用户名: 密码: 验证码:
碳纳米管气/湿敏传感器的制备及特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
神经毒剂自其出现以来,用于战争和恐怖袭击事件时有发生,因此,发展和研制神经毒剂传感器,对国家和公共安全都有重要意义。碳纳米管以其极高的长宽比和比表面积,以及强的气体吸附能力,成为气体传感器中一种非常理想的敏感材料。本文分别采用气喷、丝网印刷、化学气相沉积、电泳和自组装工艺制备碳纳米管薄膜,并运用多种方法进行了表征和分析;制备了平面叉指电容型和平板电容器型传感器,测试和研究了碳纳米管传感器对甲基磷酸二甲酯(DMMP)蒸气的气体敏感特性。其主要内容包括以下几个方面:
     1.采用气喷工艺制备单壁碳纳米管平面叉指电容型传感器,在暴露到DMMP蒸气中时,电容迅速减小,电容响应幅度随着DMMP蒸气浓度的增加而增大,对12mg/m3DMMP蒸气的电容响应达到12.43%。传感器具有良好的重复性和选择性。同时也测试了传感器的电阻变化,电阻响应随DMMP蒸气浓度的增加而增加,其响应幅度比电容小约一个数量级。气喷多壁碳纳米管传感器、单壁碳纳米管和聚甲基-{3-[2-羟基-3,5-二(三氟甲基)]苯基}-丙基硅氧烷(DKAP)复合薄膜传感器与单壁碳纳米管传感器有类似的电容响应特性,但其电容响应都显著变小,对12mg/m3DMMP蒸气的电容响应分别为1.39%和0.54%。复合薄膜中DKAP缠绕和包裹了单壁碳纳米管,减小了碳纳米管的有效表面积,使其电容响应明显小于相应的单壁碳纳米管传感器。实验还发现,具有较大初始电容和损耗角正切的传感器,薄膜更为稠密,形成的微孔尺寸较小,用于吸附的有效表面积较大,具有的电容响应更大。
     2.采用丝网印刷工艺制备单壁碳纳米管传感器,对50ppm (250mg/m3) DMMP蒸气的电阻响应为16.4×10-3。由于丝网印刷碳纳米管膜中残留有乙基纤维素等原料,所以其电阻响应幅度远低于气喷工艺所制碳纳米管传感器。该传感器具有很好的重复性和长期稳定性,但是其电阻恢复较慢,特别是在高浓度下较为明显。传感器对空气中存在的水、氧气和二氧化碳等气体选择性较好,但对NH3等强氧化还原性气体和醇、芳烃等有机蒸气的选择性很差。因为这些气体与残留的乙基纤维素有较好的吸附作用。丝网印刷单壁碳纳米管传感器上下板极之间形成的平板电容对DMMP蒸气也有响应,当暴露到20mg/m3DMMP蒸气中时,其电容响应仅为0.028%,低于电阻的响应。
     3.采用自组装工艺在QCM上制备了单壁碳纳米管气体传感器,由聚电解质聚二烯丙基二甲基氯化铵(PDDA)和单壁碳纳米管层交替组装而成,发现传感器对湿度的响应明显大于DMMP蒸气的响应。并对比了含有-COOH和不含-COOH的碳纳米管原料对传感器湿敏的影响。结果发现,当湿度从20.9%变化到80.2%时,自组装PDDA/SWNT-COOH传感器和PDDA/SWNT QCM传感器的频率相对变化分别为16.64%和13.84%,前者相对于后者灵敏度提高了20.23%,而且选择性更好,响应时间更短,而恢复时间则更长,相应的湿滞也从3.9%增大到8.0%。这是因为含羧基的单壁碳纳米管在氧化处理后其π-π*转变结构和相应含氧官能团的含量高于经氧化处理的普通单壁碳纳米管。但是,两个传感器对60%饱和蒸气浓度DMMP蒸气的灵敏度却只有2.06%-2.17%。
Since the appearance of nerve agents, they are frequently used in war and terroristattacks. Therefore, the manufacture and development of nerve agent sensors are of greatsignificance for national and public security. Because of the high aspect ratio andspecific surface area, as well as the strong gas adsorption capacity, carbon nanotubes(CNTs) are ideal sensitive materals in gas sensors. In this dissertation, CNT thin filmswere prepared by airbrush, screen printing, chemical vapor deposition (CVD),electrophoresis and layer-by-layer self-assembly techniques, which were characterizedand analyzed with different methods. The planar interdigital capacitor and platecapacitor were fabricated, and the dimethyl methylphosphonate (DMMP) gas-sensingproperties of these CNT sensors were carried out and studied. The main research resultswere as follows:
     1. Single-walled carbon nanotubes (SWNTs) were deposited on interdigitalelectrodes (IDTs) by airbrush method, and it formed interdigital capacitive sensor. Thecapacitance of this sensor decreased rapidly when exposed to DMMP. The capacitanceresponse increased with the increase of DMMP concentration and was12.43%to12mg/m3DMMP. The sensor had a good reproducibility and selectivity. Meanwhile, theresistance response of airbrush SWNT sensor was also studied. The resistance of thissensor increased immediately when exposed to DMMP and the response increased withthe increase of DMMP concentration, but the resistance response was smaller than thecapacitance response by one order in magnitude. The capacitance responses of airbrushmulti-walled carbon nanotube (MWNT) sensor and SWNT/DKAP (poly{methyl[3-(2-hydroxyl,3,5-bistrifluoromethyl)phenyl]propylsiloxane}) composite film sensor weresimilar to the response of airbrush SWNT sensor, but their responses were sigmificatelysmaller and were1.39%and0.54%to12mg/m3DMMP, respectively. The DKAPtwined and wrapped SWNTs in the composite film, reducing the effective surface areaof CNTs and causing the capacitance response significately smaller than thecorresponding SWNT sensor. It is also found that when the airbrush CNT sensor withlarger initial capacitance and loss tangent, the CNT film was denser, the average pore size was smaller and the effective surface area for gas adsorption was larger, leading tohigher capacitance response.
     2. SWNT sensor was prepared on SiO2/Si substrate by screen printing, and theresistance response of this sensor to50ppm (250mg/m3) DMMP was16.4×10-3.Because there was residual ethyl cellu, etc. in the screen printed SWNT film, theresistance response was far less than the corresponding airbrush SWNT sensor. Thesensor had a very good reproducibility and long-term stability, but its resistancerecovered very slowly, which was more obvious at high concentration of DMMP. Thesensor had a good selectivity to the gases which were present in the air, such as water,oxygen and carbon dioxide. But the selectivity to the gases with redox, such as NH3,etc., and organic vapors, such as alcohols and aromatics, was very poor due to thestrong adsorption between these gases and the residual ethyl cellu. The capacitor formedby the two plates of the screen printed SWNT sensor had response to DMMP. Whenexposed to20mg/m3DMMP, the capacitance response was only0.028%, which wassmaller than the resistance response.
     3. SWNT gas sensors were fabricated on quartz crystal microbalance (QCM) bylayer-by-layer self-assmbly of polyelectrolyte poly(diallyldimethylammonium chloride)(PDDA) and SWNTs. It was found that the sensors had a significantly greater responseto humidity than to DMMP. The effect of raw SWNT materials with and withoutcarboxyl (-COOH) on the humidity sensing properties of these SWNT composite thinfilm sensors was studied and compared. The results showed that when the relativehumidity was changed from20.9%to80.2%, the relative frequency shifts of thePDDA/SWNT-COOH QCM sensor and PDDA/SWNT QCM sensor were16.64%and13.84%, respectively. The former had a sensitivity enhanced by20.03%, a betterselectivity and a shorter response time, but the recovery time was longer and thehysteresis was increased from3.9%to8.0%. It was attributed to that the relative contentof π-π*transition structures and the corresponding functional groups in modifiedSWNTs-COOH was much higher than that in modified SWNTs. However, thesensitivities of the two sensors to60%saturated vapor pressure concentration of DMMPwere only2.06%-2.17%.
引文
[1] E.W.J. Hooijschuur, C.E. Kientz, U.A.Th. Brinkman. A nalytical separation techniques for thedetermination of chemical warfare agents[J]. J. Chromatography A,2002,982(2):177–200
    [2] G.M. Murray, G.E. Southard. Sensors for chemical weapons detection[J]. IEEE Instrum. Meas.Mag.,2002,5(4):12-21
    [3] J.W. Grate, B.M. Wise, M.H. Abraham. Method for unknown vapor characterization andclassification using a multivariate sorption detector: initial derivation and modeling based onpolymer-coated acoustic wave sensor arrays and linear solvation energy relationships[J]. Anal.Chem.,1999,71(20):4544-4553
    [4] S.V. Patel, T.E. Mlsna, B. Fruhberger, E. Klaassen, S. Cemalovic, D.R. Baselt. Chemicapacitivemicrosensors for volatile organic compound detection[J]. Sens. Actuators B,2003,96(3):541-553
    [5] M.C. Lonergan, E.J. Severin, B.J. Doleman, S.A. Beaber, R.H. Grubbs, N.S. Lewis. Array-basedvapor sensing using chemically sensitive, carbon black polymer resistors[J]. Chem. Mater.,1996,8(9):2298-2312
    [6] E.S. Snow, F.K. Perkins, E.J. Houser, S.C. Badescu, T.L. Reinecke. Chemical detection with asingle-walled carbon nanotube capacitor[J]. Science,2005,307(5717):1942-1945
    [7] F. Wang, H. Gu, T.M. Swager. Carbon nanotube/polythiophene chemiresistive sensors forchemical warfare agents[J]. J. Am. Chem. Soc.,2008,130(16):5392-5393
    [8] A. Kolmakov, M. Moskovits. Chemical sensing and catalysis by one-dimensional metal-oxidenanostructures[J]. Annu. Rev. Mater. Res.,2004,34:151-180
    [9] D.T. McQuade, A.E. Pullen, T.M. Swager. Conjugated polymer-based chemical sensors[J]. Chem.Rev.,2000,100(7):2537-2574
    [10] D. Eder. Carbon nanotube inorganic hybrids[J]. Chem. Rev.,2010,110(3):1348-1385
    [11] G.F. Malgas, C.J. Arendse, N.P. Cele, F.R. Cummings. Effect of mixture ratios and nitrogencarrier gas flow rates on the morphology of carbon nanotube structures grown by CVD[J]. J.Mater. Sci.,2008,43(3):1020-1025
    [12] D.R. Kauffman, A. Star. Carbon nanotube gas and vapor sensors[J]. Angew. Chem. Int. Ed.,2008,47(35):6550-6570
    [13] P l Aas. The threat of mid-spectrum chemical warfare agents[J]. Prehosp. Disaster Med.,2003,18(4):306-312
    [14] Technical Secretariat of the Organization for Prohibition of Chemical Weapons. Convention onthe prohibition of the development, production, stockpiling and use of chemical weapons andtheir destruction[EB/OL]. http://www.opcw.nl,1997
    [15] P.A. D'Agostino. Handbook of analytical separations: chemical warfare agents[M]. Netherlands:Elsevier B.V.,2008,839-872
    [16] J.K. Smart. Medical aspects of chemical and biological warfare: history of chemical andbiological warfare: an American perspective[M]. Washington, DC: Office of the SurgeonGeneral, Department of the Army,1997,15
    [17] G. Hanson. Chemical warfare agents[EB/OL]. http://www.chem.wisc.edu/areas/organic/studsemin/hanson/hanson-abs.pdf, May1,2003
    [18] S.M. Somani, R.P. Solana, S.N. Dube. Toxicodynamics of nerve agents: chemical warfareagents[M]. San Diego: Academic Press,1992,67-123
    [19] E. Croddy. Chemical and biological warfare: a comprehensive survey for the concernedcitizen[M]. New York: Springer-Verlag New York, Inc.,2002,1-319
    [20] C. MacIlwain. Study proves Iraq used nerve gas[J]. Nature,1993,363(6424):3-3
    [21] J.A. Stuart, R.J. Ursano, C.S. Fullerton, A.E. Norwood, K. Murray. Belief in exposure toterrorist agents: reported exposure to nerve or mustard gas by Gulf War veterans[J]. J. Nerv.Ment. Dis.,2003,191(7):431-436
    [22] M. Nagao, T. Takatori, Y. Matsuda, M. Nakajima, H. Iwase, K. Iwadate. Definitive evidence forthe acute sarin poisoning diagnosis in the Tokyo subway[J]. Toxicol. Appl. Pharmacol.,1997,144(1):198-203
    [23] N. Yanagisawa, H. Morita, T. Nakajima. Sarinexperiences in Japan: acutetoxicity and long-termeffects[J]. J. Neurol. Sci.,2006,249(1):76-85
    [24] K. Yokoyama. Our recent experiences with sarin poisoning cases in Japan and pesticide userswith references to some selected chemicals[J]. Neurotoxicology,2007,28(2):364-373
    [25] T. Stock, M. Haug, P. Radler. Armaments, disarmament and international security: chemical andbiological weapon developments and arms control[M]. London: Oxford University Press,1997,661
    [26] M. Schwenk, S. Kluge, H. Jaroni. Toxicological aspects of preparedness and aftercare forchemical-incidents[J]. Toxicology,2005,214(3):232-248
    [27] I. Makarovsky, G. Markel, A. Hoffman, O. Schein, A. Finkelstien, T.B. Nissimov, Z. Tashma, T.Dushnitsky, A. Eisenkraft. Osmium tetroxide: a new kind of weapon[J]. Isr. Med. Assoc. J.,2007,9(10):750-752
    [28] R.T. Delfino, T.S. Ribeiro, J.D. Figueroa-Villar. Organophosphorus compounds as chemicalwarfare agents: a review[J]. J. Braz. Chem. Soc.,2009,20(3):407-428
    [29] G.N. Volans, L. Karalliedde. Long term effects of chemical weapons[J]. Lancet,2002,360:s35-s36
    [30] W.R. Heymann. Threats of biological and chemical warfare on civilian populations[J]. J. Am.Acad. Dermatol.,2004,51(3):452-453
    [31] L. Small. Toxic industrial chemicals: a future weapons of mass destruction threat[R]. FortLeavenworth, Kansas: Army Command and General Staff College, May31,2002
    [32] A.T. Tu. Natural and selected synthetic toxins: overview of sarin terrorist attacks on Japan[M].Washington, DC: ACS Publications,2000,304-317
    [33] A.M. Prentiss. Chemicals in warfare[M]. New York: McGraw-Hill Book Company,1937,579
    [34] F. Lσpez-Muρoz, C. Alamo, J.A. Guerra, P. Garcνa-Garcνa. The development of neurotoxicagents as chemical weapons during the National Socialist period in Germany[J]. Rev. Neurol.,2008,47(2):99-106
    [35] R. Shenoi. Chemical warfare agents[J]. Clin. Ped. Emerg. Med.,2002,3(4):239-247
    [36] K. Kuca, M. Pohanka. Chemical warfare agents[J]. Mol. Clin. Environ. Toxicol.,2010,100:543-558
    [37] T.C. Marrs. Organophosphate poisoning[J]. Pharmacol. Ther.,1993,58(1):51–66
    [38] K. Ganesan, S.K. Raza, R. Vijayaraghavan. Chemical warfare agents[J]. J. Pharm. Bioall. Sci.,2010,2(3):166-178
    [39] E. Giacobini. Cholinesterase inhibitors: new roles and therapeutic alternatives[J]. Pharmacol.Res.,2004,50(4):433-440
    [40] P. Taylor. The cholinesterases[J]. J. Biol. Chem.,1991,266(7):4025-4028
    [41] D.M. Quinn. Acetylcholinesterase: enzyme structure, reaction dynamics, and virtual transitionstates[J]. Chem. Rev.,1987,87(5):955-979
    [42] D. Purves, G.J. Augustine, D. Fitzpatrick, W.C. Hall, A.-S. LaMantia, J.O. McNamara, L.E.White. Neuroscience[M]. Sunderland: Sinauer Associates,2008,121–122
    [43] T.L. Rosenberry. Catalysis by acetylcholinesterase: evidence that the rate limiting step foracylation with certain substrates precedes general acid base catalysis[J]. Proc. Natl. Acad. Sci.USA,1975,72(10):3834-3838
    [44]王华. QCM和SAW传感器对DMMP气敏特性的研究[D].成都:电子科技大学,2007,2-5
    [45] D.E. Ray, P.G. Richards. The potential for toxic effects of chronic, low-dose exposure toorganophosphates[J]. Toxicol. Lett.,2001,120(1-3):343-351
    [46] F. Worek, H. Thiermann, L. Szinicz, P. Eyer. Kinetic analysis of interactions between humanacetylcholinesterase, structurally different organophosphorus compounds and oximes[J].Biochem. Pharmacol.,2004,68(11):2237-2248
    [47] T.C. Kwong. Organophosphate pesticides: biochemistry and clinical toxicology[J]. Ther. DrugMonit.,2002,24(1):144-149
    [48] D. Majumdar, S. Roszak, J. Leszczynski. Probing the acetylcholinesterase inhibition of sarin: acomparative interaction study of the inhibitor and acetylcholine with a model enzyme cavity[J].J. Phys. Chem. B,2006,110(27):13597-13607
    [49] F. Worek, M. Koller, H. Thiermann, L. Szinicz. Diagnostic aspects of organophosphatepoisoning[J]. Toxicology,2005,214(3):182-189
    [50] C. Viragh, R. Akhmetshin, I.M. Kovach. Unique push pull mechanism of dealkylation insoman-inhibited cholinesterases[J]. Biochemistry,1997,36(27):8243-8252
    [51] A. Saxena, C. Viragh, D.S. Frazier, I.M. Kovach, D.M. Maxwell, O. Lockridge, B.P. Doctor.The pH dependence of dealkylation in soman-inhibited cholinesterases and their mutants:further evidence for a push pull mechanism[J]. Biochemistry,1998,37(43):15086-15096
    [52] S. Iijima. Helical microtubules of graphitic carbon[J]. Nature,1991,354(6348):56–58
    [53] S. Iijima, P.M. Ajayan, T. Ichihashi. Growth model for carbon nanotubes[J]. Phys. Rev. Lett.,1992,69(21):3100–3103
    [54] S. Iijima, T. Ichihashi. Single-shell carbon nanotubes of1-nm diameter[J]. Nature,1993,363(6430):603-605
    [55] K. Balasubramanian, M. Burghard. Chemically functionalized carbon nanotubes[J]. Small,2005,1(2):180–192
    [56] A. Thess, R. Lee, P. Nikolaev, H. Dai, P. Petit, J. Robert, C. Xu, Y.H. Lee, S.G. Kim, A.G.Rinzler, D.T. Colbert, G.E. Scuseria, D. Tomanek, J.E. Fischer, R.E. Smalley. Crystalline ropesof metallic carbon nanotubes[J]. Science,1996,273(5274):483-487
    [57] N. Wang, Z.K. Tang, G.D. Li, J.S. Chen. Single-walled4carbon nanotube arrays[J]. Nature,2000,408(6808):50-51
    [58] X. Zhao, Y. Liu, S. Inoue, T. Suzuki, R.O. Jones, Y. Ando. Smallest carbon nanotube is3indiameter[J]. Phys. Rev. Lett.,2004,92(12):125502
    [59] T.W. Odom, J.H. Hafner, C.M. Lieber. Scanning probe microscopy studies of carbonnanotubes[J]. Topics Appl. Phys.,2001,80:173–211
    [60] S.M. Bachilo, M.S. Strano, C. Kittrell, R.H. Hauge, R.E. Smalley, R.B. Weisman.Structure-assigned optical spectra of single-walled carbon nanotubes[J]. Science,2002,298(5602):2361-2366
    [61] Y. Saito, K. Hamaguchi, S. Uemura, K. Uchida, Y. Tasaka, F. Ikazaki, M. Yumura, A. Kasuya, Y.Nishina. Field emission from multi-walled carbon nanotubes and its application to electrontubes[J]. Appl. Phys. A,1998,67(1):95–100
    [62] R.H. Baughman, A.A. Zakhidov, W.A. de Heer. Carbon nanotubes—the route towardapplications[J]. Science,2002,297(5582):787-792
    [63] R. Saito, G. Dresselhaus, M.S. Dresselhaus. Physics properties of carbon nanotubes[M]. London:Imperial College Press,1998,1-272
    [64] C.L. Kane, E.J. Mele. Size, shape, and low energy electronic structure of carbon nanotubes[J].Phys. Rev. Lett.,1997,78(10):1932-1935
    [65] H.T. Ham, Y.S. Choi, N. Jeong, I.J. Chung. Singlewall carbon nanotubes covered withpolypyrrole nanoparticles by the miniemulsion polymerization[J]. Polymer,2005,46(17):6308-6315
    [66] R.P. Gao, Z.W. Pan, Z.L. Wang. Work function at the tips of multiwalled carbon nanotubes[J].Appl. Phys. Lett.,2001,78(12):1757-1759
    [67] S. Suzuki, C. Bower, Y. Watanabe, O. Zhou. Work functions and valence band states of pristineand Cs-intercalated single-walled carbon nanotube bundles[J]. Appl. Phys. Lett.,2000,76(26):4007-4009
    [68] P. Liu, Q. Sun, F. Zhu, K. Liu, K. Jiang, L. Liu, Q. Li, S. Fan. Measuring the work function ofcarbon nanotubes with thermionic method[J]. Nano Lett.,2008,8(2):647-651
    [69] J.J. Zhao, J. Han, J.P. Lu. Work functions of pristine and alkali-metal intercalated carbonnanotubes and bundles[J]. Phys. Rev. B,2002,65(19):193401
    [70] H. Stahl, J. Appenzeller, R. Martel, P. Avouris, B. Lengeler. Intertube coupling in popes ofsingle-wall carbon nanotubes[J]. Phys. Rev. Lett.,2000,85(24):5186-5189
    [71] S.D. Li, Z. Yu, C. Rutherglen, P.J. Burke. Electrical properties of0.4cm long single-walledcarbon nanotubes[J]. Nano Lett.,2004,4(10):2003–2007
    [72] H.E. Unalan, G. Fanchini, A. Kanwal, A.D. Pasquier, M. Chhowalla. Design criteria fortransparent single-wall carbon nanotube thin-film transistors[J]. Nano Lett.,2006,6(4):677-682
    [73] L. Hu, D.S. Hecht, G. Gruner. Carbon nanotube thin films: fabrication, properties, andapplications[J]. Chem. Rev.,2010,110(10):5790–5844
    [74] A. Behnam, G. Bosman, A. Ural. Percolation scaling of1/f noise in single-walled carbonnanotube films[J]. Phys. Rev. B,2008,78(8):085431
    [75] L. Hu, D.S. Hecht, G. Gruner. Percolation in transparent and conducting carbon nanotubenetworks[J]. Nano Lett.,2004,4(12):2513-2517
    [76] B. Ruzicka, L. Degiorgi, R. Gaal, L. Thien-Nga, R. Bacsa, J.-P. Salvetat, L. Forro. Optical anddc conductivity study of potassium-doped single-walled carbon nanotube films[J]. Phys. Rev. B,2000,61(4): R2468-R2471
    [77] T.M. Barnes, J. van de Lagemaat, D. Levi, G. Rumbles, T.J.Coutts, C.L. Weeks, D.A. Britz, I.Levitsky, J. Peltola, P. Glatkowski. Optical characterization of highly conductive single-wallcarbon-nanotube transparent electrodes[J]. Phys. Rev. B,2007,75(23):235410
    [78] G. Fanchini, S. Miller, B.B. Parekh, M. Chhowalla. Optical anisotropy in single-walled carbonnanotube thin films: implications for transparent and conducting electrodes in organicphotovoltaics[J]. Nano Lett.,2008,8(8):2176-2179
    [79] L.B. Hu, D.S. Hecht, G. Gruner. Infrared transparent carbon nanotube thin films[J]. Appl. Phys.Lett.,2009,94(8):081103
    [80] Q. Wang, Z.H. Wen, J.H. Li. A hybrid supercapacitor fabricated with a carbon nanotube cathodeand a TiO2–B nanowire anode[J]. Adv. Funct. Mater.,2006,16(16):2141-2146
    [81] T. Mustonen, J. Maklin, K. Kordas, N. Halonen, G. Toth, S. Saukko, J. Vahakangas, H. Jantunen,S. Kar, P.M. Ajayan, R. Vajtai, P. Helisto, H. Seppa, H. Moilanen. Controlled Ohmic andnonlinear electrical transport in inkjet-printed single-wall carbon nanotube films[J]. Phys. Rev.B,2008,77(12):125430
    [82] M.G. Kang, M.S. Kim, J.S. Kim, L.J. Guo. Organic solar cells using nanoimprinted transparentmetal electrodes[J]. Adv. Mater.,2008,20(23):4408-4413
    [83] J.Y. Lee, S.T. Connor, Y. Cui, P. Peumans. Solution-processed metal nanowire mesh transparentelectrodes[J]. Nano Lett.,2008,8(2):689-692
    [84] E.A. Taft, H.R. Philipp. Optical properties of graphite[J]. Phys. Rev.,1965,138(1A):A197-A202
    [85] A. Jorio, G. Dresselhaus, M.S. Dresselhaus. Carbon nanotubes: advanced topics in the synthesis,structure, properties and applications[M]. Berlin, Heidelberg: Springer-Verlag,2008,1-720
    [86] J. Hone, B. Batlogg, Z. Benes, A.T. Johnson, J.E. Fischer. Quantized phonon spectrum ofsingle-wall carbon nanotubes[J]. Science,2000,289(5485):1730-1733
    [87] Y.H. Yang, W.Z. Li. Radial elasticity of single-walled carbon nanotube measured by atomicforce microscopy[J]. Appl. Phys. Lett.,2011,98(4):041901
    [88] P. Avouris, T. Hertel, R. Martel, T. Schmidt, H.R. Shea, R.E. Walkup. Carbon nanotubes:nanomechanics, manipulation, and electronic devices[J]. Appl. Surf. Sci.,1999,141(3-4):201-209
    [89] T. Hertel, R.E. Walkup, P. Avouris. Deformation of carbon nanotubes by surface van der Waalsforces[J]. Phys. Rev. B,1998,58(20):13870-13873
    [90] E.C.-W. Ou, L. Hu, G.C.R. Raymond, O.K. Soo, J. Pan, Z. Zheng, Y. Park, D. Hecht, G. Irvin, P.Drzaic, G. Gruner. Surface-modified nanotube anodes for high performance organiclight-emitting diode[J]. ACS Nano,2009,3(8):2258-2264
    [91] L.B. Hu, W. Yuan, P. Brochu, G. Gruner, Q.B. Pei. Highly stretchable, conductive, andtransparent nanotube thin films[J]. Appl. Phys. Lett.,2009,94(16):161108
    [92] X. Zhang. Hydroentangling: a novel approach to high-speed fabrication of carbon nanotubemembranes[J]. Adv. Mater.,2008,20(21):4140-4144
    [93] C.L. Chen, E. Lopez, Y.J. Jung, S. Muftu, S. Selvarasah, M.R. Dokmeci. Mechanical andelectrical evaluation of parylene-C encapsulated carbon nanotube networks on a flexiblesubstrate[J]. Appl. Phys. Lett.,2008,93(9):093109
    [94] S.C. Tsang, P.J.F. Harris, M.L.H. Green. Thinning and opening of carbon nanotubes byoxidation using carbon dioxide[J]. Nature,1993,362(6420):520-522
    [95]刘璐琪,郭志新,戴黎明,朱道本.碳纳米管的有机化学修饰[J].科学通报,2001,46(19):1590-1596
    [96] H. Ulbricht, G. Moos, T. Hertel. Physisorption of molecular oxygen on single-wall carbonnanotube bundles and graphite[J]. Phys. Rev. B,2002,66(7):075404
    [97] S.H. Jhi, S.G. Louie, M.L. Cohen. Electronic properties of oxidized carbon nanotubes[J]. Phys.Rev. Lett.,2000,85(8):1710-1713
    [98] A.G. Pandolfo, A.F. Hollenkamp. Carbon properties and their role in supercapacitors[J]. J.Power Sources,2006,157(1):11-27
    [99] C. Morgan, Z. Alemipour, M. Baxendale. Variable range hopping in oxygen-exposedsingle-wall carbon nanotube networks[J]. Phys. Status Solidi A,2008,205(6):1394-1398
    [100] R.G. Ding, G.Q. Lu, Z.F. Yan, M.A. Wilson. Recent advances in the preparation and utilizationof carbon nanotubes for hydrogen storage[J]. J. Nanosci. Nanotechnol.,2001,1(1):7-29
    [101] Y. Ando, S. Iijima. Preparation of carbon nanotubes by arc-discharge evaporation[J]. Jpn. J.Appl. Phys.,1993,32: L107-L109
    [102] E.G. Gamaly, T.W. Ebbesen. Mechanism of carbon nanotube formation in the arc discharge[J].Phys. Rev. B,1995,52(3):2083-2089
    [103] J.E. Fischer, H. Dai, A. Thess, R. Lee, N.M. Hanjani, D.L. Dehaas, R.E. Smalley. Metallicresistivity in crystalline ropes of single-wall carbon nanotubes[J]. Phys. Rev. B,1997,55(8):R4921-R4924
    [104] S.S. Xie, B.H. Chang, W.Z. Li, Z.W. Pan, L.F. Sun, J.M. Mao, X.H. Chen, L.X. Qian, W.Y.Zhou. Synthesis and characterization of aligned carbon nanotube arrays[J]. Adv. Mater.,1999,11(13):1135-1138
    [105] X. Liu, S. Han, C. Zhou. Novel nanotube-on-insulator (NOI) approach toward single-walledcarbon nanotube devices[J]. Nano Lett.,2006,6(1):34-39
    [106] H. Chang, J.D. Lee, S.M. Lee, Y.H. Lee. Adsorption of NH3and NO2molecules on carbonnanotubes[J]. Appl. Phys. Lett.,2001,79(23):3863-3865
    [107] J. Kong, N.R. Franklin, C. Zhou, M.G. Chapline, S. Peng, K. Cho, H. Dai. Nanotube molecularwires as chemical sensors[J]. Science,2000,287(5453):622-625
    [108] S. Peng, K. Cho. Chemical control of nanotube electronics[J]. Nanotechnology,2000,11(2):57-60
    [109] J. Kong, M.G. Chapline, H. Dai. Functionalized carbon nanotubes for molecular hydrogensensors[J]. Adv. Mater.,2001,13(18):1384-1386
    [110] Y. Lu, J. Li, J. Han, H.-T. Ng, C. Binder, C. Partridge, M. Meyyappan. Room temperaturemethane detection using palladium loaded single-walled carbon nanotube sensors[J]. Chem.Phys. Lett.,2004,391(4-6):344-348
    [111] S. Santucci, S. Picozzi, F.D. Gregorio, L. Lozzi, C. Cantalini, L. Valentini, J.M. Kenny, B.Delley. NO2and CO gas adsorption on carbon nanotubes: experiment and theory[J]. J. Chem.Phys.,2003,119(20):10904-10910
    [112] C. Matranga, B. Bockrath. Hydrogen-bonded and physisorbed CO in single-walled carbonnanotube bundles[J]. J. Phys. Chem. B,2005,109(11):4853-4864
    [113] Y. Wanna, N. Srisukhumbowornchai, A. Tauntranont, A. Wisitsoraat, N. Thavarungkul, P.Singjai. The effect of carbon nanotube dispersion on CO gas sensing characteristics ofpolyaniline gas sensor[J]. J. Nanosci. Nanotechnol.,2006,6(12):3893-3896
    [114] C. Bittencourt, A. Felten, E.H. Espinosa, R. Ionescu, E. Llobet, X. Correig, J.-J. Pireaux. WO3films modified with functionalised multi-wall carbon nanotubes: morphological,compositional and gas response studies[J]. Sens. Actuators B,2006,115(1):33-41
    [115] A. Star, V. Joshi, S. Skarupo, D. Thomas, J.-C.P. Gabriel. Gas sensor array based onmetal-decorated carbon nanotubes[J]. J. Phys. Chem. B,2006,110(42):21014-21020
    [116] J. Suehiro, G. Zhou, M. Hara. Detection of partial discharge in SF6gas using a carbonnanotube-based gas sensor[J]. Sens. Actuators B,2005,105(2):164-169
    [117] P.G. Collins, K. Bradley, M. Ishigami, A. Zettl. Extreme oxygen sensitivity of electronicproperties of carbon nanotubes[J]. Science,2000,287(5459):1801-1804
    [118] G.U. Sumanasekera, C.K.W. Adu, S. Fang, P.C. Eklund. Effects of gas adsorption andcollisions on electrical transport in single-walled carbon nanotubes[J]. Phys. Rev. Lett.,2000,85(5):1096-1099
    [119] D.C. Sorescu, K.D. Jordan, P. Avouris. Theoretical study of oxygen adsorption on graphite andthe (8,0) single-walled carbon nanotube[J]. J. Phys. Chem. B,2001,105(45):11227-11232
    [120] A. Star, T.-R. Han, V. Joshi, J.-C.P. Gabriel, G. Gruner. Nanoelectronic carbon dioxidesensors[J]. Adv. Mater.,2004,16(22):2049-2052
    [121] D.R. Kauffman, A. Star. Chemically induced potential barriers at the carbon nanotube metalnanoparticle interface[J]. Nano Lett.,2007,7(7):1863-1868
    [122] Y.X. Liang, Y.J. Chen, T.H. Wang. Low-resistance gas sensors fabricated from multiwalledcarbon nanotubes coated with a thin tin oxide layer[J]. Appl. Phys. Lett.,2004,85(4):666-668
    [123] O. Kuzmych, B.L. Allen, A. Star. Carbon nanotube sensors for exhaled breath components[J].Nanotechnology,2007,18(37):375502
    [124] C.M. Yang, H. Kanoh, K. Kaneko, M. Yudasaka, S. Iijima. Adsorption behaviors of HiPcosingle-walled carbon nanotube aggregates for alcohol vapors[J]. J. Phys. Chem. B,2002,106(35):8994-8999
    [125] M. Penza, F. Antolini, M.V. Antisari. Carbon nanotubes as SAW chemical sensors materials[J].Sens. Actuators B,2004,100(1-2):47-59
    [126] M. Penza, M.A. Tagliente, P. Aversa, M. Re, G. Cassano. The effect of purification ofsingle-walled carbon nanotube bundles on the alcohol sensitivity of nanocompositeLangmuir–Blodgett films for SAW sensing applications[J]. Nanotechnology,2007,18(18):185502
    [127] J. Li, Y. Lu, Q. Ye, M. Cinke, J. Han, M. Meyyappan. Carbon nanotube sensors for gas andorganic vapor detection[J]. Nano Lett.,2003,3(7):929–933
    [128] J.P. Novak, E.S. Snow, E.J. Houser, D. Park, J.L. Stepnowski, R.A. McGill. Nerve agentdetection using networks of single-walled carbon nanotubes[J]. Appl. Phys. Lett.,2003,83(19):4026-4028
    [129] C.Y. Lee, S. Baik, J. Zhang, R.I. Masel, M.S. Strano. Charge transfer from metallicsingle-walled carbon nanotube sensor arrays[J]. J. Phys. Chem. B,2006,110(23):11055–11061
    [130] K. Cattanach, R.D. Kulkarni, M. Kozlov, S.K. Manohar. Flexible carbon nanotube sensors fornerve agent simulants[J]. Nanotechnology,2006,17(16):4123-4128
    [131] C. Staii, A. T. Johnson, M. Chen, A. Gelperin. DNA-decorated carbon nanotubes for chemicalsensing[J]. Nano Lett.,2005,5(9):1774-1778
    [132] A.T.C. Johnson, C. Staii, M. Chen, S. Khamis, R. Johnson, M.L. Klein, A. Gelperin.DNA-decorated carbon nanotubes for chemical sensing[J]. Phys. Status Solidi B,2006,243(13):3252-3256
    [133] S. Kim. CNT sensors for detecting gases with low adsorption energy by ionization[J]. Sensors,2006,6(5):503–513
    [134] S. Kim. Detection of inert gases by cold electron emission from carbon nanotube emitters[J].Mod. Phys. Lett. B,2005,19(24):1207–1211
    [135] E. S. Snow, F. K. Perkins, J. A. Robinson. Chemical vapor detection using single-walledcarbon nanotubes[J]. Chem. Soc. Rev.,2006,35(9):790–798
    [136] T.E. Mlsna, S. Cemalovic, M. Warburton, S.T. Hobson, D.A. Mlsna, S.V. Patel.Chemicapacitive microsensors for chemical warfare agent and toxic industrial chemicaldetection[J]. Sens. Actuators B,2006,116(1-2):192–201
    [137] S.V. Patel, S.T. Hobson, S. Cemalovic, T.E. Mlsna. Chemicapacitive microsensors fordetection of explosives and TICs[C]. Proc. SPIE5986, Unmanned/Unattended Sensors andSensor Networks II, Bruges, Belgium,2005,59860M
    [138] S.V. Patel, S.T. Hobson, S. Cemalovic, T.E. Mlsna. Detection of methyl salicylate usingpolymer-filled chemicapacitors[J]. Talanta,2008,76(4):872–877
    [139] E. Ghafar-Zadeh, M. Sawan. Charge-based capacitive sensor array for CMOS-basedlaboratory-on-chip applications[J]. IEEE Sens. J.,2008,8(4):325-332
    [140] D. Strle, B. Stefane, U. Nahtigal, E. Zupanic, F. Pozgan, I. Kvasic, M. Macek, J. Trontelj, I.Musevic. Surface-functionalized COMB capacitive sensors and CMOS electronics for vaportrace detection of explosives[J]. IEEE Sens. J.,2012,12(5):1048-1057
    [141] J. Lin, S. Miiller, E. Obermeier. Two-dimensional and three-dimensional interdigital capacitorsas basic elements for chemical sensors[J]. Sens. Actuators B,1991,5(1-4):223-226
    [142] A. Hierlemann, D. Lange, C. Hagleitner, N. Kerness, A. Koll, O. Brand, H. Baltes.Application-specific sensor systems based on CMOS chemical microsensors[J]. Sens.Actuators B,2000,70(1-3):2–11
    [143] A. Koll, A. Kummer, O. Brand, H. Baltes. Discrimination of volatile organic compounds usingCMOS capacitive chemical microsensors with thickness adjusted polymer coating[C]. Proc.SPIE3673, Smart Structures and Materials1999: Smart Electronics and MEMS, NewportBeach, California,1999,308-317
    [144] E.S. Snow, F.K. Perkins. Capacitance and conductance of single-walled carbon nanotubes inthe presence of chemical vapors[J]. Nano Lett.,2005,5(12):2414-2417
    [145] J.A. Robinson, E.S. Snow, F.K. Perkins. Improved chemical detection using single-walledcarbon nanotube network capacitors[J]. Sens. Actuators A,2007,135(2):309–314
    [146] K.G. Ong, K. Zeng, C.A. Grimes. A wireless, passive carbon nanotube-based gas sensor[J].IEEE Sens. J.,2002,2(2):82-88
    [147] X. Li, J. Liu, C. Zhu. The study of adsorption gas sensor based carbon nanotube film[J]. Sci.China Ser. E,2005,48(4):372-384
    [148] Q. Lin, J. Cheon, B.D. Gong, Y.J. Park, H. Min, D. Kang, L. Kim, J.S. Suh. Capacitivemeasurements for a novel ECIS (electrolyte–carbon nanotubes–insulator–semiconductor)structure[J]. Semicond. Sci. Technol.,2006,21(5):686–690
    [149] Y. Chen, F. Meng, M. Li, J. Liu. Novel capacitive sensor: fabrication from carbon nanotubearrays and sensing property characterization[J]. Sens. Actuators B,2009,140(2):396–401
    [150] F. Yao, S.C. Lim, W.J. Yu, I.H. Lee, F. Gunes, H.R. Hwang,S.B. Yang, K.P. So, G.H. Han, Y.H.Lee. AC response to gas exposure in vertically aligned multiwalled carbon nanotubeelectrode[J]. J. Phys. Chem. C,2010,114(8):3659–3663
    [151]刘迎春,叶湘滨.传感器原理设计与应用[M].长沙:国防科技大学出版社,2006,90-103
    [152] R.F. Wolffenbuttel, P.P.L. Regtien. Capacitance-to-phase angle conversion for the detection ofextremely small capacities[J]. IEEE Trans. Instrum. Meas.,1987,36(4):868-872
    [153] C. Ghidini, D. Marioli, E. Sardini, A. Taroni. A15ppm resolution measurement system forcapacitance transducers[J]. Meas. Sci. Technol.,1996,7(12):1787-1792
    [154] A.S. Hou, S.X.P. Su. Design of a capacitive-sensor signal processing system with highaccuracy and short conversion time[J]. Sens. Actuators A,2005,119(1):113-119
    [155] H.L. Hu, T.M. Xu, S.E. Hui. A high-accuracy, high-speed interface circuit for differential-capacitance transducer[J]. Sens. Actuators A,2006,125(2):329-334
    [156] W. Bracke, P. Merken, R. Puers, C.V. Hoof. Design methods and algorithms for configurablecapacitive sensor interfaces[J]. Sens. Actuators A,2005,125(1):25-33
    [157]胡佳.神经性毒剂痕量蒸汽声表面波传感器的研究[D].成都:电子科技大学,2012,86-101
    [158] J. Gamby, P.L. Taberna, P. Simon, J.F. Fauvarque, M. Chesneau. Studies and characterisationsof various activated carbons used for carbon/carbon supercapacitors[J]. J. Power Sources,2001,101(1):109-116
    [159] S. Kundu, Y. Wang, W. Xia, M. Muhler. Thermal stability and reducibility ofoxygen-containing functional groups on multiwalled carbon nanotube surfaces: a quantitativehigh-resolution XPS and TPD/TPR study[J]. J. Phys. Chem. C,2008,112(43):16869–16878
    [160] Y. Zhang, H. Feng, X. Wu, L. Wang, A. Zhang, T. Xia, H. Dong, X. Li, L. Zhang. Progress ofelectrochemical capacitor electrode materials: a review[J]. Int. J. Hydrogen Energy,2009,34(11):4889–4899
    [161] J. Chmiola, G. Yushin, Y. Gogotsi, C. Portet, P. Simon, P.L. Taberna. Anomalous increase incarbon capacitance at pore sizes less than1nanometer[J]. Science,2006,313(5794):1760-1763
    [162] P. Simon, Y. Gogotsi. Materials for electrochemical capacitors[J]. Nat. Mater.,2008,7(11):845-854
    [163] J. Huang, B.G. Sumpter, V. Meunier. Theoretical model for nanoporous carbonsupercapacitors[J]. Angew. Chem. Int. Ed.,2008,47(3):520–524
    [164] C. Vix-Guterl, E. Frackowiak, K. Jurewicz, M. Friebe, J. Parmentier, F. Beguin.Electrochemical energy storage in ordered porous carbon materials[J]. Carbon,2005,43(6):1293–1302
    [165] J Gamby, P.L Taberna, P Simon, J.F Fauvarque, M Chesneau. Studies and characterisations ofvarious activated carbons used for carbon/carbon supercapacitors[J]. J. Power Sources,2001,101(1):109–116
    [166] J. Suehiro, H. Imakiire, S. Hidaka, W. Ding, G. Zhou, K. Imasaka, M. Hara. Schottky-typeresponse of carbon nanotube NO2gas sensor fabricated onto aluminum electrodes bydielectrophoresis[J]. Sens. Actuators B,2006,114(2):943-949
    [167] Q. Cao, J.A. Rogers. Ultrathin films of single-walled carbon nanotubes for electronics andsensors: a review of fundamental and applied aspects[J]. Adv. Mater.,2009,21(1):29-53
    [168] K. Bradley, J.-C.P. Gabriel, M. Briman, A. Star, G. Gruner. Charge transfer from ammoniaphysisorbed on nanotubes[J]. Phys. Rev. Lett.,2003,91(21):218301
    [169] J.W. Grate. Hydrogen-bond acidic polymers for chemical vapor sensing[J]. Chem. Rev.,2008,108(2):726-745
    [170] P.R. Lewis, R.P. Manginell, D.R. Adkins, R.J. Kottenstette, D.R. Wheeler, S.S. Sokolowski,D.E. Trudell, J.E. Byrnes, M. Okandan, J.M. Bauer, R.G. Manley, G.C. Frye-Mason. Recentadvancements in the gas-phase microchemlab[J]. IEEE Sens. J.,2006,6(3):784-795
    [171] X. Du, Z. Wang, J. Huang, S. Tao, X. Tang, Y. Jiang. A new polysiloxane coating on QCMsensor for DMMP vapor detection[J]. J. Mater. Sci.,2009,44(21):5872–5876
    [172] D.R. Lide. CRC Handbook of chemistry and physics[M]. Boca Raton, FL: CRC Press/Taylorand Francis,2009,2019
    [173] P. Qi, O. Vermesh, M. Grecu, A. Javey, Q. Wang, H. Dai, S. Peng, K. Cho. Toward large arraysof multiplex functionalized carbon nanotube sensors for highly sensitive and selectivemolecular detection[J]. Nano Lett.,2003,3(3):347-351
    [174] E.S. Snow, J.P. Novak, P.M. Campbell, D. Park. Random networks of carbon nanotubes as anelectronic material[J]. Appl. Phys. Lett.,2003,82(13):2145-2147
    [175] J.A. Robinson, E.S. Snow, S.C. Badescu, T.L. Reinecke, F.K. Perkins. Role of defects insingle-walled carbon nanotube chemical sensors[J]. Nano Lett.,2006,6(8):1747-1751
    [176] P. Yao, G. Schneider, B. Miao, J. Murakowski, D. Prather. Three-dimensional photolithographybased on image reversal[C]. Proc. SPIE5342, Micromachining and Microfabrication ProcessTechnology IX, San Jose, California,2004,165-172
    [177]陈光红,于映,罗仲梓,吴清鑫. AZ5214E反转光刻胶的性能研究及其在剥离工艺中的应用[J].功能材料,2005,3(36):431-433
    [178]唐波.行波管用碳纳米管场发射阴极组件的研制[D].成都:电子科技大学,2011,19-22
    [179] L.C. Qin, D. Zhou, A.R.Krauss, D.M. Gruen. Growing carbon nanotubes by microwaveplasma-enhanced chemical vapor deposition[J]. Appl. Phys. Lett.,1998,72(26):3437-3439
    [180] M. Jung, K.Y. Eun, J.K. Lee, Y.-J. Baik, K.-R. Lee, J.W. Park. Growth of carbon nanotubes bychemical vapor deposition[J]. Diamond Relat. Mater.,2001,10(3-7):1235-1240
    [181]陈雷锋,蒋红,宋航,赵海峰,李志明,黎大兵,郭万国,曹连振,刘霞.电泳和电镀法增强碳纳米管场发射特性的研究[J].真空科学与技术学报,2010,30(1):64-67
    [182] M. SenthilKumar, S.H. Lee, T.Y. Kim, T.H. Kim, S.M. Song, J.W. Yang, K.S. Nahm, E.-K.Suh. DC electric field assisted alignment of carbon nanotubes on metal electrodes[J].Solid-State Electron.,2003,47(11):2075–2080
    [183] M.P. Bernstein, S.A. Sandford, L.J. Allamandola, J.S. Gillette, S.J. Clemett, R.N. Zare. UVirradiation of polycyclic aromatic hydrocarbons in ices: production of alcohols, quinones, andethers[J]. Science,1999,283(5405):1135–1138
    [184] H.G. Agrell, J. Lindgren, A. Hagfeldt. Degradation mechanisms in a dye-sensitized solar cellstudied by UV–VIS and IR spectroscopy[J]. Sol. Energy,2003,75(2):169–180
    [185] N. Kouklin, M. Tzolov, D. Straus, A. Yin, J.M. Xu. Infrared absorption properties of carbonnanotubes synthesized by chemical vapor deposition[J]. Appl. Phys. Lett.,2004,85(19):4463–4465
    [186] T.I.T. Okpalugo, P. Papakonstantinou, H. Murphy, J. McLaughlin, N.M.D. Brown. Highresolution XPS characterization of chemical functionalized MWCNTs and SWCNTs[J].Carbon,2005,43(1):153–161
    [187] D.B. Cairns, S.P. Armes, M.M. Chehimi, C. Perruchot, M. Delamar. X-ray photoelectronspectroscopy characterization of submicrometer-sized polypyrrole polystyrene composites[J].Langmuir,1999,15(23):8059–8066
    [188] S.T. Dubas, J.B. Schlenoff. Swelling and smoothing of polyelectrolyte multilayers by salt[J].Langmuir,2001,17(25):7725-7727
    [189] V. Castelletto, I.W. Hamley, C. Cenker, U. Olsson. Influence of salt on the self-assembly oftwo model amyloid heptapeptides[J]. J. Phys. Chem. B,2010,114(23):8002–8008
    [190] G. Sauerbrey. Verwendung von schwingquarzen zur w gung dünner schichten und zurmikrow gung[J]. Z. Phys.,1959,155(2):206–222
    [191] E. Bekyarova, Y. Hanzawa, K. Kaneko, J. Silvestre-Albero, A. Sepulveda-Escribano, F.Rodriguez-Reinoso, D. Kasuya, M. Yudasaka, S. Iijima. Cluster-mediated filling of watervapor in intratube and interstitial nanospaces of single-wall carbon nanohorns[J]. Chem. Phys.Lett.,2002,366(5-6):463-468
    [192] E.A. Muller, L.F. Rull, L.F. Vega, K.E. Gubbins. Adsorption of water on activated carbons: amolecular simulation study[J]. J. Phys. Chem.,1996,100(4):1189-1196

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700