用户名: 密码: 验证码:
氧化应激在丙烯醛致人肝癌细胞HepG2 DNA损伤中的作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:丙烯醛广泛的存在于自然环境中,特别是吸烟所产生的烟雾中含有大量丙烯醛,丙烯醛还是抗癌药环磷酰胺的代谢产物,在脂质的氧化过程中也可以产生丙烯醛。
     国际癌症研究机构(International Agency for Research on Cancer, IARC)认为,目前尚无充分的证据表明丙烯醛对实验动物具有致癌性。另外,越来越多的证据显示丙烯醛具有遗传毒性。大量研究显示,丙烯醛在多种细胞系中可以引起活性氧(ROS)的产生,同时体内体外实验均显示丙烯醛能导致谷胱甘肽(GSH)含量的下降。丙烯醛的遗传毒性已经在很多细胞系中得到证实,但迄今尚未见到关于丙烯醛致人肝癌细胞系(HepG2)DNA损伤的研究报道。HepG2细胞保留了生物转化代谢I相酶和II相酶的活性,它被认为是检测外来化合物遗传毒性的一个理想细胞系。
     本研究选用HepG2细胞作为试验系统,探讨丙烯醛的DNA损伤作用及可能的机制,旨在为评估丙烯醛对人类健康的危害性提供有价值的实验室依据。
     方法:试验系统为HepG2细胞系。通过标准的以及蛋白酶K改良的单细胞微凝胶电泳(SCGE)试验检测细胞DNA损伤情况。为了阐明HepG2细胞中的氧化性DNA损伤机制,通过2',7'—二氢二氯荧光素(DCFH)和苯二醛(OPT)分别测定细胞内ROS以及GSH水平。用免疫组化方法测定8-羟基脱氧鸟苷(8-OHdG)在细胞内的表达水平。我们还研究了抗氧化物质N-乙酰半胱氨酸(NAC)的保护作用以进一步评价ROS以及GSH在丙烯醛所致的DNA链断裂中的作用。
     结果:当低浓度的丙烯醛(12.5-25μM)作用于细胞后,DNA的迁移距离明显增加,且呈剂量依赖关系。而当较高浓度的丙烯醛(50-100μM)作用于细胞后,DNA的迁移距离与丙烯醛在25μM时的最大迁移量相比明显缩短。暴露较高浓度丙烯醛(50-100μM)的细胞,经蛋白酶K处理后与未经蛋白酶K处理的细胞相比,DNA的迁移距离明显增加。这些结果提示,丙烯醛在较低浓度引起细胞DNA链断裂,而在较高浓度导致DNA-蛋白质交联(DPC)的形成。丙烯醛作用于HepG2细胞可引起细胞内ROS表达水平的明显增加以及GSH的耗竭,其作用剂量分别是50-100μM和25-100μM。此外,25 -100μM的丙烯醛可以明显增加HepG2细胞内8-OHdG水平。NAC(GSH的前体和细胞内ROS的清除剂)能够拮抗丙烯醛引起的DNA链断裂的形成。
     结论:丙烯醛可致HepG2细胞DNA损伤,其作用机制可能是通过ROS的增高以及细胞内GSH的耗竭,进而导致氧化性DNA损伤、DNA链断裂以及DPC的形成。
Objective: Acrolein is found widely in the environment, particularly as a component of smoke. Acrolein can generate endogeneously as a metabolic product of the anticancer-drug cyclophosphamide and during conditions of lipid oxidation.
     Acrolein is an intense irritant and displays a range of toxic effects. The International Agency for Research on Cancer (IARC) concluded that there was inadequate evidence for its carcinogenicity in experimental animals. In addition, there is increasing evidence that acrolein is genotoxic. Previous studies demonstrated that acrolein was able to induce the generation of reactive oxygen species (ROS) in some cell types. In addition, both in vitro and in vivo studies showed that acrolein caused a significant reduction of intracellular GSH. The genotoxic effects of acrolein have already been demonstrated in many cell lines. However, this is the first evidence of acrolein-induced DNA damage in human hepatoma line (HepG2). HepG2 cells retain the activities of several phase I and II xenobiotic metabolizing enzymes presented in human hepatocytes. It has been shown to be a suitable system for investigation of genotoxicity.
     The overall object of present study is to explore whether acrolein causes DNA damage in HepG2 cells and to elucidate the underlying mechanism of acrolein-induced DNA damage. Thus it may provide some information for safety assessment to humans on acrolein.
     Method: DNA damage induced by acrolein was assessed by standard and proteinase K-modified alkaline single cell gel electrophoresis (SCGE) assays. To elucidate the oxidative DNA damage mechanism in HepG2 cells, we used the 2,7-dichlorofluorescein diacetate (DCFH-DA) and o-phthalaldehyde (OPT) to monitor the levels of reactive oxygen species (ROS) and glutathione (GSH). We analyzed the oxidative DNA damage in acrolein-treated cells by immunocytochemistry staining of 8-hydroxydeoxyguanosine (8-OHdG). To further evaluate the involvements of ROS and GSH in the formation of acrolein-induced DNA strand breaks, we studied the protective effect of NAC.
     Result: Using the standard SCGE assay, a significant dose-dependent increment in DNA migration was detected at lower concentrations of acrolein (12.5- 25μM); but at the higher tested concentrations (50-100μM), a reduction in the migration compared to the maximum migration at 25μM was observed. Post-incubation with proteinase K significantly increased DNA migration in cells exposed to higher concentrations of acrolein (50-100μM). These results indicated that acrolein caused DNA strand breaks at lower concentrations of acrolein and DNA-protein crosslinks (DPC) formation at higher concentrations. The present study showed that acrolein induced the increased levels of ROS and depletion of GSH in HepG2 cells, the doses being 50-100μM and 25-100μM, respectively. Moreover, acrolein significantly caused 8-hydroxydeoxyguanosine (8-OHdG) formation in HepG2 cells at concentrations from 25 to 100μM. N-acetylcysteine (NAC), a precursor of GSH and intracellular ROS scavenger, prevented the formation of DNA strand breaks caused by acrolein.
     Conclusion: we conclude that the DNA damage of acrolein is mediated by the formation of ROS and depletion of GSH, which cause oxidative DNA damage, formation of DNA strand breaks and DPC.
引文
1. Esterbauer H, Schaur RJ, Zollner H. Chemistry and biochemistry of 4-hydroxynonenal, malonaldehyde and related aldehydes. Free Radic Biol Med 1991 11 (1):81-128
    2. O'Brien PJ, Siraki AG, Shangari N. Aldehyde sources, metabolism, molecular toxicity mechanisms, and possible effects on human health. Crit Rev Toxicol 2005 35 (7):609-62.
    3. Nelson TJ, Boor PJ. Allylamine cardiotoxicity-IV. Metabolism to acrolein by cardiovascular tissues. Biochem Pharmacol 1982 31 (4):509-14
    4. Sakata K, Kashiwagi K, Sharmin S, Ueda S, Igarashi, K. Acrolein produced from polyamines as one of the uraemic toxins. Biochem Soc Trans 2003 31 (2):371-4
    5. Gurtoo HL, Marinello AJ, Struck RF, Paul B, Dahms RP. Studies on the mechanism of denaturation of cytochrome P-450 by cyclophosphamide and its metabolites. J Biol Chem 1981 256 (22):11691-701
    6. Uchida K, Kanematsu M, Morimitsu Y, Osawa T, Noguchi N, Niki E. Acrolein is a product of lipid peroxidation reaction. Formation of free acrolein and its conjugate with lysine residues in oxidized low density lipoproteins. J Biol Chem 1998 273 (26):16058-66
    7. IARC Acrolein, IARC Monogr 1995 63:337-72
    8. Hales BF. Comparison of the mutagenicity and teratogenicity of cyclophosphamide and its active metabolites,4-hydroxycyclophosphamide, phosphoramide mustard, and acrolein. Cancer Res 1982 42 (8):3016-21
    9. Marnett LJ, Hurd HK, Hollstein MC, Levin DE, Esterbauer H, Ames BN. Naturally occurring carbonyl compounds are mutagens in Salmonella tester strain TA104. Mutat Res 1985 148 (1-2):25-34
    10. Dypbukt JM, Atzori L, Edman CC, Grafstrom RC. Thiol status and cytopathological effects of acrolein in normal and xeroderma pigmentosum skin fibroblasts. Carcinogenesis 1993,14 (5):975-980.
    11. Grafstrom RC, Dypbukt JM, Willey JC, Sundqvist K, Edman C, Atzori L, Harris CC. Pathobiological effects of acrolein in cultured human bronchial epithelial cells. Cancer Res 1988 48 (7):1717-21
    12. Crook TR, Souhami RL, Mclean AE. Cytotoxicity, DNA cross-linking and single strand breaks induced by activated cyclophosphamide and acrolein inhuman leukemia cells. Cancer Res 1986 46 (10):5029-34
    13. Au W, Sokova OI, Kopnin B, Arrighi FE. Cytogenetic toxicity of cyclophosphamide and its metabolites in vitro. Cytogenet Cell Genet 1980 26 (2-4):108-16
    14. Luo J, Robinson JP, Shi R. Acrolein-induced cell death in PC12 cells: role of mitochondria-mediated oxidative stress. Neurochem Int 2005 47 (7):449-57
    15. Nardini M, Finkelstein EI, Reddy S, Valacchi G, Traber M, Cross CE, van der Vliet A. Acrolein-induced cytotoxicity in cultured human bronchial epithelial cells. Modulation by alpha-tocopherol and ascorbic acid. Toxicology 2002 170 (3):173-85
    16. Park YS, Misonou Y, Fujiwara N, Takahashi M, Miyamoto Y, Koh YH, Suzuki K, Taniguchi N. Induction of thioredoxin reductase as an adaptive response to acrolein in human umbilical vein endothelial cells. Biochem Biophys Res Commun 2005 327 (4):1058-65
    17. Zitting A, Heinonen T. Decrease of reduced glutathione in isolated rat hepatocytes caused by acrolein, acrylonitrile, and the thermal degradation products of styrene copolymers. Toxicology 1980 17 (3):333-41
    18. Arumugam N, Thanislass J, Ragunath K, Niranjali S, Devaraj H. Acrolein-induced toxicity-defective mitochondrial function as a possible mechanism. Arch Environ Contam Toxicol 1999 36 (4):373-6
    19. Knowles BB, Howe CC, Aden DP. Human hepatocellular carcinoma cell lines secrete the major plasma proteins and hepatitis B surface antigen. Science 1980 209(4455): 497-9
    20. Dearfield KL, Jacobson-Kram D, Brown NA, et al. Evaluation of a human hepatoma cell line as a target cell in genetic toxicology, Mutat Res 1983 108(1-3):437-49
    21. Knasmuller S, Parzefall W, Sanyal R, Ecker S, Schwab C, Uhl M, Mersch–Sundermann V, Williamson G., Hietsch G, Langer T, Darroudi F, Natarajan AT. Use of metabolically competent human hepatoma cells for the detection of mutagens and antimutagens. Mutat Res 1998 402 (1-2):185-202
    22. Knaapen A.M, Seiler F, Schilderman P.A. et al. Neutrophils cause oxidative DNA damage in alveolar epithelial cells, Free Radic Biol Med 1999 27(1-2):234-40
    23. Singh NP, Stephens RE. Microgel electrophoresis: sensitivity, mechanisms, and DNA electrostretching. Mutat Res 1997 383 (2):167-75
    24. Merk O, Reiser K, Speit G. Analysis of chromate-induced DNA-protein crosslinks with the comet assay. Mutat Res 2000 471 (1-2):71-80
    25. LeBel CP, Ischiropoulos H, Bondy SC. Evaluation of the probe 2',7'-dichlorofluorescin as an indicator of reactive oxygen species formation and oxidative stress. Chem Res Toxicol 1992 5 (2):227-31
    26. Sohn JH, Han KL, Lee SH, Hwang JK. Protective effects of panduratin A against oxidative damage of tert-butylhydroperoxide in human HepG2 cells. Biol Pharm Bull 2005 28(6):1083-6
    27. Hissin PJ, Hilf R. A fluorometric method for determination of oxidized and reduced glutathione in tissues. Anal Biochem 1976 74(1):214-26
    28. Yarborough A, Zhang YJ, Hsu TM, Santella RM. Immunoperoxidase detection of
    8-hydroxydeoxyguanosine in aflatoxin B1-treated rat liver and human oral mucosal cells. Cancer Res 1996,56(4):683-8
    29. Tice RR, Agurell E, Anderson D, Burlinson B, Hartmann A, Kobayashi H, Miyamae Y, Rojas E, Ryu JC, Sasaki YF. Single cell gel/comet assay: guidelines for in vitro and in vivo genetic toxicology testing. Environ Mol Mutagen 2000 35(3):206-21
    30. Yang Q, Hergenhahn M, Weninger A, Bartsch H. Cigarette smoke induces direct DNA damage in the human B-lymphoid cell line Raji. Carcinogenesis 1999 20(9):1769-75
    31. Kuchenmeister F, Schmezer P, Engelhardt G. Genotoxic bifunctional aldehydes produce specific images in the comet assay. Mutat Res 1998 419(1-3):69-78
    32. Oleinick NL, Chiu SM, Ramakrishnan N, Xue LY. The formation, identification, and significance of DNA-protein cross-links in mammalian cells. Br J Cancer Suppl, 1987 8:135-40.
    33.雷毅雄,庄志雄,张桥.外来化学物与DNA蛋白质交联物关系的研究进展.国外医学卫生学分册,1995,22:149-52.
    34. Halliwell B, Whiteman M. Measuring reactive species and oxidative damage in vivo and in cell culture: how should you do it and what do the results mean. Br J Pharmacol 2004 142(2):231-55
    35. Epe B. Genotoxicity of singlet oxygen. Chem Biol Interact 1991 80(3):239-60
    36. Nappi AJ, Vass E. Comparative studies of enhanced iron-mediated production of hydroxyl radical by glutathione, cysteine, ascorbic acid, and selected catechols. Biochim Biophys Acta. 1997 1336(2):295-302
    37. Eisenbrand G, Schuhmacher J, Golzer P. The influence of glutathione and detoxifying enzymes on DNA damage induced by 2-alkenals in primary rat hepatocytes and human lymphoblastoid cells. Chem Res Toxicol 1995 8(1):40-6
    38. Kehrer JP, Biswal SS. The molecular effects of acrolein. Toxicol. Sci. 2000 57: 6-15
    39. Adams JD, Klaidman LK. Acrolein-induced oxygen radical formation. Free Radic Biol Med 1993 15(2):187-93
    40. Kaneko T, Tahara S, Matsuo M. Non-linear accumulation of 8-hydroxy- 2’-deoxyguannsine, a marker of oxidative DNA damage during aging. Toxicol Appol Pharmacol, 1997 147(1):9-14
    41. Moriya M. Single-stranded shuttle phagemid for mutagenesis studies in mammalian cells: 8-oxoguanine in DNA induces targeted G.C→T.A transversions in simian kidney cells. Proc Natl Acad Sci U.S.A. 1993 90(3):1122-26
    1. Rydberg B, Johanson KJ. Estimation of DNA strand breaks in single mammalian cells, in: Hanwalt PC, Friedberg EC. (Eds.). DNA Repair Mechanism, Academic Press, New York 1978 pp.465-8
    2. Ostling O, Johanson KJ. Microelectrophoretic study of radiation-induced DNA damages in individual mammalian cells. Bioehem Biophys Res Commun, 1984 123(1):291-8
    3. Olive PL, Wlodek D, Banath JP. DNA double-strand breaks measured in individual cells subjected to gel electrophoresis. Cancer Res 1991 51(17):4671-6
    4. Singh NP, McCoy MT, Tice RR, Schneider EL. A simple technique for quantitation of low levels of DNA damage in individual cells. Exp Cell Res 1988 175(1):184-91
    5. Singh NP, Stephens RE, Schneider EL. Modifications of alkaline microgel electrophoresis for sensitive detection of DNA damage. Int J Radiat Biol. 1994 66(1):23-8
    6. McKelvey-Martin VJ, Green MH, Schmezer P, Pool-Zobel BL, De Méo MP, Collins A.The single cell gel electrophoresis assay (comet assay): a European review. Mutat Res 1993 288(1):47-63
    7. Rojas E, Valverde M, Sordo M, Ostrosky-Wegman P. DNA damage in exfoliated buccal cells of smokers assessed by the single cell gel electrophoresis assay. Mutat Res 1996 370(2):115-20
    8. Holz O, J?rres R, K?stner A, Magnussen H. Differences in basal and induced DNA single-strand breaks between human peripheral monocytes and lymphocytes. Mutat Res 1995 332(1-2):55-62
    9.乔琰,鲁志松,姚汉超,杨旭,李睿.彗星试验分析指标的进展和应用.卫生毒理学杂志,2004,18(3):190-192.
    10.张建平,陈道达.单细胞凝胶电泳技术及其应用.国外医学.遗传学分册,1997 20(5):231-5
    11. Olive PL, Banáth JP, Durand RE. Heterogeneity in radiation-induced DNA damage and repair in tumor and normal cells measured using the "comet" assay. Radiat Res 1990 122(1):86-94
    12. Kent CR, Eady JJ, Ross GM, Steel GG. The comet moment as a measure of DNA damage in the comet assay. Int J Radiat Biol 1995 67(6):655-60
    13.田云,卢向阳,易克,何小解,黄成江,许亮.单细胞凝胶电泳技术.生命的化学,2004,24(1):77-8.
    14. Klaude M, Eriksson S, Nygren J, Ahnstr?m G. The comet assay: mechanisms and technical considerations. Mutat Res 1996 363(2):89-96
    15. Ross GM, McMillan TJ, Wilcox P, Collins AR. The single cell microgel electrophoresis assay (comet assay): technical aspects and applications. Report on the 5th LH Gray Trust Workshop, Institute of Cancer Research 1994 Mutat Res 1995 337(1):57-60
    16. Hartmann A, Speit G. Genotoxic effects of chemicals in the single cell gel (SCG) test with human blood cells in relation to the induction of sister-chromatid exchanges (SCE). Mutat Res 1995 346(1):49-56
    17. Green MH, Lowe JE, Harcourt SA, Akinluyi P, Rowe T, Cole J, Anstey AV, Arlett CF. UV-C sensitivity of unstimulated and stimulated human lymphocytes from normal and xeroderma pigmentosum donors in the comet assay: a potential diagnostic technique. Mutat Res 1992 273(2):137-44
    18. Oleinick NL, Chiu SM, Ramakrishnan N, Xue LY. The formation, identification, and significance of DNA-protein cross-links in mammalian cells. Br J Cancer Suppl 1987 8:135-40
    19.雷毅雄,庄志雄,张桥.外来化学物与DNA蛋白质交联物关系的研究进展.国外医学卫生学分册,1995 22:149-52
    20.张遵真,衡正昌,贺芳,庞学文.彗星试验检测DNA交联的研究.卫生研究,2001 30(3):146-8
    21. Pfuhler S, Wolf HU. Detection of DNA-crosslinking agents with the alkaline comet assay. Environ Mol Mutagen 1996 27(3):196-201
    22. Merk O, Speit G. Detection of crosslinks with the comet assay in relationship to genotoxicity and cytotoxicity. Environ Mol Mutagen 1999 33(2):167-72
    23.任泽舫,庄志雄,肖勇梅,张绵周,黄海雄,张丙尧.一种新的DNA-DAN交联检测法——改良单细胞凝胶电泳法.卫生毒理学杂志,2000 14(4):255-7
    24.张遵真,衡正昌.彗星试验检测DNA交联及其修复效应的研究.卫生毒理学杂志,2001 15(4):262-4
    25.张遵真,衡正昌.一种更新的检测DNA交联的尝试.卫生毒理学杂志,2001 15(3):182-3.
    26. Singh NP. Microgels for estimation of DNA strand breaks, DNA protein crosslinks and apoptosis. Mutat Res. 2000 455(1-2):111-27
    27. Mourón SA, Grillo CA, Dulout FN, Golijow CD. Induction of DNA strand breaks, DNA-protein crosslinks and sister chromatid exchanges by arsenite in a human lung cell line. Toxicol In Vitro. 2006 20(3):279-85
    28. Hu Y, Kabler SL, Tennant AH, Townsend AJ, Kligerman AD. Induction of DNA-protein crosslinks by dichloromethane in a V79 cell line transfected with the murine glutathione-S-transferase theta 1 gene. Mutat Res, 2006 607(2):231-9
    29. Fairbairn DW, Olive PL, O'Neill KL. The comet assay: a comprehensive review. Mutat Res, 1995 339(1):37-59
    30.李蕊,衡正昌,张遵真.彗星试验检测细胞凋亡的研究.卫生研究, 1999 28(2):83-5
    31. Ateeq B, Abul Farah M, Ahmad W. Detection of DNA damage by alkaline single cell gel electrophoresis in 2,4-dichlorophenoxyacetic-acid- and butachlor-exposed erythrocytes of Clarias batrachus. Ecotoxicol Environ Saf, 2005 62(3):348-54
    32. Pool-Zobel BL, Klein RG, Liegibel UM, Kuchenmeister F, Weber S, Schmezer P. Systemic genotoxic effects of tobacco-related nitrosamines following oral and inhalational administration to Sprague-Dawley rats. Clin Investig, 1992 70(3-4):299-306
    33. Miloshev G, Mihaylov I, Anachkova B. Application of the single cell gel electrophoresis on yeast cells. Mutat Res, 2002 Jan 15;513(1-2):69-74
    34. Olive PL, Banáth JP. Induction and rejoining of radiation-induced DNA single-strand breaks: "tail moment" as a function of position in the cell cycle. Mutat Res, 1993 294(3):275-83
    35. Olive PL, Banáth JP. Detection of DNA double-strand breaks through the cell cycle after exposure to X-rays, bleomycin, etoposide and 125IdUrd. Int J Radiat Biol, 1993 64(4):349-58
    36. Vijayalaxmi , Tice RR, Strauss GH. Assessment of radiation-induced DNA damage in human blood lymphocytes using the single-cell gel electrophoresis technique. Mutat Res, 1992 271(3):243-52
    37. Olive PL, Vikse CM, Durand RE. Hypoxic fractions measured in murine tumors and normal tissues using the comet assay. Int J Radiat Oncol Biol Phys, 1994 29(3):487-91
    38. Delaney CA, Green MH, Lowe JE, Green IC. Endogenous nitric oxide induced by interleukin-1 beta in rat islets of Langerhans and HIT-T15 cells causes significant DNA damage as measured by the 'comet' assay. FEBS Lett, 1993 333(3):291-5

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700