用户名: 密码: 验证码:
煤的循环流化床富氧燃烧及排放特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着全球工业化进程加速,温室气体CO2过度排放造成的全球气候变暖问题越来越严重,由此导致的气候异常引起了严重的环境危机。富氧燃烧技术是一项可实现CO2零排放的先进技术。循环流化床富氧燃烧技术较煤粉炉具有更多的优势,但其研究起步较晚,尚有许多问题需要解决。本论文针对煤的循环流化床富氧燃烧和污染物排放特性进行试验研究。
     在23kW循环流化床富氧燃烧试验系统上,完成了约33%整体氧气浓度中煤的燃烧试验研究。试验结果表明:煤在整体氧气浓度33%、最大局部氧气浓度57.8%时,实现了安全稳定燃烧;通过调整配风,NO和N2O排放量下降、燃烧效率提高,其中龙口煤的燃烧效率达到98.67%。
     建造了0.15MW循环流化床富氧燃烧试验系统,并实现了50%整体氧气浓度下的长时间稳定运行;探索出50%氧气浓度下循环流化床的点火启动、运行和停炉的操作方法;验证了该试验系统只能在富氧条件下启动且不能进行压火操作。
     50%氧气浓度下,研究了配风对煤燃烧和污染物排放特性的影响。一次风氧气浓度和一次风率分别在45%~55%和50%~100%之问变化时,神木煤、石沟驿煤、大同煤均实现安全稳定燃烧;随一次风氧气浓度增加,煤的燃烧效率提高,神木煤燃烧效率最高达到96.24%;通过调整配风,可有效降低CO、N2O和NO排放浓度,但对SO2排放基本没有影响。
     在0.15MW循环流化床富氧燃烧试验系统上,完成了粒径和氧气浓度对煤燃烧和燃料中N和S转化率影响的试验研究。试验结果表明:在50%整体氧气浓度下,高氧气浓度放大了粒径分布和热破碎性对煤燃烧的影响,燃用大同煤时应选用较大的粒径;同空气气氛中的煤燃烧相比,50%氧气浓度气氛下煤的N-N2O转化率、N-NO转化率分别降低为空气气氛的19%~82%、32%~68%,可见提高氧气浓度可有效降低煤燃烧产生的氮氧化物,但提高氧气浓度对煤中S向SO2转化率影响不大。
With fast development of global industrialization, the earth becomes warmer and warmer due to the excessive emission of greenhouse gas CO2, leading to serious environmental crisis. Oxy-fuel combustion technology is advanced, because zero CO2emission can be achieved. Compared with pulverized coal combustion, there are more advantages for oxy-fuel combustion in circulating fluidized beds. However, the research on oxy-fuel combustion in circulating fluidized beds (CFB) starts late, thus many items are still needed to be researched. In this dissertation, oxy-fuel combustion characteristics and pollutant emission of coal in circulating fluidized beds are investigated.
     Experiments were carried out in a23kW CFB combustion test rig with the overall oxygen concentration of about33%. The results show that coal could be combusted stably in the CFB with the overall oxygen concentration of33%and the local oxygen concentration of57.8%. Optimizaing the air distribution can help to reduce the emission of N2O and NO and improve the combustion efficiency. The combustion efficiency of Longkou coal could reach98.67%.
     0.15MW CFB combustion test system was constructed. Combustion could keep stable for a long time with the overall oxygen concentration of50%. The ignition, operation and shutdowns process of CFB was explored at50%oxygen concentration and banking fire could not be operated in the system. The system could only be started at oxy-fuel atmosphere.
     The influence of air distribution on combustion characteristics and pollutant emission was studied at50%oxygen concentration atmosphere. It was revealed that when the oxygen concentration of primary air was between45%and55%and the flow ratio of primary air ranged from50%to100%, the coal from Shenmu, Shigouyi and Datong could all be stably combusted. With the increase in the oxygen concentration of primary air, the combustion efficiency is improved, which could reach96.24%for Shenmu coal. Optimizaing the air distribution can effectively reduce the emission of CO, N2O and NO. However, it has no obvious effect on SO2emission.
     In the0.15MW CFB combustion test system, the effects of particle size and oxygen concentration on coal combustion were investigated, and the conversion rates of N and S were also studied. The results indicate that the impact of particle size distribution and thermal fragmentation of coal on combustion was amplified at high oxygen concentration atmosphere. The size of the Datong coal particles should be increased in order to keep stable operation of the CFB. Compared with combustion at the air atmosphere, both the conversion rates of N to N2O and to NO decrease19%-82%and32%-68%at50%overall oxygen concentration. However, increasing the overall oxygen concentration has no obvious effect on the conversion rate of S to SO2.
引文
[1]Umberto D, Alberto P. Performance modeling of a carbon dioxide removal system for power plants [J]. Energy Conversion & Management,1999,40(18):1899-1915.
    [2]张阿玲,方栋.温室气体CO2的控制和回收利用[M].北京:中国环境科学出版社,1996,2.
    [3]骆仲映,刘妮,高翔等.中国能源工业的现状与发展[J].动力工程,1999(增刊):1-21.
    [4]赵晶,刘通,黄冠荣.中国拟在2012年前后开征二氧化碳排放税[J].中国园林,2010,6:101.
    [5]中华人民共和国统计局.中国统计年鉴2011[M].北京:中国统计出版社,2011.
    [6]Shackley S, Reiner D, Upham P, et al. The acceptability of CO2 capture and storage (CCS) in Europe:An assessment of the key determining factors Part 2. The social acceptability of CCS and the wider impacts and repercussions of its implementation [J]. International Journal of Greenhouse Gas Control,2009,3 (3):344-356.
    [7]Patel S, Reitenbach G. Major Scottish Coal Plant Starts CCS Pilot Program [J]. Power,2009, 153 (8):14-15.
    [8]Liang D P, Wu W W. Barriers and incentives of CCS deployment in China: Results from semi-structured interviews [J]. Energy Policy,2009,37 (6):2421-2432.
    [9]Garg A, Shukla P R. Coal and energy security for India: Role of carbon dioxide (CO2) capture and storage (CCS) [J]. Energy,2009,34(8):1032-1041.
    [10]Patel S, Reitenbach G, Major Scottish. Coal Plant Starts CCS Pilot Program [J]. Power,2009, 153(8):14-15.
    [11]Buhre B, Elliott L, Sheng C, et al. Oxy-fuel combustion technology for coal-fired power generation [J]. Progress in Energy and Combustion Science,2005,31:283-307.
    [12]Alan M, Edward J, Bassam J. Recovering CO2 from large and mediun-size stationary combustors [J]. Air Waste Manage Assoc,1991,41:449-454.
    [13]Nozaki T, Takano S, Kiga T, et al. Analysis of the Flame During Oxidation of Pulverized Coal by and O2/CO2 Mixture [J]. Energy,1997,22(2/3):199-205.
    [14]K Okazaki, T Ando. NOX Reduction Mechanism in Coal Combustion with Recycled CO2 [J]. Energy,1997,22(2/3):207-215.
    [15]L Santoro, S Vaccaro, A Aldi, et al. Fly ashes reactivity in relation to coal combustion under flue gas recycling conditions [J]. Thermo chemical acta,1997, (296):67-74.
    [16]唐强,王丽朋,李建雄等.O2/CO2气氛下煤粉燃烧热重分析及动力学特性[J].重庆大学学报,2009,32(12):1440-1445.
    [17]梁秀俊,阎维平.O2/CO2气氛下煤焦燃烧反应动力学特性试验研究[J].华东电力,2009,37(12):2104-2108.
    [18]段伦博,赵长遂,李庆钊等.O2/CO2气氛下煤焦燃烧试验研究[J].燃料化学学报,2009,37(6):654-658.
    [19]Okazaki K, Ando T. NOX Reduction Mechanism in Coal Combustion with Reeyeled CO2 [J]. Energy,1997,22(2/3):207-215.
    [20]Okawa M, Kimura N, Kiga T, et al. The characteristic of pulverized coal combustion in the system of O2/CO2 combustion for CO2 reeovery [J]. ASRACC,1997,543-546.
    [21]陈传敏,赵长遂,庞克亮.O2/CO2气氛下燃煤过程中NOx排放特性试验研究[J].东南大学学报,2005,35(5):738-741.
    [22]张永春,张军,盛昌栋等.O2/N2、O2/CO2和O2/CO2/NO气氛下煤粉燃烧NOx排放特性[J].化工学报,2010,61(1):159-164.
    [23]王春波,周慧.小型循环流化床富氧燃烧NOx的生成试验与模拟研究[J].动力工程学报,2010,30(6):420-424.
    [24]李庆钊,赵长遂,武卫芳等.O2/CO2气氛下燃煤NO排放特性的试验研究[J].中国电机工程学报,2009,29(33):33-39.
    [25]王宏,董学文,邱建荣等.燃煤在O2/CO2方式下NOx生成特性的研究[J].燃料化学学报,2001,29(5):458-462.
    [26]Croiset E, Thambimuthu K, Palmer A. Coal combustion in O2/CO2 mixtures compared with air [J]. Canadian Journal of Chemical Engineering,2000,78 (2):402-407.
    [27]Croiset E, Thambimuthu K V. Coal combustion with flue gas recirculation for CO2 recovery [C]. Interlaken, Switzerland,1998:581-586.
    [28]Croiset E, Thambimuthu K. NOx and SO2 emissions from O2/CO2 recycle coal combustion [J]. Fuel,2001,80 (14):2117-2121.
    [29]Tan Y, Croiset E, Douglas M, et al. Combustion characteristics of coal in a mixture of oxygen and recycled flue gas [J]. Fuel,2006,85 (4):507-512.
    [30]Snow M, Longwell J, Sarofim A. Direct sulfation of calcium carbonate [J]. Industrial & Engineering Chemistry Research,1988,27 (2):268-273.
    [31]Hajaligol M, Longwell J, Sarofim A F. Analysis and modeling of the direct sulfation of CaCO3 [J]. Industrial & Engineering Chemistry Research,1988,27 (12):2203-2210.
    [32]王宏,张礼知,陆晓华等.O2/CO2方式下钙基吸收剂在脱硫过程中微观结构变化的研究[J1.工程热物理学报,2001,22(1):127-129.
    [33]王宏,张礼知,邱建荣等.高C02浓度下钙基吸收剂脱硫的试验研究[J].工程热物理学报,2001,22(3):374-377.
    [34]张礼知,王宏,张庆丰等.O2/CO2气氛下燃煤的钙基脱硫规律的试验研究[J].燃料化学学报,2000,28(6):508-511.
    [35]周英彪,郑瑛,张礼知.空气与O2+CO2气氛下钙基脱硫剂固硫规律的试验研究[J].热能动力工程,2001,16(4):409-411.
    [36]Liu H, Katagiri S, Kaneko U, et al. Sulfation behavior of limestone under high CO2 concentration in O2/CO2 coal combustion [J]. Fuel,2000,79 (8):945-953.
    [37]Liu H, Katagiri S, Okazaki K. Decomposition behavior and mechanism of calcium sulfate under the condition of O2/CO2 pulverized coal combustion [J]. Chemical Engineering Communications,2001,187:199-214.
    [38]Liu H, Katagiri S, Okazaki K. Drastic SOX removal and influences of various factors in O2/CO2 pulverized coal combustion system [J]. Energy & Fuels,2001,15 (2):403-412.
    [39]Liu H, Luo C H, Kato S, et al. Kinetics of CO2/char gasification at elevated temperatures-Part I: Experimental results [J]. Fuel Processing Technology,2006,87 (9):775-781.
    [40]Liu H, Luo C H, Toyota M, et al. Mineral reaction and morphology change during gasification of coal in CO2 at elevated temperatures [J]. Fuel,2003,82 (5):523-530.
    [41]Liu H, Okazaki K. Simultaneous easy CO2 recovery and drastic reduction of SOX and NOX in O2/CO2 coal combustion with heat recirculation [J]. Fuel,2003,82 (11):1427-1436.
    [42]Liu H, Zailani R, Gibbs B A. Pulverized coal combustion in air and in O2/CO2 mixtures with NOx recycle [J]. Fuel,2005,84 (16):2109-2115.
    [43]Liu H, Zailani R, Gibbs B M. Comparisons of pulverized coal combustion in air and in mixtures of O2/CO2 [J]. Fuel,2005,84 (7-8):833-840.
    [44]Mai M, Edgar T. Surface area evolution of calcium hydroxide during calcinations sintering [J]. Aiche Journal,1989,35 (1):30-36.
    [45]Hanson C, Tullin C. Sintering of calcium carbonate and lime mud in a carbon dioxide atmosphere [J]. Journal of Pulp and Paper Science,1996,22 (9):J327-J331.
    [46]Borgwardt R H. Sintering of nascent calcium oxide [J]. Chemical Engineering Science,1989, 44 (1):53-60.
    [47]Borgwardt R. Calcium oxide sintering in atmospheres containing water and carbon dioxide [J]. Industrial & Engineering Chemistry Research,1989,28 (4):493-500.
    [48]Borgwardt R, Rochelle G. Sintering and sulfation of calcium silicate-calcium aluminate [J]. Industrial & Engineering Chemistry Research,1990,29 (10):2118-2123.
    [49]Hughes R, Jia L, Tan Y, et al. Oxy-Fuel Combustion of Coal In a Circulating Fluidized Bed Combustor [C]. The 19th International Conference on Fluidized Bed Combustion, Vienna: Austris,2006.
    [50]邹春,黄志军,初琨等.燃煤O2/CO2循环燃烧过程中SO2与NOx协同脱除的中试研究[J].中国电机工程学报,2009,29(2):20-24.
    [51]黄志军,邹春,初琨等.O2/CO2循环燃烧中NOx的中试试验研究[J].工程热物理学报,2009,30(12):2141-2144.
    [52]张利琴.煤烟气再循环燃烧颗粒物排放特性的试验研究[D].北京:清华大学,2008.
    [53]刘忠,宋蔷,姚强等.O2/CO2燃烧技术及其污染物生成与控制[J].华北电力大学学报,2007,34(1):82-88.
    [54]Liu H, Luo C H, Toyota M, et al. Mineral reaction and morphology change during gasification of coal in CO2 at elevated temperatures [J], Fuel,2003,82 (5):523-530.
    [55]Liu H, Zailani R, Gibbs B. Pulverized coal combustion in air and in O2/CO2 mixtures with NOX recycle [J]. Fuel,2005,84 (16):2109-2115.
    [56]Liu H, Zailani R, Gibbs B. Comparisons of pulverized coal combustion in air and in mixtures of O2/CO2 [J]. Fuel,2005,84 (7-8):833-840.
    [57]Okawa M, Kimura N, Kiga T et al. Trial design for a CO2 recovery power plant by burning pulverized coal in O2/CO2 [J]. Energy Covers Mgmt,1997,38:123-127.
    [58]Wosky A M. A new method of CO2 recovery 79th Annual Meeting of the Air Pollution Control Association [C]. Minneapolis, USA, June22-27,1986.
    [59]Shiniehi T, Takashi K, Yoshihiko E, et al. CO2 recovery from PCF Power Plant with O2/CO2 combustion process [J]. IHI Engineering Review,1995,28(4):446-450.
    [60]Armand A, Paul J, Nsakala Y, et al. Alstom's Oxy-Firing Technology Development And Demonstration-Near Term CO2 Solutions [C].34st International Technical Conference on Coal Utilization & Fuel Systems, May 31-June 4,2009, Florida, USA.
    [61]Andnies J, Becht J, Hoppesteyn P. Pressurized fiuidized bed combustion and gasifieation of coal using flue gas recireulation and oxygen injeetion [J]. Energy Convers Mgmt,1997,38: s117-s122.
    [62]Marion J, Bozzuto C, Andrus H, et al. Greenhouse gas emissions control by oxygen firing in circulating fluidized bed boilers:Phase 1-A preliminary systems evaluation [R]. PPL Report No PPL-03-CT009,2003.
    [63]Gregory N, Timothy E, David G, et al. ALSTOM'S Oxygen-fired CFB Technology Development Status for CO2 Mitigation [C].31st International Technical Conference on Coal Utilization & Fuel Systems, May 21-25,2006, Florida, USA.
    [64]Griffin T, Bill A, Marion J, et al. CO2 control technologies:ALSTOM Power approach [J]. Greenhouse Gas Control Technologies,2003:81-86.
    [65]Timo E, Kalle N, Arto H, et al. Near Zero CO2 Emissions In Coal Firing With Oxy-fuel CFB Boiler [C]. VGB-KELI 2008 Conference, Hamburg, Germany, May 6-8,2008.
    [66]Hughes R, Jia L, Tan Y, et al. Oxy-Fuel Combustion of Coal In a Circulating Fluidized Bed Combustor [C]. The 19th International Conference on Fluidized Bed Combustion, Vienna, Austris,2006.
    [67]Jia L, Tan Y, Wang C, et al. Experimental Study of Oxy-Fuel Combustion and Sulfur Capture in a Mini-CFBC [J]. Energy & Fuels,2007,21,3160-3164.
    [68]Wu Y, Wang C, Tan Y, et al. Characterization of ashes from a 100 kW(th) pilot-scale circulating fluidized bed with oxy-fuel combustion [J]. Applied Energy,2011,88(9): 2940-2948.
    [69]Jia L, Tan Y, McCalden D, et al. Commissioning of a 0.8 MWth CFBC for oxy-fuel combustion.
    [70]Duan B, Zhou W, Li H, et al. Sulfur fate during bituminous coal combustion in an oxy-fired circulating fluidized bed combustor [J]. Korean Journal of Chemical Engineering,2011, 28(9):1952-1955.
    [71]Duan B, Zhao C, Zhou W, et al. O2/CO2 coal combustion characteristics in a 50 kW(th) circulating fluidized bed [J]. International Journal of Greenhouse Gas Control,2011,5(4): 770-776.
    [72]Duan L, Zhao C, Zhou W, et al. Effects of operation parameters on NO emission in an oxy-fired CFB combustor [J]. Fuel Processing Technology,2011,92(3):379-384.
    [73]胡晓伟,罗光前,袁蓓等.02/C02气氛下石灰石直接硫化行为研究[C].中国工程热物理学会燃烧会议.中国工程热物理学会,广州,2010:170.
    [74]周鹜,赵长遂,段伦博等.02/CO2燃烧方式下H2O对NO生成的影响[C].中国工程热物理学会,广州,2010:101.
    [75]Mao Y, Fang M, Luo Z, et al. Experiment research on coal/char combustion in O2/CO2 mixed atmosphere [M]. Shanghai 200031:Shanghai Scientific & Technical Literature Publ,2003.
    [76]Mao Y, Fang M X, Wang Q H, et al. Experiment study and analysis of coal combustion on a CFB test-facility in O2/CO2 and O2/N2 mixtures [M]. Nanjing: Southeast Univ press,2003.
    [77]Chui E, Douglas M, Tan Y. Modeling of oxy-fuel combustion for a western Canadian sub-bituminous coal [J]. Fuel,2003,82(10):1201-1210.
    [78]Chui E H, Douglas M A, Tan Y. Modeling of oxy-fuel combustion for a western Canadian sub-bituminous coal [J]. Fuel,2003,82(10):1201-1210.
    [79]赵科,吕清刚,段翠九.流化床02/C02燃烧研究(Ⅰ)-高氧气浓度下的燃烧试验[J].热能动力工程,2011,26(4),453-456.
    [80]段翠九,赵科,谭力等.循环流化床高氧气浓度下煤燃烧和氮氧化物排放特性[J].锅炉 技术,2011,42(6):24-27.
    [81]Courtemanche B, Levendis Y. A laboratory study on the NO, NO2, SO2, CO and CO2 emissions from the combustion of pulverized coal, municipal waste plastics and tires [J]. Fuel,1998,77(3):183-196.
    [82]新井纪男.燃烧生成物的发生与抑制技术[M].北京:科学出版社,2001:70-77.
    [83]Loffler G, Andahazy D, Wartha C, et al. NOX and N2O formation mechanisms-a detailed chemical kinetic modeling study on a single fuel particle in a laboratory-scale fluidized bed [J]. Journal of Energy Resources Technology,2001,123(3):228-235.
    [84]Johnsson E. Formation and Reduction of Nitrogen Oxides in Fluidized-Bed Combustion [J]. Fuel,1994,73(9):1398-1415.
    [85]Kramlich J, Cole J, McCarthy J, et al. Mechanism of nitrous oxide formation in coal flames [J]. Combust Flame,1989,77:375-384.
    [86]Boerrigter H, Bodenstaff H, Wilberink W, et al. Pyrolysis of Biomass and Coal in a Bubbing Fluidized-Bed Reactor [R]. Fate of Fuel-Bound Nitrogen,2004.
    [87]刘皓,陆继东,冯波等.焦炭的非均相反应对循环流化床煤燃烧中N2O生成与分解的影响[J].中国电机工程学报,1998,18(4):237-240.
    [88]陈艳容,张力,冉景煜等.煤层气与煤矸石在循环流化床内混烧影响因素的试验研究[J].煤炭学报,2009,34(10):1374-1378.
    [89]Hiltunen M, Kilpinen P, Hupa M, et al. N2O emission from CFB boilers:Experimental results and chemical interpretation [C]. Proc 11th Int Conf on FBC Ed Anthony E J Montreal, Canada: ASME Press,1991:678-694.
    [90]Amand L, Leckner B. Influence of fuel nitrogen on emission of nitrogen oxides (NO and N2O) from an 8MW fluideized bed boiler [J]. Combust Flame,1991,84:181-196.
    [91]岑可法,倪明江,骆仲泱等.循环流化床锅炉理论设计与运行[M].北京:中国电力出版社,2006:300-450.
    [92]路春美,程世庆,王永征等.循环流化床锅炉设备与运行[M].北京:中国电力出版社,2003:128-1322.
    [93]段伦博,周骛,屈成锐等.50 kW循环流化床O2/CO2气氛下煤燃烧及污染物排放特性[J].中国电机工程学报,2011,31(5):7-12.
    [94]Marban G, Pis J, Fuertes A. Characterizing Fuel for atmospheric fluidized bed combustion [J]. Combustion and Flame,1995,103:41-58.
    [95]Lee S, Kim S, Lee D. Particle size reduction of anthracite coals during devolatilization in a thermobalance reactor [J]. Fuel,2002,81:1633-1639.
    [96]Lee J, Kim J S, Kim J J. Combustion characteristica of Korean anthracite coals in a CFB reactor [J]. Fuel,2003,82:1349-1357.
    [97]李庚,徐明厚,于敦喜等.燃煤过程中孔隙结构变化对煤焦破碎的影响[J].煤炭技术,2005,6:107-109.
    [98]Chirone R, Massimilla L. Primary fragmentation in fluidized bed combustion of anthracites [J]. Power technology,1991,64(3):249-258.
    [99]Chirone R, Salatino P, Massimilla L. Secondary fragmentation of char particlesduring combustion in a fluidized bed [J]. Combustion and Flame,1989,77(1):79-90.
    [100]李爱民,池涌,严建华等.大颗粒碳在流化床中燃烧的热应力破碎理论[J].煤炭学,1998,23(2):208-211.
    [101]Rodrigue J M, Sanchez J R, Alvaro A, et al. Fluidization and elutriation of iron oxide particles, A study of attrition and agglomeration processes in fluidized beds [J]. Powder technology,2000,111(3):218-230.
    [102]秦宏,柏静儒,刘文正等.循环流化床内煤的热解破碎研究[J].东北电力大学学报,2008,28(6):72-74.
    [103]何宏舟,骆仲泱,方梦祥等.龙岩煤不同宏观煤岩组分的热破碎性质研究[J].燃料化学学报,2005,33(5):534-539.
    [104]赵虹,郑敏,周永刚.不同煤化程度煤的可磨性指数变化和破碎特性[J].能源工程,2006,6:28-31.
    [105]Dacombe P, Pourkashanian M, Williams A. Combustion-induced-fragmentation behavior of isolated coal particles [J]. Fuel,1999,78(15):1847-1857.
    [106]Stubington J, Linjewile T. The effects of fragmentation on devolatilization of large coal particles [J]. Fuel,1989,68(2):155-160.
    [107]Wojitowitz M, Oued L, Tromp P, et al. Combustion as a source of nitrous oxide [J]. Fuel Proc Technol,1993,34:1-71.
    [108]Bramer E, Valk M. Nitrous oxide and nitric oxide emissions by fluidized bed combustion [C]. Prco 11th Int Conf on FBC Ed Anthony E J Montreal, Canada: ASME Press,1991: 992-998.
    [109]De Soete G. G. Heterogenous reactions on coal and char, with emphasis on N2O formation [C]. Conference held at Chalmers University,1988.
    [110]De Soete G. Contribution of N2O to stratospheric ozone depletion and green house ef fect; global N2O budget and cont ribution from fossil fuel combustion [C].1st Topic Oriented Technical Meeting (TOEeM1), Amsterdam,1989.
    [111]Glassman I. Combustion.Orlando [M]. FL:Academic Press,1987.
    [112]Westbrook C, Dryer F. Simplied Reaction Mechnism for the Oxidation of Hydrocarbon Fuels in Flames [J]. Combustion Science and Technology,1981,79:31-43.
    [113]Law C. Combustion Physics [M]. New York: Cambridge University Press,2006.
    [114]电源开发株式会社.亚酸化窒素(NO0)举动调查[R].日本:电源开发株式会社,1990.
    [115]李庆钊,赵长遂.O2/CO2气氛煤粉燃烧特性试验研究[J].中国电机工程学报.2007,27(35):39-43.
    [116]李庆钊,赵长遂,武卫芳等.O2/CO2气氛下煤粉燃烧反应动力学的试验研究[J].动力工程,2008,28(3):447-452.
    [117]李庆钊,赵长遂,武卫芳等.基于TG-FTIR研究O2/CO2气氛下烟煤的燃,烧特性[J].东南大学学报(自然科学版),2007,37(6):198-203.
    [118]张利琴,宋蔷,吴宁等.煤烟气再循环富氧燃烧污染物排放特性研究[J].中国电机工程学报,2009,29(29):35-40.
    [119]刘彦丰,阎维平,宋之平.炭碳粒在O2/CO2气氛中燃烧速率的研究[J].工程热物理学报,1999,20(6):769-771.
    [120]黄庠永,刘加勋,姜秀民.O2/CO2气氛中超细煤粉着火特性[J].中国电机工程学,2010,30(11):50-55.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700