973-979.
    31. Zipper LM, Mulcahy RT. Erk activation is required for Nrf2 nuclear localization during pyrrolidine dithiocarbamate induction of glutamate cysteine ligase modulatory gene expression in HepG2 cells. Toxicological Sciences 2003;73:124-134.
    32. Alam J, Wicks C, Stewart D, Gong P, Touchard C, Otterbein S, et al. Mechanism of heme oxygenase-1 gene activation by cadmium in MCF-7 mammary epithelial cells role of p38 kinase and Nrf2 transcription factor. Journal of Biological Chemistry 2000;275:27694-27702.
    33. Balogun E, Hoque M, Gong P, Killeen E, Green C, Foresti R, et al. Curcumin activates the haem oxygenase-1 gene via regulation of Nrf2 and the antioxidant-responsive element. Biochem J2003;371:887-895.
    34. Nakaso K, Yano H, Fukuhara Y, Takeshima T, Wada-Isoe K, Nakashima K. PI3K is a key molecule in the Nrf2-mediated regulation of antioxidative proteins by hemin in human neuroblastoma cells. FEBS letters 2003;546:181-184.
    35. Martin D, Rojo AI, Salinas M, Diaz R, Gallardo G, Alam J, et al. Regulation of heme oxygenase-1 expression through the phosphatidylinositol 3-kinase/Akt pathway and the Nrf2 transcription factor in response to the antioxidant phytochemical carnosol. Journal of Biological Chemistry 2004;279:8919-8929.
    36. Cullinan SB, Zhang D, Hannink M, Arvisais E, Kaufman RJ, Diehl JA. Nrf2 is a direct PERK substrate and effector of PERK-dependent cell survival. Molecular and cellular biology 2003;23:7198-7209.
    37. Cullinan SB, Diehl JA. PERK-dependent activation of Nrf2 contributes to redox homeostasis and cell survival following endoplasmic reticulum stress. Journal of Biological Chemistry 2004;279:20108-20117.
    38. Malhotra D, Portales-Casamar E, Singh A, Srivastava S, Arenillas D, Happel C, et al. Global mapping of binding sites for Nrf2 identifies novel targets in cell survival response through ChIP-Seq profiling and network analysis. Nucleic acids research 2010;38:5718-5734.
    39. Itoh K, Wakabayashi N, Katoh Y, Ishii T, Igarashi K, Engel JD, et al. Keapl represses nuclear activation of antioxidant responsive elements by Nrf2 through binding to the amino-terminal Neh2 domain. Genes & development 1999;13:76-86.
    40. Kensler TW, Wakabayashi N, Biswal S. Cell survival responses to environmental stresses via the Keapl-Nrf2-ARE pathway. Annu Rev Pharmacol Toxicol 2007;47:89-116.
    41. Kobayashi A, Kang M-I, Okawa H, Ohtsuji M, Zenke Y, Chiba T, et al. Oxidative stress sensor Keap1 functions as an adaptor for Cul3-based E3 ligase to regulate proteasomal degradation of Nrf2. Molecular and cellular biology 2004;24:7130-7139.
    42. Jaiswal AK. Nrf2 signaling in coordinated activation of antioxidant gene expression. Free Radical Biology and Medicine 2004;36:1199-1207.
    43. Nguyen T, Sherratt PJ, Huang H-C, Yang CS, Pickett CB. Increased Protein Stability as a Mechanism That Enhances Nrf2-mediated Transcriptional Activation of the Antioxidant Response Element DEGRADATION OF Nrf2 BY THE 26 S PROTEASOME. Journal of Biological Chemistry 2003;278:4536-4541.
    44. Giudice A, Montella M. Activation of the Nrf2-ARE signaling pathway:a promising strategy in cancer prevention. Bioessays 2006;28:169-181.
    45. Zhang Y, Gordon GB. A strategy for cancer prevention:stimulation of the Nrf2-ARE signaling pathway. Molecular cancer therapeutics 2004;3:885-893.
    46. Lee J-M, Li J, Johnson DA, Stein TD, Kraft AD, Calkins MJ, et al. Nrf2, a multi-organ protector? The FASEB Journal 2005;19:1061-1066.
    47. Chan JY, Kwong M. Impaired expression of glutathione synthetic enzyme genes in mice with targeted deletion of the Nrf2 basic-leucine zipper protein. Biochimica et Biophysica Acta (BBA)-Gene Structure and Expression 2000;1517:19-26.
    48. Ramos-Gomez M, Kwak M-K, Dolan PM, Itoh K, Yamamoto M, Talalay P, et al. Sensitivity to carcinogenesis is increased and chemoprotective efficacy of enzyme inducers is lost in nrf2 transcription factor-deficient mice. Proceedings of the National Academy of Sciences 2001;98:3410-3415.
    49. Ishii Y, Itoh K, Morishima Y, Kimura T, Kiwamoto T, IIzuka T, et al. Transcription factor Nrf2 plays a pivotal role in protection against elastase-induced pulmonary inflammation and emphysema. The Journal of Immunology 2005;175:6968-6975.
    50. Cho H-Y, Jedlicka AE, Reddy SP, Zhang L-Y, Kensler TW, Kleeberger SR. Linkage analysis of susceptibility to hyperoxia:Nrf2 is a candidate gene. American journal of respiratory cell and molecular biology 2002;26:42-51.
    51. McMahon M, Itoh K, Yamamoto M, Chanas SA, Henderson CJ, McLellan LI, et al. The Cap'n'Collar basic leucine zipper transcription factor Nrf2 (NF-E2 p45-related factor 2) controls both constitutive and inducible expression of intestinal detoxification and glutathione biosynthetic enzymes. Cancer research 2001;61:3299-3307.
    52. Khor TO, Huang M-T, Kwon KH, Chan JY, Reddy BS, Kong A-N. Nrf2-deficient mice have an increased susceptibility to dextran sulfate sodium-induced colitis. Cancer research 2006;66:11580-11584.
    53. Kraft AD, Lee JM, Johnson DA, Kan YW, Johnson JA. Neuronal sensitivity to kainic acid is dependent on the Nrf2-mediated actions of the antioxidant response element. Journal of neurochemistry 2006;98:1852-1865.
    54. Shih AY, Imbeault S, Barakauskas V, Erb H, Jiang L, Li P, et al. Induction of the Nrf2-driven antioxidant response confers neuroprotection during mitochondrial stress in vivo. Journal of Biological Chemistry 2005;280:22925-22936.
    55. Xu C, Huang M-T, Shen G., Yuan X, Lin W, Khor TO, et al. Inhibition of 7, 12-Dimethylbenz (a) anthracene-Induced Skin Tumorigenesis in C57BL/6 Mice by Sulforaphane Is Mediated by Nuclear Factor E2-Related Factor 2. Cancer research 2006;66:8293-8296.
    56. Iida K, Itoh K, Kumagai Y, Oyasu R, Hattori K, Kawai K, et al. Nrf2 is essential for the chemopreventive efficacy of oltipraz against urinary bladder carcinogenesis. Cancer research 2004;64:6424-6431.
    57. Iida K, Itoh K, Maher JM, Kumagai Y, Oyasu R, Mori Y, et al. Nrf2 and p53 cooperatively protect against BBN-induced urinary bladder carcinogenesis. Carcinogenesis 2007;28:2398-2403.
    58. Aoki Y, Sato H, Nishimura N, Takahashi S, Itoh K, Yamamoto M. Accelerated DNA adduct formation in the lung of the Nrf2 knockout mouse exposed to diesel exhaust. Toxicology and applied pharmacology 2001; 173:154-160.
    59. Iizuka T, Ishii Y, Itoh K, Kiwamoto T, Kimura T, Matsuno Y, et al. Nrf2-deficient mice are highly susceptible to cigarette smoke-induced emphysema. Genes to Cells 2005;10:1113-1125.
    60. Umemura T, Kuroiwa Y, Kitamura Y, Ishii Y, Kanki K,Kodama Y, et al. A crucial role of Nrf2 in in vivo defense against oxidative damage by an environmental pollutant, pentachlorophenol. Toxicological Sciences 2006;90:111-119.
    61. Farombi EO, Shrotriya S, Na H-K, Kim S-H, Surh Y-J. Curcumin attenuates dimethylnitrosamine-induced liver injury in rats through Nrf2-mediated induction of heme oxygenase-1. Food and Chemical Toxicology 2008;46:1279-1287.
    62. Jagatha B, Mythri RB, Vali S, Bharath M. Curcumin treatment alleviates the effects of glutathione depletion in vitro and in vivo:therapeutic implications for Parkinson's disease explained via in silico studies. Free Radical Biology and Medicine 2008;44:907-917.
    63. Rubiolo JA, Mithieux G, Vega FV. Resveratrol protects primary rat hepatocytes against oxidative stress damage::Activation of the Nrf2 transcription factor and augmented activities of antioxidant enzymes. European journal of pharmacology 2008;591:66-72.
    64. Wu L, Ashraf MHN, Facci M, Wang R, Paterson PG, Ferrie A, et al Dietary approach to attenuate oxidative stress, hypertension, and inflammation in the cardiovascular system. Proceedings of the National Academy of Sciences of the United States of America 2004;101:7094-7099.
    65. Suh JH, Shenvi SV, Dixon BM, Liu H, Jaiswal AK, Liu R-M, et al. Decline in transcriptional activity of Nrf2 causes age-related loss of glutathione synthesis, which is reversible with lipoic acid. Proceedings of the National Academy of Sciences of the United States of America 2004;101:3381-3386.
    66. Suzuki M, Betsuyaku T, Ito Y, Nagai K, Nasuhara Y, Kaga K, et al. Down-regulated NF-E2-related factor 2 in pulmonary macrophages of aged smokers and patients with chronic obstructive pulmonary disease. American journal of respiratory cell and molecular biology 2008;39:673-682.
    67. Przybysz AJ, Choe KP, Roberts LJ, Strange K. Increased age reduces DAF-16 and SKN-1 signaling and the hormetic response of< i> Caenorhabditis elegans to the xenobiotic juglone. Mechanisms of ageing and development 2009;130:357-369.
    68. Rahman MM, Sykiotis GP, Nishimura M, Bodmer R, Bohmann D. Declining signal dependence of Nrf2-MafS-regulated gene expression correlates with aging phenotypes. Aging cell 2013;12:554-562.
    69. Innamorato NG, Rojo AI, Garcia-Yagiie AJ, Yamamoto M, de Ceballos ML, Cuadrado A. The transcription factor Nrf2 is a therapeutic target against brain inflammation. The Journal of Immunology 2008;181:680-689.
    70. Rojo AI, Innamorato NG, Martin-Moreno AM, De Ceballos ML, Yamamoto M, Cuadrado A. Nrf2 regulates microglial dynamics and neuroinflammation in experimental Parkinson's disease. Glia 2010;58:588-598.
    71. Kim J, Cha Y-N, Surh Y-J. A protective role of nuclear factor-erythroid 2-related factor-2 (Nrf2) in inflammatory disorders. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis 2010;690:12-23.
    72. Biswal S, Thimmulappa RK, Harvey CJ. Experimental therapeutics of Nrf2 as a target for prevention of bacterial exacerbations in COPD. Proceedings of the American Thoracic Society 2012;9:47-51.
    73. Dworski R, Han W, Blackwell TS, Hoskins A, Freeman ML. Vitamin E prevents NRF2 suppression by allergens in asthmatic alveolar macrophages in vivo. Free Radical Biology and Medicine 2011;51:516-521.
    74. Osburn WO, Karim B, Dolan PM, Liu G, Yamamoto M, Huso DL, et al. Increased colonic inflammatory injury and formation of aberrant crypt foci in Nrf2-deficient mice upon dextran sulfate treatment. International Journal of Cancer 2007;121:1883-1891.
    75. Thimmulappa RK, Lee H, Rangasamy T, Reddy SP, Yamamoto M, Kensler TW, et al. Nrf2 is a critical regulator of the innate immune response and survival during experimental sepsis. Journal of Clinical Investigation 2006;116:984-995.
    76. Ma Q, Battelli L, Hubbs AF. Multiorgan Autoimmune Inflammation, Enhanced Lymphoproliferation, and Impaired Homeostasis of Reactive Oxygen Species in Mice Lacking the Antioxidant-Activated Transcription Factor< i> Nrf2. The American journal of pathology 2006;168:1960-1974.
    77. Lee J-M, Chan K, Kan YW, Johnson JA. Targeted disruption of Nrf2 causes regenerative immune-mediated hemolytic anemia. Proceedings of the National Academy of Sciences of the United States of America 2004;101:9751-9756.
    78. Yoh K, Itoh K, Enomoto A, Hirayama A, Yamaguchi N, Kobayashi M, et al. Nrf2-deficient female mice develop lupus-like autoimmune nephritis1. Kidney international 2001;60:1343-1353.
    79. Lee SH, Sohn DH, Jin XY, Kim SW, Choi SC, Seo GS.2',4',6'-Tris (methoxymethoxy) chalcone protects against trinitrobenzene sulfonic acid-induced colitis and blocks tumor necrosis factor-a-induced intestinal epithelial inflammation via heme oxygenase 1-dependent and independent pathways. Biochemical pharmacology 2007;74:870-880.
    80. Tamion F, Richard V, Renet S, Thuillez C. Intestinal preconditioning prevents inflammatory response by modulating heme oxygenase-1 expression in endotoxic shock model. American Journal of Physiology-Gastrointestinal and Liver Physiology 2007;293:G1308-G1314.
    81. Almolki A, Guenegou A, Golda S, Boyer L, Benallaoua M, Amara N, et al. Heme oxygenase-1 prevents airway mucus hypersecretion induced by cigarette smoke in rodents and humans. The American journal of pathology 2008;173:981-992.
    82. Dinkova-Kostova AT, Holtzclaw WD, Kensler TW. The role of Keapl in cellular protective responses. Chemical research in toxicology 2005;18:1779-1791.
    83. Dinkova-Kostova AT, Massiah MA, Bozak RE, Hicks RJ, Talalay P. Potency of Michael reaction acceptors as inducers of enzymes that protect against carcinogenesis depends on their reactivity with sulfhydryl groups. Proceedings of the National Academy of Sciences 2001;98:3404-3409.
    84. Roberts DW, Aptula AO, Patlewicz G. Electrophilic chemistry related to skin sensitization. Reaction mechanistic applicability domain classification for a published data set of 106 chemicals tested in the mouse local lymph node assay. Chemical research in toxicology 2007;20:44-60.
    85. Wilkinson B, Micklefield J. Mining and engineering natural-product biosynthetic pathways. Nature chemical biology 2007;3:379-386.
    86. Reisman SA, Aleksunes LM, Klaassen CD. Oleanolic acid activates Nrf2 and protects from acetaminophen hepatotoxicity via Nrf2-dependent and Nrf2-independent processes. Biochemical pharmacology 2009;77:1273-1282.
    87. Ohigashi H, Takamura H, Koshimizu K, Tokuda H, Ito Y. Search for possible antitumor promoters by nhibition of 12-<> 0-tetradecanoylphorbol-13-acetate-induced Epstein-Barr virus activation; Ursolic acid and oleanolic acid from an anti-inflammatory Chinese medicinal plant,< i> Glechoma hederaceae L. Cancer letters 1986;30:143-151.
    88. Nishino H, Nishino A, Takayasu J, Hasegawa T, Iwashima A, Hirabayashi K, et al. Inhibition of the tumor-promoting action of 12-O-tetradecanoylphorbol-13-acetate by some oleanane-type triterpenoid compounds. Cancer research 1988;48:5210-5215.
    89. Huang M-T, Ho C-T, Wang ZY, Ferraro T, Lou Y-R, Stauber K, et al. Inhibition of skin tumorigenesis by rosemary and its constituents carnosol and ursolic acid. Cancer research 1994;54:701-708.
    90. Yu L, Ma R, Wang Y, Nishino H, Takayasu J, He W, et al. Potent anti-tumorigenic efFect of tubeimoside 1 isolated from the bulb of Bolbostemma paniculatum (maxim) franquet. International Journal of Cancer 1992;50:635-638.
    91. Umehara K, Takagi R, Kuroyanagi M, Ueno A, Taki T, Chen Y. Studies on differentiation-inducing activities of triterpenes. Chemical & pharmaceutical bulletin 1992;40:401-405.
    92. LIU L, Liu Y, Mao Q, KLAASSEN C. The effects of 10 triterpenoid compounds on experimental liver injury in mice. Toxicological Sciences 1994;22:34-40.
    93. Honda T, Finlay HJ, Gribble GW, Suh N, Sporn MB. New enone derivatives of oleanolic acid and ursolic acid as inhibitors of nitric oxide production in mouse macrophages. Bioorganic & Medicinal Chemistry Letters 1997;7:1623-1628.
    94. Suh N, Honda T, Finlay HJ, Barchowsky A, Williams C, Benoit NE, et al. Novel triterpenoids suppress inducible nitric oxide synthase (iNOS) and inducible cyclooxygenase (COX-2) in mouse macrophages. Cancer research 1998;58:717-723.
    95. Konopleva M, Tsao T, Ruvolo P, Stiouf I, Estrov Z, Leysath CE, et al. Novel triterpenoid CDDO-Me is a potent inducer of apoptosis and differentiation in acute myelogenous leukemia. Blood 2002;99:326-335.
    96. de Zeeuw D, Akizawa T, Audhya P, Bakris GL, Chin M, Christ-Schmidt H, et al. Bardoxolone methyl in type 2 diabetes and stage 4 chronic kidney disease. New England Journal of Medicine 2013;369:2492-2503.
    97. Ichikawa T, Li J, Meyer CJ, Janicki JS, Hannink M, Cui T. Dihydro-CDDO-trifluoroethyl amide (dh404), a novel Nrf2 activator, suppresses oxidative stress in cardiomyocytes. PloS one 2009;4:e8391.
    98. Tan Y, Ichikawa T, Li J, Si Q, Yang H, Chen X, et al. Diabetic Downregulation of Nrf2 Activity via ERK Contributes to Oxidative Stress-Induced Insulin Resistance in Cardiac Cells In Vitro and In Vivo. Diabetes 2011;60:625-633.
    99. Xing Y, Niu T, Wang W, Li J, Li S, Janicki JS, et al. Triterpenoid dihydro-CDDO-trifluoroethyl amide protects against maladaptive cardiac remodeling and dysfunction in mice:a critical role of Nrf2. PloS one 2012;7:e44899.
    100. Reisman SA, Ward KW, Klaassen CD, Meyer CJ. CDDO-9, 11-dihydro-trifluoroethyl amide (CDDO-dhTFEA) induces hepatic cytoprotective genes and increases bile flow in rats. Xenobiotica 2012;43:571-578.
    101. Aminzadeh MA, Reisman SA, Vaziri ND, Khazaeli M, Yuan J, Meyer CJ. The synthetic triterpenoid RTA dh404 (CDDO-dhTFEA) restores Nrf2 activity and attenuates oxidative stress, inflammation, and fibrosis in rats with chronic kidney disease. Xenobiotica 2013:1-9.
    102. Chin M, Lee C-YI, Chuang J-C, Bumeister R, Wigley WC, Sonis ST, et al. Bardoxolone methyl analogs RTA 405 and dh404 are well tolerated and exhibit efficacy in rodent models of Type 2 diabetes and obesity. American Journal of Physiology-Renal Physiology 2013;304:F1438-F1446.
    103. Ramachandran G. Gram-positive and gram-negative bacterial toxins in sepsis A brief review. Virulence 2014;5.
    104. Park BS, Lee J-O. Recognition of lipopolysaccharide pattern by TLR4 complexes. Experimental & molecular medicine 2013;45:e66.
    105. Zanoni I, Granucci F. Role of CD 14 in host protection against infections and in metabolism regulation. Frontiers in cellular and infection microbiology 2013;3.
    106. Wang Y, Ge P, Zhu Y. TLR2 and TLR4 in the brain injury caused by cerebral ischemia and reperfusion. Mediators of inflammation 2013;2013.
    107. Conti G, Coppo R, Amore A. [Pathogenesis of systemic lupus erythematosus (LES)]. Giornale italiano di nefrologia:organo ufficiale della Societa italiana di nefrologia 2011;29:S84-90.
    108. Sirisinha S. Insight into the mechanisms regulating immune homeostasis in health and disease.2011.
    109. Dunne A, Marshall NA, Mills KH. TLR based therapeutics. Current opinion in pharmacology 2011;11:404-411.
    110. Paunovic V, Harnett MM. Mitogen-activated protein kinases as therapeutic targets for rheumatoid arthritis. Drugs 2013;73:101-115.
    111. Ling J, Kumar R. Crosstalk between NFkB and glucocorticoid signaling:a potential target of breast cancer therapy. Cancer letters 2012;322:119-126.
    112. Mathema VB, Koh Y-S, Thakuri BC, Sillanpaa M. Parthenolide, a sesquiterpene lactone, expresses multiple anti-cancer and anti-inflammatory activities. Inflammation 2012;35:560-565.
    113. Bak M-J, Truong VL, Kang H-S, Jun M, Jeong W-S. Anti-Inflammatory Effect of Procyanidins from Wild Grape (Vitis amurensis) Seeds in LPS-Induced RAW 264.7 Cells. Oxidative medicine and cellular longevity 2013;2013.
    114. Zhong C, Liu X-H, Chang J, Yu J-M, Sun X. Inhibitory effect of resveratrol dimerized derivatives on nitric oxide production in lipopolysaccharide-induced RAW 264.7 cells. Bioorganic& Medicinal Chemistry Letters 2013;23:4413-4418.
    115. Bak M-J, Hong S-G, Lee J-W, Jeong W-S. Red ginseng marc oil inhibits iNOS and COX-2 via NFκB and p38 pathways in LPS-stimulated RAW 264.7 macrophages. Molecules 2012;17:13769-13786.
    116. Konopleva M, Contractor R, Kurinna S, Chen W, Andreeff M, Ruvolo P. The novel triterpenoid CDDO-Me suppresses MAPK pathways and promotes p38 activation in acute myeloid leukemia cells. Leukemia 2005;19:1350-1354.
    117. Hammer KD, Yum M-Y, Dixon PM, Birt DF. Identification of JAK-STAT pathways as important for the anti-inflammatory activity of a< i> Hypericum perforatum fraction and bioactive constituents in RAW 264.7 mouse macrophages. Phytochemistry 2010;71:716-725.
    118. Samavati L, Rastogi R, Du W, Huttemann M, Fite A, Franchi L. STAT3 tyrosine phosphorylation is critical for interleukin 1 beta and interleukin-6 production in response to lipopolysaccharide and live bacteria. Molecular immunology 2009;46:1867-1877.
    119. Tsoyi K, Nizamutdinova IT, Jang HJ, Mun L, Kim HJ, Seo HG, et al. Carbon Monoxide From CORM-2 Reduces HMGB1 Release Through Regulation of IFN-β/JAK2/STAT-1/INOS/NO Signaling But Not COX-2 in TLR-Activated Macrophages. Shock 2010;34:608-614.
    120. Ahmad R, Raina D, Meyer C, Kufe D. Triterpenoid CDDO-methyl ester inhibits the Janus-activated kinase-1 (JAK1)→signal transducer and activator of transcription-3 (STAT3) pathway by direct inhibition of JAK1 and STAT3. Cancer research 2008;68:2920-2926.
    121. Honda T, Janosik T, Honda Y, Han J, Liby KT, Williams CR, et al. Design, synthesis, and biological evaluation of biotin conjugates of 2-cyano-3, 12-dioxooleana-1,9 (11)-dien-28-oic acid for the isolation of the protein targets. Journal of medicinal chemistry 2004;47:4923-4932.
    1. Sykiotis GP, Bohmann D. Stress-activated cap'n'collar transcription factors in aging and human disease. Science signaling 2010;3:re3.
    2. Chan JY, Han X-L, Kan YW. Isolation of cDNA encoding the human NF-E2 protein. Proceedings of the National Academy of Sciences 1993;90:11366-11370.
    3. Chan JY, Han X-L, Kan YW. Cloning of Nrfl, an NF-E2-related transcription factor, by genetic selection in yeast. Proceedings of the National Academy of Sciences 1993;90:11371-11375.
    4. Moi P, Chan K, Asunis I, Cao A, Kan YW. Isolation of NF-E2-related factor 2 (Nrf2), a NF-E2-like basic leucine zipper transcriptional activator that binds to the tandem NF-E2/AP1 repeat of the beta-globin locus control region. Proceedings of the National Academy of Sciences 1994;91:9926-9930.
    5. Itoh K, Igarashi K, Hayashi N, Nishizawa M, Yamamoto M. Cloning and characterization of a novel erythroid cell-derived CNC family transcription factor heterodimerizing with the small Maf family proteins. Molecular and cellular biology 1995;15:4184-4193.
    6. Kobayashi A, Ito E, Toki T, Kogame K, Takahashi S, Igarashi K, et al. Molecular cloning and functional characterization of a new Cap'n'collar family transcription factor Nrf3. Journal of Biological Chemistry 1999;274:6443-6452.
    7. Oyake T, Itoh K, Motohashi H, Hayashi N, Hoshino H, Nishizawa M, et al. Bach proteins belong to a novel family of BTB-basic leucine zipper transcription factors that interact with MafK and regulate transcription through the NF-E2 site. Molecular and cellular biology 1996;16:6083-6095.
    8. Muto A, Hoshino H, Madisen L, Yanai N, Obinata M, Karasuyama H, et al. Identification of Bach2 as a B-cell-specific partner for small Maf proteins that negatively regulate the immunoglobulin heavy chain gene 3'enhancer. The EMBO journal 1998;17:5734-5743.
    9. Johnsen (?), Skammelsrud N, Luna L, Nishizawa M, Prydz H, Kolst(?) A-B. Small Maf proteins interact with the human transcription factor TCF11/Nrfl/LCR-F1. Nucleic acids research 1996;24:4289-4297.
    10. McMahon M, Itoh K, Yamamoto M, Chanas SA, Henderson CJ, McLellan LI, et al. The Cap'n'Collar basic leucine zipper transcription factor Nrf2 (NF-E2 p45-related factor 2) controls both constitutive and inducible expression of intestinal detoxification and glutathione biosynthetic enzymes. Cancer research 2001;61:3299-3307.
    11. Shivdasani RA, Orkin SH. Erythropoiesis and globin gene expression in mice lacking the transcription factor NF-E2. Proceedings of the National Academy of Sciences 1995;92:8690-8694.
    12. Chan JY, Kwong M, Lu R, Chang J, Wang B, Yen T, et al. Targeted disruption of the ubiquitous CNC-bZIP transcription factor, Nrf-1, results in anemia and embryonic lethality in mice. The EMBO journal 1998;17:1779-1787.
    13. Venugopal R, Jaiswal AK. Nrfl and Nrf2 positively and c-Fos and Fral negatively regulate the human antioxidant response element-mediated expression of NAD (P) H:quinone oxidoreductasel gene. Proceedings of the National Academy of Sciences 1996;93:14960-14965.
    14. Itoh K, Chiba T, Takahashi S, Ishii T, Igarashi K, Katoh Y, et al. An Nrf2/small Maf heterodimer mediates the induction of phase II detoxifying enzyme genes through antioxidant response elements. Biochemical and biophysical research communications 1997;236:313-322.
    15. Kansanen E, Kuosmanen SM, Leinonen H, Levonen A-L. The Keapl-Nrf2 pathway:Mechanisms of activation and dysregulation in cancer. Redox biology 2013;1:45-49.
    16. Mc Walter GK, Higgins LG, McLellan LI, Henderson CJ, Song L, Thornalley PJ, et al. Transcription factor Nrf2 is essential for induction of NAD (P) H: quinone oxidoreductase 1, glutathione S-transferases, and glutamate cysteine ligase by broccoli seeds and isothiocyanates. The Journal of nutrition 2004;134:3499S-3506S.
    17. Itoh K, Tong KI, Yamamoto M. Molecular mechanism activating Nrf2-Keapl pathway in regulation of adaptive response to electrophiles. Free Radical Biology and Medicine 2004;36:1208-1213.
    18. Dhakshinamoorthy S, Jaiswal AK. Functional characterization and role of INrf2 in antioxidant response element-mediated expression and antioxidant induction of NAD (P) H:quinone oxidoreductasel gene. Oncogene 2001;20.
    19. Osburn WO, Wakabayashi N, Misra V, Nilles T, Biswal S, Trush MA, et al. Nrf2 regulates an adaptive response protecting against oxidative damage following diquat-mediated formation of superoxide anion. Archives of biochemistry and biophysics 2006;454:7-15.
    20. Chan JY, Kwong M. Impaired expression of glutathione synthetic enzyme genes in mice with targeted deletion of the Nrf2 basic-leucine zipper protein. Biochimica et Biophysica Acta (BBA)-Gene Structure and Expression 2000;1517:19-26.
    21. Ramos-Gomez M, Kwak M-K, Dolan PM, Itoh K, Yamamoto M, Talalay P, et al. Sensitivity to carcinogenesis is increased and chemoprotective efficacy of enzyme inducers is lost in nrf2 transcription factor-deficient mice. Proceedings of the National Academy of Sciences 2001;98:3410-3415.
    22. Ishii Y, Itoh K, Morishima Y, Kimura T, Kiwamoto T, Ilzuka T, et al. Transcription factor Nrf2 plays a pivotal role in protection against elastase-induced pulmonary inflammation and emphysema. The Journal of Immunology 2005; 175:6968-6975.
    23. Cho H-Y, Jedlicka AE, Reddy SP, Zhang L-Y, Kensler TW, Kleeberger SR. Linkage analysis of susceptibility to hyperoxia:Nrf2 is a candidate gene. American journal of respiratory cell and molecular biology 2002;26:42-51.
    24. Khor TO, Huang M-T, Kwon KH, Chan JY, Reddy BS, Kong A-N. Nrf2-deficient mice have an increased susceptibility to dextran sulfate sodium-induced colitis. Cancer research 2006;66:11580-11584.
    25. Kraft AD, Lee JM, Johnson DA, Kan YW, Johnson JA. Neuronal sensitivity to kainic acid is dependent on the Nrf2-mediated actions of the antioxidant response element. Journal of neurochemistry 2006;98:1852-1865.
    26. Shih AY, Imbeault S, Barakauskas V, Erb H, Jiang L, Li P, et al. Induction of the Nrf2-driven antioxidant response confers neuroprotection during mitochondrial stress in vivo. Journal of Biological Chemistry 2005;280:22925-22936.
    27. Xu C, Huang M-T, Shen G, Yuan X, Lin W, Khor TO, et al. Inhibition of 7, 12-Dimethylbenz (a) anthracene-Induced Skin Tumorigenesis in C57BL/6 Mice by Sulforaphane Is Mediated by Nuclear Factor E2-Related Factor 2. Cancer research 2006;66:8293-8296.
    28. Iida K, Itoh K, Kumagai Y, Oyasu R, Hattori K, Kawai K, et al. Nrf2 is essential for the chemopreventive efficacy of oltipraz against urinary bladder carcinogenesis. Cancer research 2004;64:6424-6431.
    29. Iida K, Itoh K, Maher JM, Kumagai Y, Oyasu R, Mori Y, et al. Nrf2 and p53 cooperatively protect against BBN-induced urinary bladder carcinogenesis. Carcinogenesis 2007;28:2398-2403.
    30. Aoki Y, Sato H, Nishimura N, Takahashi S, Itoh K, Yamamoto M. Accelerated DNA adduct formation in the lung of the Nrf2 knockout mouse exposed to diesel exhaust. Toxicology and applied pharmacology 2001;173:154-160.
    31. Iizuka T, Ishii Y, Itoh K, Kiwamoto T, Kimura T, Matsuno Y, et al. Nrf2-deficient mice are highly susceptible to cigarette smoke-induced emphysema. Genes to Cells 2005;10:1113-1125.
    32. Umemura T, Kuroiwa Y, Kitamura Y, Ishii Y, Kanki K, Kodama Y, et al. A crucial role of Nrf2 in in vivo defense against oxidative damage by an environmental pollutant, pentachlorophenol. Toxicological Sciences 2006;90:111-119.
    33. Farombi EO, Shrotriya S, Na H-K, Kim S-H, Surh Y-J. Curcumin attenuates dimethylnitrosamine-induced liver injury in rats through Nrf2-mediated induction of heme oxygenase-1. Food and Chemical Toxicology 2008;46:1279-1287.
    34. Rubiolo JA, Mithieux G, Vega FV. Resveratrol protects primary rat hepatocytes against oxidative stress damage::Activation of the Nrf2 transcription factor and augmented activities of antioxidant enzymes. European journal of pharmacology 2008;591:66-72.
    35. Wu L, Ashraf MHN, Facci M, Wang R, Paterson PG, Ferrie A, et al. Dietary approach to attenuate oxidative stress, hypertension, and inflammation in the cardiovascular system. Proceedings of the National Academy of Sciences of the United States of America 2004;101:7094-7099.
    36. Suh JH, Shenvi SV, Dixon BM, Liu H, Jaiswal AK, Liu R-M, et al. Decline in transcriptional activity of Nrf2 causes age-related loss of glutathione synthesis, which is reversible with lipoic acid. Proceedings of the National Academy of Sciences of the United States of America 2004;101:3381-3386.
    37. Suzuki M, Betsuyaku T, Ito Y, Nagai K, Nasuhara Y, Kaga K, et al. Down-regulated NF-E2-related factor 2 in pulmonary macrophages of aged smokers and patients with chronic obstructive pulmonary disease. American journal of respiratory cell and molecular biology 2008;39:673-682.
    38. Innamorato NG, Rojo AI, Garcia-Yagiie AJ, Yamamoto M, de Ceballos ML, Cuadrado A. The transcription factor Nrf2 is a therapeutic target against brain inflammation. The Journal of Immunology 2008;181:680-689.
    39. Rojo AI, Innamorato NG, Martin-Moreno AM, De Ceballos ML, Yamamoto M, Cuadrado A. Nrf2 regulates microglial dynamics and neuroinflammation in experimental Parkinson's disease. Glia 2010;58:588-598.
    40. Kim J, Cha Y-N, Surh Y-J. A protective role of nuclear factor-erythroid 2-related factor-2 (Nrf2) in inflammatory disorders. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis 2010;690:12-23.
    41. Biswal S, Thimmulappa RK, Harvey CJ. Experimental therapeutics of Nrf2 as a target for prevention of bacterial exacerbations in COPD. Proceedings of the American Thoracic Society 2012;9:47-51.
    42. Dworski R, Han W, Blackwell TS, Hoskins A, Freeman ML. Vitamin E prevents NRF2 suppression by allergens in asthmatic alveolar macrophages in vivo. Free Radical Biology and Medicine 2011;51:516-521.
    43. Osburn WO, Karim B, Dolan PM, Liu G, Yamamoto M, Huso DL, et al. Increased colonic inflammatory injury and formation of aberrant crypt foci in Nrf2-deficient mice upon dextran sulfate treatment. International Journal of Cancer 2007;121:1883-1891.
    44. Thimmulappa RK, Lee H, Rangasamy T, Reddy SP, Yamamoto M, Kensler TW, et al. Nrf2 is a critical regulator of the innate immune response and survival during experimental sepsis. Journal of Clinical Investigation 2006;116:984-995.
    45. Ma Q, Battelli L, Hubbs AF. Multiorgan Autoimmune Inflammation, Enhanced Lymphoproliferation, and Impaired Homeostasis of Reactive Oxygen Species in Mice Lacking the Antioxidant-Activated Transcription Factor< i> Nrf2. The American journal of pathology 2006;168:1960-1974.
    46. Lee J-M, Chan K, Kan YW, Johnson JA. Targeted disruption of Nrf2 causes regenerative immune-mediated hemolytic anemia. Proceedings of the National Academy of Sciences of the United States of America 2004;101:9751-9756.
    47. Yoh K, Itoh K, Enomoto A, Hirayama A, Yamaguchi N, Kobayashi M, et al. Nrf2-deflcient female mice develop lupus-like autoimmune nephritis1. Kidney international 2001;60:1343-1353.
    48. Lee SH, Sohn DH, Jin XY, Kim SW, Choi SC, Seo GS.2',4',6'-Tris (methoxymethoxy) chalcone protects against trinitrobenzene sulfonic acid-induced colitis and blocks tumor necrosis factor-a-induced intestinal epithelial inflammation via heme oxygenase 1-dependent and independent pathways. Biochemical pharmacology 2007;74:870-880.
    49. Tamion F, Richard V, Renet S, Thuillez C. Intestinal preconditioning prevents inflammatory response by modulating heme oxygenase-1 expression in endotoxic shock model. American Journal of Physiology-Gastrointestinal and Liver Physiology 2007;293:G1308-G1314.
    50. Almolki A, Guenegou A, Golda S, Boyer L, Benallaoua M, Amara N, et al. Heme oxygenase-1 prevents airway mucus hypersecretion induced by cigarette smoke in rodents and humans. The American journal of pathology 2008;173:981-992.
    51. Lee J-M, Johnson JA. An important role of Nrf2-ARE pathway in the cellular defense mechanism. BMB Reports 2004;37:139-143.
    52. Pae H-O, Oh G-S, Lee B-S, Rim J-S, Kim Y-M, Chung H-T. 3-Hydroxyanthranilic acid, one of L-tryptophan metabolites, inhibits monocyte chemoattractant protein-1 secretion and vascular cell adhesion molecule-1 expression via heme oxygenase-1 induction in human umbilical vein endothelial cells. Atherosclerosis 2006;187:274-284.
    53. Chen X-L, Dodd G, Thomas S, Zhang X, Wasserman MA, Rovin BH, et al. Activation of Nrf2/ARE pathway protects endothelial cells from oxidant injury and inhibits inflammatory gene expression. American Journal of Physiology-Heart and Circulatory Physiology 2006;290:H1862-H1870.
    54. Levonen A-L, Inkala M, Heikura T, Jauhiainen S, Jyrkkanen H-K, Kansanen E, et al. Nrf2 gene transfer induces antioxidant enzymes and suppresses smooth muscle cell growth in vitro and reduces oxidative stress in rabbit aorta in vivo. Arteriosclerosis, thrombosis, and vascular biology 2007;27:741-747.
    55. Ho F-M, Kang H-C, Lee S-T, Chao Y, Chen Y-C, Huang L-J, et al The anti-inflammatory actions of LCY-2-CHO, a carbazole analogue, in vascular smooth muscle cells. Biochemical pharmacology 2007;74:298-308.
    56. Karuri AR, Huang Y, Bodreddigari S, Sutter CH, Roebuck BD, Kensler TW, et al.3H-1,2-dithiole-3-thione targets nuclear factor κB to block expression of inducible nitric-oxide synthase, prevents hypotension, and improves survival in endotoxemic rats. Journal of Pharmacology and Experimental Therapeutics 2006;317:61-67.
    57. Steele VE, Hawk ET, Viner JL, Lubet RA. Mechanisms and applications of non-steroidal anti-inflammatory drugs in the chemoprevention of cancer. Mutation Research/Fundamental and Molecular Mechanisms of Metagenesis 2003;523:137-144.
    58. Kundu JK, Shin YK, Surh Y-J. Resveratrol modulates phorbol ester-induced pro-inflammatory signal transduction pathways in mouse skin< i> in vivo: NF-κB and AP-1 as prime targets. Biochemical pharmacology 2006;72:1506-1515.
    59. Healy ZR, Lee NH, Gao X, Goldring MB, Talalay P, Kensler TW, et al. Divergent responses of chondrocytes and endothelial cells to shear stress: cross-talk among COX-2, the phase 2 response, and apoptosis. Proceedings of the National Academy of Sciences of the United States of America 2005;102:14010-14015.
    60. Mochizuki M, Ishii Y, Itoh K, Iizuka T, Morishima Y, Kimura T, et al. Role of 15-Deoxy△12,14 Prostaglandin J2 and Nrf2 Pathways in Protection against Acute Lung Injury. American journal of respiratory and critical care medicine 2005;171:1260-1266.
    61. Marzec JM, Christie JD, Reddy SP, Jedlicka AE, Vuong H, Lanken PN, et al. Functional polymorphisms in the transcription factor NRF2 in humans increase the risk of acute lung injury. The FASEB Journal 2007;21:2237-2246.
    62. Roth M, Black J. Transcription factors in asthma:are transcription factors a new target for asthma therapy? Current drug targets 2006;7:589-595.
    63. Rangasamy T, Guo J, Mitzner WA, Roman J, Singh A, Fryer AD, et al. Disruption of Nrf2 enhances susceptibility to severe airway inflammation and asthma in mice. The Journal of experimental medicine 2005;202:47-59.
    64. Li N, Nel AE. Role of the Nrf2-mediated signaling pathway as a negative regulator of inflammation:implications for the impact of particulate pollutants on asthma. Antioxidants & redox signaling 2006;8:88-98.
    65. Powell CV, Nash AA, Powers HJ, Primhak RA. Antioxidant status in asthma. Pediatric pulmonology 1994;18:34-38.
    66. FRYER AA, BIANCO A, HEPPLE M, JONES PW, STRANGE RC, SPITERI MA. Polymorphism at the glutathione S-transferase GSTP1 locus:a new marker for bronchial hyperresponsiveness and asthma. American journal of respiratory and critical care medicine 2000;161:1437-1442.
    67. Sussan TE, Rangasamy T, Blake DJ, Malhotra D, El-Haddad H, Bedja D, et al. Targeting Nrf2 with the triterpenoid CDDO-imidazolide attenuates cigarette smoke-induced emphysema and cardiac dysfunction in mice. Proceedings of the National Academy of Sciences 2009;106:250-255.
    68. Rahman I. Regulation of glutathione in inflammation and chronic lung diseases. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis 2005;579:58-80.
    69. Nichols DP, Ziady AG, Shank SL, Eastman JF, Davis PB. The triterpenoid CDDO limits inflammation in preclinical models of cystic fibrosis lung disease. American Journal of Physiology-Lung Cellular and Molecular Physiology 2009;297:L828.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700