用户名: 密码: 验证码:
低合金高强钢双丝焊热过程数值模拟及接头组织转变行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高效焊接是现代焊接生产的发展趋势,然而低合金高强度钢对大热输入适应性差,普遍存在局部脆化现象,如何兼顾低合金高强度钢的高强韧性和焊接性,成为结构钢接头设计的关键因素。焊接热过程的准确分析和评定,是研究焊接接头组织转变、应力变形分析、焊接质量控制的基础。早期研究表明舰船用钢10Ni3CrMoV钢具有显著的热输入敏感性和脆化现象,本论文选用此钢为研究对象,采用数值模拟、物理模拟和焊接试验相结合的方法,对低合金钢大热输入下双丝焊热过程及其接头组织转变行为和韧化机理进行系统研究。主要研究成果如下:
     研制了多路焊接测温仪,研究了双丝焊接热循环规律及双丝焊热循环与熔池特征之间关系。在热输入为21.7-43.9KJ/cm的范围内,丝间距直接影响双丝焊热循环及其特征参数,双丝焊下800℃到500℃的冷却时间(t8/5)值大于前、后丝单独施焊时t8/5值之和(即t8/5双>t8/5前+t8/5后),调整丝间距可以控制热循环。
     用数值模拟方法,首次研究了双丝焊工艺参数与熔池存在形式、熔池尺寸以及峰值温度Tp和t8/5之间的关系。焊接熔池的大小和特征直接影响到接头尺寸和热影响区的宽窄,并最终影响到接头性能。研究表明,双丝焊工艺参数与两弧开始形成两独立熔池的临界位置存在对应关系:当前、后丝电流与电压分别为31A、37A与700V、500V时,焊速为1OOcm/min,丝间距为40mm时形成分离熔池,当焊速变为60cm/min,丝间距为60mm时开始形成分离熔池,即当焊接电流和电压不变时,随着焊速的增加,共熔池状态提前结束,两分离熔池提前到来;且前丝电弧形成的熔宽和熔深基本不随熔池特征变化,后丝电弧形成的熔宽和熔深都是在熔池即将分离的时候达到最大值。在丝间距一定,随着焊速增加,HAZ某一点的Tp逐渐降低;当E不断增加时,HAZ某一点的Tp值并不是直线上升,而是当前丝热输入低于后丝热输入(即E1     用物理模拟方法,研究了双丝焊接热循环对10Ni3CrMoV钢接头组织转变行为的影响及接头脆化机理。表明大热输入下粗晶区脆化是由粗晶脆化、析出相脆化、组织遗传脆化引起。研究发现,粗晶区显微组织以大颗粒状贝氏体或板条贝氏体为主,TEM精细组织观察发现在粗大贝氏体板条内及板条间存在M-A组元,晶内存在高密度位错,晶界有碳化物析出钉扎位错,裂纹在这样的组织中极容易产生和扩展,引起粗晶区韧性恶化。在热输入为35.19KJ/cm,丝间距40mm时,粗晶区板条贝氏体间有残余奥氏体薄膜,宽度约为0.025-0.01nm,裂纹扩展受到阻碍使粗晶区韧性得以改善,是间距20mm时粗晶区韧性值的两倍。调整双丝焊总热输入、改变前后丝热输入比例和调整丝间距等,可以改变HAZ热循环以达到改善HAZ的组织和性能。对于10Ni3Cr-MoV钢来说,控制热输入在30KJ/cm-40KJ/cm范围,保证t8/3在80-350s之间,可以得到80%以上的贝氏体组织,同时通过调整丝间距L在40mm-100mm之间,控制二次热循环峰值温度Tp2(650℃≤Tp2≤980℃),以改善和细化粗晶区贝氏体组织。
     用焊接试验,研究了双丝埋弧焊工艺参数对10Ni3CrMoV钢焊缝成形及性能的影响,优化了双丝焊接工艺参数。在热输入为21.7KJ/cm-40KJ/cm,双丝串列方式且丝间距为20-100mm,焊速为60-100cm/min时,焊道成形和接头截面形貌良好且接头力学性能优良。丝间距是影响HAZ冲击韧性的主要因素之一,热输入为35.19KJ/cm时,10Ni3CrMoV钢对接接头-40℃的CTOD的特征值δ0.05和δi分别为0.185mm和0.250mm。
     用数值模拟方法,研究了丝间距对低合金钢焊接残余应力的影响。当焊接电流、电压和焊速一定,丝间距在0-100mm之间变化时,双丝焊最大焊接残余应力出现在焊缝中心和焊趾处。随着丝间距增大,焊缝中心残余应力值变化在482.70-633.428MPa范围内,且最大值没有超过母材的抗拉强度;焊趾处的焊接残余应力有减小趋势,残余应力值变化范围1298.21-775.27MPa,丝间距20mm以下残余应力已经超过母材的抗拉强度,因此在小间距共熔池焊接时应注意防止焊趾处开裂。
High-effective welding is the development trend of modern welding production, however, high strength low alloy steel (HSLA) are unadaptable to high heat input. How to give consideration to the high Strength-Toughness and weldability of HSLA has become a key to design steel structure. Effect of welding thermal analysis and assessment of the accuracy are the foundation and prerequisite of metallurgical analysis, stress deformation analysis, welding process control and weld microstructure transformation.
     Early results showed that the ship with 1ONiCrMoV steel has significant correlation exists and heat input sensitivity. The subject take 1ONiCrMoV steel as research object, using combination methods of numerical simulation, physical simulation, welding manufacturability test, mathematical statistics to do a system research on the thermal effect of HSLA in double wire welding. The specific conclusions are as follows:
     Multi-channel welding colorimeter was developed. The laws of double-wire welding thermal and pool features of HSLA were studied. In the heat input for 21.7-43.9KJ/cm, the double-wire welding heat cycle and characteristic parameters were affected by wire spacing directly. The measured values of t8/5 were closely related to the distance between welding wires.
     Simulation program of twin-wire welding through the secondary development of ANSYS software is designed, Full use of basic operation of the array vector to provide new ideas for speeding up the calculation of simulation. Algorithm which is double-wire moving heat source to calculation loading was proposed. This algorithm can shorten the computing time as well as simplify the loading operation of moving heat source, mainly took an array of storage and related operations of vector as support. This calculation model can be easily extended to the calculation of multiple-wire welding.
     Analysis the numerical simulation results in weld temperature field of twin-wire welding, first study the rules among parameters of twin-wire welding, state of the molten pool, size of the molten pool, thermal cycling parameters such as peak temperature (Tp) and cooling times from 800℃to 500℃(t8/5):Firstly, there is a critical relationship between parameters of twin-wire welding and the position where the two arc of the twin-wire began to form two independent molten pool. With Current, voltage constant and the increase of welding speed, the common molten pool state is terminate early and the two separate pool is arrival early; the weld width and penetration that formed by the arc of first wire is maintained constant values; while the weld width and penetration that formed by the arc of second wire reach the maximum when the molten pool is going to be separated. Secondly, the tp gradually decreased with the increase of welding speed under the same distance between welding wires, and the impact of heat input (E) is much greater than the distance between two wires as to value of tp of the same point, while the tp value at the same point are not always rise with E increasing, however, some decline appeared when the heat input of first wire is lower than the heat input of second wire(E1     Analysis of mechanism and influencing factors of embrittlement on CGHAZ with the large heat input. The major microscopic reasons that result in the toughness of CGHAZ descending are austenite coarsening caused by high temperature, the increase of quantity and grain size of granular bainite, structure heredity, grain boundary effect and a large number of dislocation within intragranular and grain boundary. By using of physical simulation to enlarge and reproduction HAZ, Microstructure of coarse grain zone is be made up of granular bainite or lath bainite, with a large block of M-A island and high-density dislocation or grain boundary carbide precipitation distribution along the grain boundary and bainite lath, cracks in coarse grain area prone to cracks and expansion, which is the micro-mechanism of toughness deterioration in CGHAZ. In wire spacing 40mm, there are austenite thin sheet between lath bainite, crack hampered so as to improve the toughness of coarse grain area, that is twice of that in 20mm spacing. To 10Ni3CrMoV steel, by the control of heat input E at 30KJ/cm-40KJ/cm, ensure t8/3 at 80-350s, over 80% of bainite is get, at the same time by adjusting the wire spacing L (40mm≤L≤100mm), control of the second thermal cycle peak temperature Tp2 (650℃≤Tp2≤980℃), to improve and refine coarse grain zone bainite, so toughness is improved.
     The ways to improve toughness of the welding joints is explored. The post weld heat treatment (PWHT) can significantly improve the toughness of welded joints, but pay attention to controlling holding time to avoid carbide precipitate in thin section or precipitation along the grain boundary and avoid high temperature temper brittleness.
     With forming a good weld and joint cross-section morphology and excellent mechanical properties of joints, two-wire serial mode and the wire spacing of 20-100mm, welding speed 60-100cm/min is suitable for welding HSLA. The wire spacing is the more main factors to impact of HAZ impact toughness than welding speed, of which coarse grain zone embrittlement serious. The CTOD-40℃of 16mm steel of butt joints, with heat input 35.19KJ/cm, the values ofδ0.05 andδi are 0.185mm and 0.250mm.
     The results of stress field numerical simulation in twin-wire welding show that the maximum of welding residual stress of welded joint distribution along the weld toe and weld center when the distance between welding wires is range from 0-100mm. The welding residual stress of weld center is increases with the distance between welding wires increasing, while the maximum does not exceed the yield strength. Accordingly, when we formulate the final welding process, the main consideration is given to performance of welded joints and appearance of seam, unnecessary considering its impact on the residual stress of welding seam center with the changing of distance between welding wires.The welding residual stress of weld toe is decrease with the distance of welding wires increase, therefore we should pay attention to prevent cracking of weld toe when weld in common molten pool with small spacing.
引文
[1]王九清,王文亮,吴建鹏.提高低合金高强度钢强韧性的措施[J].宽厚板.2001,7(5):10-15.
    [2]杨才‘福,张永权.新一代易焊接高强度高韧性船体钢的研究[J].钢铁,2001,36(11):50-54.
    [3]姚春发,苏航,杨才福.HSLA80钢焊接冷裂纹敏感性研究[J].上海金属,2008,30(4):30-34.
    [4]魏占静等.TANDEM双丝焊在造船拼板焊接中的应用[J].焊接,2007,5(1):75-76.
    [5]何小东.高钢级油气输送管道环焊缝双丝焊接技术的应用[J].钢管,2007,36(2):33-36.
    [6]潘全喜,屈金山,钟玉等.16Mn钢埋弧焊接头组织及其性能研究[J],焊接·切割,2007,36(19):42-44.
    [7]QING Xiao-Zhong. Recent report about abroad pressure vessel HSLA steel[J].Chemical and Mechanics,1981(6):43-53.
    [8]韩彬,邹增大,曲仕尧等.双(多)丝埋弧焊方法及应用[J].焊管,2003,26(4):21-24.
    [9]余圣甫,杨可,雷毅等.大热输入焊接高强度低合金钢热影响区的晶粒细化[J].焊接学报,2008,29(3):17-20.
    [10]单文超,曹净淑,王志伟.双丝电弧焊研究进展[J].油气田地面工程,2007,26(2):45-48.
    [11]李为卫,宫少涛,熊庆人等.2205双相不锈钢的焊接性及焊接技术[J].热加工工艺,2006,35(3):36-38.
    [12]苏腾太.焊接熔池形状和温度场的特点及其在直缝埋弧焊中的应用[J].钢管,2003.32(5):20-22.
    [13]付魁军,及玉梅,翟晓莉.双丝埋弧焊工艺参数对接头组织与性能的影响[J].焊接,2004(7):28-31.
    [14]C.S.Wu.Computer simulated of three-dimensional comvection in traveling MIG weld pools[J].Engineering Computation,1992,9(5):529-537
    [15]苏腾太.焊接熔池形状和温度场的特点及其在直缝埋弧焊中的应用[J].技术交流,2003,23(5):20-22.
    [16]周振丰,张文钺.焊接冶金与金属焊接性(第2板)[M].北京:机械工业出版社,1988.24-25.
    [17]Y.Ueda,et.al.A computational model of phase transformation for welding processes[J].Transactions of JWRI,1995,24(1):95-100.
    [18]胡美娟.12mm厚TC4钦合金板电子束焊接温度场应力场三维有限元数值模拟[D]:[硕士学位论文].西安:西北工业大学,2005.
    [19]武传松.焊接热过程与熔池形态[M].机械工业出版社.2007.第一版.
    [20]Rosenthal D.Mathematical theory of heat distribution during welding and cutting[J].Weld.,1947,20(5):220-234.
    [21]雷卡林H.焊接热过程计算[M].庄鸿寿,徐碧宇译.北京:中国工业出版社,1958.
    [22]Eagar T W, Tsai N S.Temperature fields produced by traveling distributed sources[J].Weld.J.,1983,62(12):346-355.
    [23]Grong Φ. Metallurgical modeling of Welding(2nd Edition).London:The Institute of Materials,1997,61-64.
    [24]Nguyen N T, Mai Y W,Simpson S,et al. Analytical approximate solution for double ellipsoidal heat source in finite thickness plate [J].Weld,J.2004,83(3):82-93.
    [25]Wu C S, Xu G X, Li K H,et al. Analysis of double-electrode gas metal arc welding[C].Proceedings of the Fifth International Conference on Trends in Welding Research, ASM International,2006,813-817.
    [26]H.D.Hibbert.Computat ion of TemPerature in Actual Weld Design[J]. welding Journal,1975,vol.54,385-392.
    [27]J.Goldak,et la.Computer Modeling Of Heat Flow in welding[J].Metallurgical Transactions B,Step.1986,vol.17B,587-600.
    [28]郑炜.脉冲TIG焊接熔池流场与热场动态过程的数值模拟[D]:[博士学位论文].哈尔滨:哈尔滨工业大学,1996.
    [29]武传松,L.Dron.熔滴冲击力MIG焊接熔池表面形状的影响[J].金属学报,1997,33(7):774-780.
    [30]莫春立,钱百年,国旭明等.焊接热源计算模式的研究进展[J].焊接学报,2001,6(3):93-96;
    [31]王玉辉.钢水温度软测量[D]:[硕士学位论文].天津:天津轻工业学院,2001,12
    [32]Hen-rik Sieurin,Rolf Sandstrom.Austenite reformation in the heat-affected zone of duplex stainless steel 2205.Materials Science and Engineering A.2006,418, 250-256.
    [33]P.A.Nanohar,D.P.Dunne,T.Chandra.Grain grownth predictions in microalloyed teels[J].IAIJ,1996,36:194-200.
    [34]N.Gao,T.N.Baker.Austenite grain growth behaviou of microstructure AL-V-N and AL-V-TI-Nsstees[J].ISIJ,1998,38:774-751.
    [35]M.eroglu,M.Aksoy.Effect of coarse initial grain size on microstructure and mechanical properties of weld metal and HAZ of a low carbon steel[J].Materials science and engineering,1999,A269:59-66.
    [36]李玉衡,包芳涵.低碳低合金调质钢焊接热影响区组织遗传性及其对韧性的影响[J],焊接学报,1987,8(4):10-13
    [37]周翠兰.85Cr2Mn2Mo钢组织遗传的研究[J].铸造设备研究,1999,12-15.
    [38]崔占全.26Cr2Ni4MoV转子钢的奥氏体再结晶及其消除组织遗传[J].钢铁,1999(34)4:37-39.
    [39]D.P.Fairchild.A study Concerning Intercritical HAZ Mirostructure and Toughness in HSLA steels[J],welding Research,1991,12(3):3-9.
    [40]S.Augara. Influence of Local Brittle Zone on Toughness of TMCP Steels, International Conference on the Metallurgy[C].Welding and Qualification of Microalloyed (HSLA) Steelweldments,1990,Houston,USA.
    [41]辛希贤.X60管线钢焊接热影响区的韧性研究[J].焊管,1992,15(6):23-26.
    [42]NJ.Smith et al, Microstructure/Mechanical Property Relationships of Submerged Arc Welds in HSLA80 Steel [J],Welding Journal,1989,68(3):24-38.
    [43][苏]萨多夫斯基,钢的组织遗传性[M].机械工业出版社,1980.
    [44]R.F.Hehemann.Phase Transformation,ASM,1970,3.
    [45]Sungtak Lee, Byung Chun Kim, Dongil Kwon. Fracture Toughness Analysis of Heat-Affected Zones in High-Strength Low-Alloyed Steel Welds[J]. Metal Trans, 1993,24A:2803
    [46]C. L,Davis, J. E. King. Cleavage Initiation in the Intercritally Reheated-Coarsed Grained Heat Affected Zone:Part 1, Fractographic Evidence. MetallMater Trans, 1994,25A:563
    [47]F. Matsuda, Effect of Weld Thermal Cycles on the HA Z Toughness of SQV 22A Pressure Vessel Steel[J]. Trends in Welding Research, Gat linburg Tennessee,1995, 541
    [48]Kenji Ohya, Jongseop Kim, Kenich Yokoyama. Micro structures Relevant to Brittle Fracture Initiation at the Heat-Affected Zone of Weldment of a Low Carbon Steel[J]. Metall. Mater Trans,1996,27A,2574.
    [49]王宏,郑建军,刘翠荣.高强钢焊接接头组织遗传问题的研究[J].焊接技术,2000,29(2):5-6.
    [50]付瑞东,逯允海,杨永强,张文辉.2.25Cr1Mo0.25V耐热钢焊接热影响区热模拟试验研究[J].材料热处理学报,2007(28)1:66-70.
    [51]习天辉,袁泽喜.大线能量焊接用钢热影响区组织和性能的研究进展[J].特殊钢,2003,24(5):1-4.
    [52]Hrivnak I. Weldability of nlodenl steel materials[J]. ISU International,1995, 35(10):148.
    [53]Moitra A, Parameswaran P, Mannana S L. A toughness study of the weld heat-afected zone of a 9Cr-1Mo steel[J]. Materials Characterization,2002,48:55.
    [54]Nawrocki J G, Dupont J N, Marder A B. The postweld heat-treatment response of simulated carse-grained heat-afected zones in a new steel[J].Metallurgical and Martials Transactions A,2001,32(10):2585.
    [55]Balambramanian V,Gulmb B·Efect of welding processes on toe cracking behaviour of pressure vessel grade steel[J].Engineering Failure Analysis,2004,11:575.
    [56]高惠临,董玉华,王荣.管线钢焊接临界粗晶区局部脆化现象的研究[J].材料热处理学报,2001,22(2):60.
    [57]方洪渊,魏金山,张田宏.10CrNi3MoV钢焊接热影响区组织和晶粒度研究[J].材料科学与与工艺,2003,(11)3,240-243.
    [58]L.Habraken,M.Econompulous,Transformation and Hardenability in Steels[J],Climax Molybdeum Comp. of Michigan,1967,8
    [59]R.F.Hehemann,Phase Transformation,ASM,1970,3.
    [60]B.C.KIM.Microstructure and local brittle zone phenomena in high strength low alloy welds[J],metal.transA,1991,22(l):139-149
    [61]Kenji Ohya, Jongseop Kim, Kenich Yokoyama. Micro structures Relevant to Brittle Fracture Initiation at the Heat-Affected Zone of Weldment of a Low Carbon Steel[J]. Metall Mater Trans,1996,27A,2574.
    [62]Sungtak Lee,Byung Chun Kim, Dongil Kwon.Correlation of microstructure and fracture properties in weld heat-affected zones of thermomechanically contolled processed steels[J].Metall Trans,1992.23 A:2803
    [63]吕德林.焊接金相分析[M].北京:机械工业出版社,1987.
    [64]J.Habraken.Revue de metallurgie.1956,53:930.
    [65]P.L.Mangonon.Effect of alloying elements on the microstructure and properties of a nor-rolled low carbon low alloy bainitic steel[J].Metal Trans,1976,9A:1389.
    [66]李明.粒状贝氏体的回火组织与性能的研究[J].金属热处理,1989,(11):16-21.
    [67]黄维刚,郑子久,左汝林等.15MnMoVNRe钢焊接热影响区的组织与断裂韧性..兵器材料与工程[J],1989,12:42-47.
    [68]周鹿宾.不同贝氏体对钢的性能影响及控制方法[J].金属热处理,1991,(3)4-11.
    [69]李亚江江.HQ130钢热影响区的ICHAZ区组织性能[J].焊接学报.2001,22(2):54-58.
    [70]B.C.KIM,Microstructure and local brittle zone phenomena in High-strength low-alloyed welds[J],Metal.Trans A,1991,22A(1):139-149.
    [71]P.L.Davis, J.E.King. Initiation In the Intercritically reheated coarse-grained heat-affected zone:part,fractographicevidence[J].Metall.Trans,1994,25A:563-573.
    [72]荆洪阳,霍立兴,张玉凤.M-A组元对焊接热影响区粗晶区断裂行为的影响[J].天津大学学报,1997,30(4):485-488.
    [73]王英妹.压力容器用钢SR裂纹形成机制及防止措施的研究[J].北京:北京钢铁研究总院报,1998,19:135.
    [74]袁少波等.焊接热循环曲线及相变点测试系统的实现[J].电焊机,2005(35),47-51.
    [75]JS.Ku,N.J.Ho,S.C.Tjong.ProPertiesofelectronbeamweldedSAF2205du Plex stainless steel[J].JournalofMaterialsProeessingTeehnology.1997,(63),770-775.
    [76]张建纲.基于动态网格的非稳态TIG焊接热传导模型[D]:[硕士学位论文].济南:山东大学,2002,6.
    [77]陈楚.数值分析在焊接中的应用[M].上海:上海交通大学出版社,1985.
    [78]陈丙森.计算机辅助焊接技术[M].北京:机械工业出版社,1999,107-168.
    [79]罗金华,王晓燕,胡伦骥.基于ANSYS的中厚板有限元三维数值模拟[J].华中科技大学学报(自然科学版),2002,30(11):83-86
    [80]王西昌,吴冰,左从进等.电子束焊接数值模拟新型热源模型的初步探索[J].焊接学报,2006,26(12):81-84.
    [81]Weldiailor G A,hughes M,pericleous K.The application of three dimension finite volume method to the modeling of welding phenomenafA].Modeling of casting,welding and advanced solidification process [X[C].San Diego.Edited by Prter.R.Sahm,2000.852-859.
    [82]BYT.W.EAGAR and N.S.TSAI. Temperature Fields Produced by Traveling Distributed Heat Sources[M]. Welding Research Supplement.1982.
    [83]王国强.实用工程数值模拟技术及其在ANSYS上的实践[M].西安:西北工业大学出版社,1999.
    [84]K.S.Alfredsson and B.L.Josefson. Harmonic Response of a spot Welding Box Beam Influence of Welding Residual and Deformations,Proc IUTAM Symposium on the Mechanical Effects of welding LULEA,Sweden,June,1991:1-8.
    [85]王助威,邵敏.有限单元法基本原理及数值方法[M].北京:清华大学出版社,1998.
    [86]BYT.W.EAGAR and N.S.TSAI. Temperature Fields Produced by Traveling Distributed Heat Sources [J]. Welding Research Supplement.1982.
    [87]J.Goldak.A new finite element model for welding heat sources[J],Metallurgical Transacstions B(pcoress Metallurgy),1984,15B(6):299-305.
    [88]Y.Nagasaka et al.,Mathematical model of phase transformations and elasto-plastic stress in the water spray quenching of steel bars[J].Metallurgical Transactions A,1993,24A:795-808.
    [89]R.I.Karlsson,B.L.Josefson.Three dimensional finite element analysis of temperatures and stresses in a single-pass butt-welded pipe[J].ASME Journal of Pressure Vessel Technology.1990,112:76-84.
    [90]Y.Ueda,et.al.A computational model of phase transformation for welding processes[J].Transactions of JWRI,1995,24(1):95-100
    [91]Y.V.N.Murthy,et al.Numerical simulation of welding and quenching process using transient thermal and thermal-elastic-plastic formulations[J].Computer & Structure,1996,60:131-154.
    [92]陈翠欣.X80高强管线钢的焊接性及其模拟仿真[D]:[硕士学位论文].天津:天津大学,2005,5.
    [93]周张义等.焊接残余应力对钢结构疲劳性能影响研究[J].机车电传动,2009,(2):24-33.
    [94]Zhang Yongkang,Zhang Xingquan,Zhou Jianzhong,et al. Deformation of Aluminum Alloy LY12CZ Plate by Laser Shot Peening[J].Chinese Laser,2006,33 (10):1417-1421.
    [95]朱政强等.EH36船用结构钢焊接接头断裂行为的研究[J].造船技术.2005,(1):37-38.
    [96]苗张木等.FPSO模块支墩焊接接头低温CTOD韧度试验研究[J].中国造船,2007,(48):73-77.
    [97]John Hertz, Anders Krogh, Richard G Palmer. Introduction to the theory of neural computation [M]. Washington D C:Addi2 sion Wesley Publishing Company, 1991.
    [98]C.Gupa, GK.Dey, J.K.Chakravartty,etal. A study of bainite transformation in a new CrMoV steel under continuous cooling conditions [J]. Scripta Materialia 53(2005):559-564
    [99]Chunming Wang,Xingfang Wu,Jie Liu etal. Transmission electron microscopy of martensite/austenite islands in pipeline steel X70[J]. Materials Science and Engineering A 438-440 (2006):267-271.
    [100]Fukuhisa M A,Kenji I,Hitoshi O.Effect of M-A constitument on fracture behavior of 780 and 980 MPa class HSLA steel subjected to weld HAZ thermal cycle[J].Trans.JWRI,1994,23(2):231-238.
    [101]高国梁.M-A组元对热影响区缺口韧性的影响[J].钢管,1998,27(4):55-60.
    [102]王学,常建伟,陈方玉等.焊后热处理改善WB36钢临界再热粗晶区韧性分析[J].焊接学报,2008,29(3):9-12.
    [103]Vladimir M,Zhonglin L,Hitoshi O.Microstructural investigation on decomposition behavior of M-A constituent and recovery of ductility due to PWHT in simulated HAZ of HSLA steel[J].JWRI,1991,20(1):69-75.
    [104]崔忠圻.金属学与热处理[M].北京:机械工业出版社,1988.
    [105]陈茂爱,唐逸民,楼松年.低合金高强钢HAZ中的M-A组元及其对接头韧性的影响.焊接研究‘j生成,1997,6(2):89-93.
    [106]马成勇.新一代800MPa级超低碳微合金钢焊材及接头组织性能研究[D]:[硕士论文].天津:天津大学,2002,12.
    [107]P.A.Nanohar,D.P.Dunne,T.Chandra.Grain grownth predictions in microalloyed teels.IAIJ,1996,36:194-200.
    [108]N.Gao,T.N.Baker.Austenite grain growth behaviou of microstructure Al-V-N and Al-V-Ti-Nsstees.ISIJ,1998,38:774-751.
    [109]M.eroglu,M.Aksoy.Effect of coarse initial grain size on microstructure and mechanical properties of weld metal and HAZ of a low carbon steel[J].Materials science and engineering,1999,A269:59-66.
    [110]吴景之,张信.26Cr2N i4MoV钢的晶粒遗传[J].金属热处理,1984,(2):29.
    [1111崔占全,徐长萱,张信等.降梯升梯加热工艺对奥氏体自发再结晶消除组织遗传的影响[J].热加工工艺,1993,(3):30.
    [112]杜敏.P91钢焊接热过程的数值模拟及对接头性能影响的研究[D]:[硕士学位论文].河北:河北工业大学,2007,3.
    [113]H.K.D.H.Bhadeshia.Bainite in Steels Microstructure and properties[J],1992,The Institute of Materials,Cambridge University,Great Britain.
    [114]F.Kawabata.Tempering Effect by Succeeding Weld Passes on Multi-layered HAZ Toughness,Proc.1Oth.Int.Conf. OMAE,1991,3-A.
    [115]F.B.Pickering.Metallurgical Achievements,Pergaman,1963,9.
    [116]胡晓萍,屈朝霞,李自刚.微合金钢焊接热影响区的再热脆化问题[J].焊接,2008,12:30-33.
    [117]王学,常建伟,陈方玉等.焊后热处理改善WB36钢临界再热粗晶区韧性分析[J].焊接学报,2008,29(3):9-12.
    [118]S.W.Thompson et al,Continuous Cooling Transformation and Microstructures in a Low-carbon/High-Strength Low-alloy Plate Steel[J],Metalurgical Transactions A,1990,21 A,6.
    [119]Prof.Dr. Ing.Kalvala Pessed Rao et al,Effect of Heat Input and Postwekd Heat Treatment on Microstructure and Mechanical Properties in Niobium-Containing Microalloyed Steel Weldments[J],Welding Research Abroad,1993,XXXIX,11.
    [120]A.J.R.Loureiro and A.A.Fernanders,Toughness of CG HAZS of Welds In Q&T Steels[J], welding Journal,1994,73,9.
    [121]GRONGHAZ Toughness of Microalloged Steals for Off shore [J],Metal Construction,1986,9.
    [122]P.L. Hattidon and P.H.M.Hart,Influences of Steel Composition and Weldign Procedure on the HAZ Toughness of Thick-Section Strutural Steels[J], WRC Bulletin,1992,6.
    [123]付瑞东,逯允海,杨永强,张文辉.2.25Cr-1Mo-0.25V耐热钢焊接热影响区热模拟试验研究[J].材料热处理学报,2007,28(1):66-70.
    [124]张凯峰.材料热加工过程的数值模拟[M].哈尔滨:哈尔滨工业大学出版社,2001.
    [125]D.N.Shackleton,PhD.Bmet,AIM,MWeld I. Welding HY100 and HY130 Steels a literature review. Cambridge:The welding institute.1973.
    [126]Xu W.W,Wang Q.F,Pant etal. Effect of welding heat input on simulated HAZ microstructure and tounghness of a V-N microalloyed steel. Proceeding of sino-swedish structural materials symposium2007.
    [127]M.Shome. Effect of heat-input on austenite grain size in the heat-affected zone of HSLA-100 steel[J]. Materials science and engineering A,2007 (445-446):454-460.
    [128]W.W.Bose-Filho, A.L.M.Carvalho, M.Strangwood. Effects of alloying elements on the microstructure and inclusion formation in HSLA multipass welds [J]. Materials Characterization,2007 (58):29-39.
    [129]J.Neves, A.Loureiro. Fracture toughness of welds-effect of brittle zones and strength mismatch[J]. Jounral of Materials Processing Technology,2004 (153-154):537-543.
    [130]E.Mazancova,K.Mazanec. Physical metallurgy characteristics of the M/A constituent formation in granular bainite[J]. Journal of Materials Processing Technology,1997 (64):287-292.
    [131]Chunming Wang,Xingfang Wu,Jie Liu etal. Transmission electron microscopy of martensite/austenite islans in pipeline steel X70[J]. Materials Science and Engineering A,2006 (438-440):267-271.
    [132]Zhang Baowei,Wei Jinshan,Zhang Tianhong. A study of local brittle zone of 10Ni5CrMoV steel after double thermal cycles[J]. China Welding Vol.14 No.2,2005:149-152.
    [133]S.D.Bhole,J.B.Nemade,L.Collins etal. Effect of nickel and molybdenum additions on weld metal toughness in a submerged arc welded HSLA line-pipe steel[Jj. Journal of Materials Processing Technology,2006 (173):92-100.
    [134]Emin Bayraktar,Dominique Kaplan. Mechanical and metallurgical investigation of martensite-austenite constituents in simulated welding conditions [J]. Journal of Materials Processing Technology,2003(153-154):87-92.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700