用户名: 密码: 验证码:
碳纳米管改性聚乳酸及其共混物的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚乳酸(Poly(L-lactide), PLLA)是一种可生物降解的环境友好材料,但其结晶性能差、脆性大,严重限制了PLLA的应用。目前围绕PLLA改性的研究中,解决PLLA结晶困难的问题仍然是众多研究者所关注的重点之一。另一方面,在现有增韧PLLA的研究中,韧性提高的同时强度和模量有很大的降低,使得综合性能的改善不甚理想。本文从改善结晶性能和提高韧性两方面入手,采用改性过的多壁碳纳米管(Functionalized multi-walled carbon nanotubes,f-MWCNTs)来诱导PLLA结晶,力求改善PLLA结晶的同时,还能对PLLA起到增强增韧的作用。在结晶方面,利用碳纳米管极大的长径比和比表面积特点,在PLLA冷却或退火热处理过程中起到异相成核的作用改善PLLA的结晶行为;在此基础上进一步研究了低分子量聚合物聚乙二醇(Polyethylene glycol, PEG)为增塑剂促进PLLA链段运动,碳纳米管为成核剂增大PLLA成核密度,两者在诱导PLLA结晶方面的协同效应;围绕PLLA脆性较低的缺陷,采用极性弹性体聚乙烯醋酸乙烯酯(Ethylene-co-vinyl acetate, EVA)为增韧剂,研究了增韧剂中醋酸乙烯酯单体(Vinyl acetate, VA)含量的变化对共混物微观形态和基体结晶行为的影响,及其宏观力学行为相关性;在此基础上有选择性地研究了碳纳米管对不相容共混物PLLA/EVA的增强增韧作用。全文从微观结构入手,对改性PLLA的结构和性能做了深入的研究,得到的主要研究结果如下:
     (1)通过强酸酸化再接枝马来酸酐的方法,成功地在碳纳米管表面接枝上大量极性团能团,增强了碳纳米管与PLLA之间的界面相互作用,成功制备了分散优良的f-MWCNs改性PLLA纳米复合材料。
     (2)无论是在不同的降温速度条件下,还是在不同的升温速度条件下以及退火条件下,少量的f-MWCNTs都对PLLA具有很强的异相成核作用,能够明显促进其冷结晶。纳米复合材料相对纯PLLA,结晶度增大,玻璃化转变温度升高。
     (3) f-MWCNTs与PEG对PLLA的结晶具有协同促进作用。三元共混体系比二元共混体系结晶更容易,在相同结晶条件下得到的结晶度更大,晶体结构更完善。并且,PLLA结晶行为与碳纳米管含量有关:当碳纳米管含量<2 wt%时,碳纳米管起到异相成核的作用,促进PLLA的结晶,提高结晶温度和结晶度;当碳纳米管含量≥2 wt%时,碳纳米管在基体中形成物理网络结构,阻碍PLLA链段的运动,从而阻碍PLLA球晶的生长。
     (4)EVA中VA的含量影响PLLA与EVA的相容性和界面相互作用,进而影响PLLA/EVA的形态和结晶性能。当VA含量≤28 wt%时,共混物形成以PLLA为基体,以EVA为分散相的海-岛形态;当VA含量>28 wt%时,共混物形成双连续相形态。而VA含量对PLLA/EVA的结晶性能的影响表现为:VA含量较低时,EVA与PLLA不相容,EVA分子链中的极性段VA诱导PLLA分子链在界面上异相成核,促进PLLA结晶;VA含量较高时,PLLA与EVA相容性非常好,大量的极性段VA的存在使PLLA分子链很难从EVA相中分离出来,阻碍了PLLA的成核和晶体生长。
     (5)EVA的加入能够明显提高PLLA的冲击强度和断裂伸长率。而模量和拉伸强度的降低,可以通过退火处理得到补偿。
     (6)改性MWCNT对不相容共混物PLLA/40EVA的结晶行为有明显的促进作用。力学性能测试表明,PLLA/40EVA/f-MWCNTs拉伸强度和模量随碳管含量增加而增加,断裂伸长率在碳管含量为2 wt%时达到最大,表明碳管在共混物中同时起到增强增韧的作用。
Poly (L-lactide) (PLLA) is a kind of biodegradable eco-friendly material. While poor crystallization ability and fracture toughness greatly limit the application of PLLA. Recently, improving its crystallization is still a critical problem for many researchers who are researching the modification of PLLA. On the other hand, many recent researches on PLLA toughening show that, although the toughness of PLLA can be greatly improved by elastomers and plasticizer, the tensile strength and modulus usually deteriorate to a certain degree. As a consequence, the comprehensive properties of PLLA and its blends are not very good. In the present work, functionalized multi-walled carbon nanotubes (f-MWCNTs) have been introduced into PLLA to improve the crystallization behavior. It has been proved that f-MWCNTs have a great influence on cold crystallization of PLLA due to the large length-diameter ratio and specific surface area. However, the melt-crystallization behavior of PLLA is still poor. Thus, low molecular polymer, i.e. polyethylene glycol (PEG) which usually acts as a plasticizer for other polymers, has been introduced into PLLA. As expected, PEG improves the mobility of PLLA chain segments greatly and largely decreased glass transition temperature has been reported. Consequently, there is a synergestic effect of PEG and f-MWCNTs on crystallization behavior of PLLA and such effect is greatly dependent upon the content of f-MWCNTs. In the last of the work, we attempt to imprve the toughness of PLLA through combination of elastomer and f-MWCNTs. Polar elastomer, ethylene-co-vinyl acetate (EVA), has been introduced into PLLA. Our attention is focused on the effect of monomer vinyl acetate (VA) content in EVA on phase morphologies, crystallization and mechanical properties of PLLA/EVA blends. Furthermore, f-MWCNTs has been introduced into PLLA/EVA blends, too. According to the previous reaserch, some interesting results have been achieved as shown in the following.
     (1) f-MWCNTs have been prepared through the acidification of strong acid and graft modification with maleic anhydride (MAH). The interfcial interaction between PLLA and f-MWCNTs is greatly improved consequently. PLLA/f-MWCNTs nanocomposites with homogeneous distribution of f-MWCNTs have been prepared successfully.
     (2) A few amount of f-MWCNTs exhibit great heterogeneous nucleation effect on crystallization of PLLA, improving its cold crystallization apparently in all conditions selected in this work. PLLA/f-MWCNTs nanocomposites exhibit higher glass transition temperature compared with pure PLLA due to their high degree of crystallinity.
     (3) f-MWCNTs and PEG exhibit synergistic effect on PLLA crystallization. Compared with binary blends, ternary bends can crystallize more easily with higher degree of crystallinity and more perfect crystal structure. Furthermore, f-MWCNTs content can also affect the crystallize behavior of PLLA. When the content of f-MWCNTs is lower than 2 wt%, they exhibit heterogeneous nucleation effect for PLLA, improving the crystallization behavior of PLLA greatly. However, if the content of f-MWCNTs is over 2 wt%, percolated f-MWCNTs physical network structure forms in the material, which restricts the mobility of PLLA chain segment and prevents the growth of spherulites.
     (4) VA content has influence on the miscibility and interfacial interaction between EVA and PLLA, which further affects the morphologies and crystallization behaviors of PLLA/EVA blends. When VA content is lower than 28 wt%, the blends exhibit typical sea-island morphology features; whereas when VA content is over 28 wt%, the blend exhibit cocontinuous morphology feature. Meanwhile, VA content influences the crystallization of PLLA/EVA. At lower VA content, EVA and PLLA are immiscible. Polar VA segments in EVA promote the mobility of PLLA chain segments and induce heterogeneous nucleation of PLLA at the interface, leading to the improvement of PLLA crystallization. At relatively high VA content, the miscibility of PLLA and EVA is very good. The presence of large amounts of VA segments prevents the phase separation of PLLA chain segments from EVA domains in the interface, preventing the nucleation and spherulites growth of PLLA consequently.
     (5) With the addition of EVA, the ductility and fracture toughness are enhanced. The deteriorated tensile modulus and strength can be compensated by annealing.
     (6) The crystallization behavior of PLLA in PLLA/40EVA is greatly improved by addition of functionalized MWCNTs. The tensile strength and tensile modulus of PLLA/40EVA/f-MWCNTs nanocomposites increase with the increasing of f-MWCNTs contents. The maximum elongation at break is achieved when 2 wt% f-MWCNTs are present in the nanocomposites, indicating the reinforcement and toughening effects of f-MWCNTs for immiscible PP/40EVA blend.
引文
[I]C. C. Chen, J. Y. Chueh, H. Tseng, H. M. Huang. Preparation and characterization of biodegradable PLA polymeric blends. Biomaterials.2003,24(7):1167-1173.
    [2]翁云宣.聚乳酸合成生产加工及研究综述.塑料工业.2007,35(6):69-73.
    [3]P. S. Umare, G. L. Tembe, K. V. Rao, U. S. Satpathy, B. Trivedi. Catalytic ring-opening polymerization of 1-lactide by titanium biphenoxy-alkoxide initiators. Journal of Molecular Catalysis A:Chemical.2007,268(1-2):235-243.
    [4]L. P. Krul, A. I. Volozhyn, D. A. Belov, N. A. Poloiko. Nanocomposites based on poly-d, 1-lactide and multiwall carbon nanotubes. Biomolecular Engineering.2007,24(1):93-95.
    [5]A. Wiirsch, M. Moller, T. Glauser. Dendritic-Linear AxBx Block Copolymers Prepared via Controlled Ring-Opening Polymerization of Lactones from Orthogonally Protected Multifunctional Initiators. Macromolecules.2001,34(19):6601-6615.
    [6]S. H. Hyon, K. Jamshidi, Y. Ikada. Synthesis of polylactides with different molecular weights. Biomaterials.1997,18(22):1503-1508.
    [7]鲁玺丽,蔡伟,赵连城.高分子量聚L-乳酸的合成和表征.功能材料.2004,(35):2287-2288.
    [8]H. J. Lehermeier, J. R. Dorgan, J. D. Way. Gas permeation properties of poly(lactic acid). Journal of Membrane Science.2001,190(2):243-251.
    [9]I. Engelberg, J. Kohn. Physico-mechanical properties of degradable polymers used in medical applications:A comparative study. Biomaterials.1991,12(3):292-304.
    [10]付标.绿色聚乳酸及其改性材料的研制.华中科技大学硕士学位论文.2007:1-2.
    [11]P. D. Santis, A. J. Kovacs. Molecular conformation of poly(S-lactic acid). Biopolymers. 1968,6(3):299-306.
    [12]W. Hoogsteen, A. R. Postema, A. J. Pennings, G. T. Brinke. Crystal structure, conformation and morphology of solution-spun poly(L-lactide) fibers. Macromolecules. 1990,23(2):634-642.
    [13]B. Eling, S. Gogolewski, A. J. Pennings. Biodegradable materials of Poly(L-lactic acid):1 Melt-spun and solution-spun fibers. Polymer.1982,23(11):1587-1593.
    [14]J. Puiggali, Y. Ikada, H. Tsuji. The frustrated structure of Poly(L-lactide).Polymer. 2000,41(25):8921-8930.
    [15]L. Cartier, T. Okihara, Y. Ikada, H. Tsuji, J. Puiggali, B. Lotz. Epitaxial crystallization and crystalline polymorphism of polylactides. Polymer.2000,41(25):8909-8919.
    [31]K. S. Moe, R. A. Weisman. Resorbable fixation in facial plastic andhead and neck reconstructive surgery:an initial report on poly lactic acid implants. The Laryngoscope. 2001, 111(10):1697-1701.
    [32]陈佑宁,杨小玲.聚乳酸类材料的应用研究进展.化工中间体.2009,(5):9-11.
    [33]X. Deng, Y. Liu, M. Yuan. Study on biodegradable polymer 3 synthesis and characterization of poly (DL-lactic acid)-co-poly (ethylene glycol)-co-poly (L-lysine) copolymer. European Polymer Journal.2002,38:1435-1441.
    [34]C. Nouvel, P. Dubois, E. Dellacherie. Controlled synthesis of amphiphilic biodegradable polylactide-grafted dextran copolymers. Journal of Polymer Science Part A:Polymer Chemistry.2004,42(11):2577-2588.
    [35]H. Lonnberg. Grafting of Cellulose Fibers with Poly(s-caprolactone)and Poly(L-lactic acid) via Ring-Opening Polymerization. Biomacromolecules.2006,7(7):2178-2185.
    [36]W. Chen, W. Luo, S. Wang. Synthesis and properties of poly(L-lactide)-Poly(Ethylene glycol) multiblock copolymers by coupling triblock copolymers. Polymers for Advanced Technologies.2003,14(3-5):245-253.
    [37]X. M. Deng, Z. X. Zhu. Ring-opening Polymerization of s-caprolactone Initiated by Rare Earth Complex Catalysts. Polym Chem.1997,35:703-711.
    [38]吴之中.聚乳酸-聚乙二醇嵌段共聚物及其交联聚氨酯弹性体的性能研究.信阳师范学院学报.1999,12(2):166-169.
    [39]曹雪波,王远亮,潘君.马来酸酐改性聚乳酸的力学性能研究.高分子材料科学与工程.2002,25(1):115-118.
    [40]张秀.聚乳酸/弹性体/蒙脱土复合材料的制备及其结构、力学性能研究.东华大学硕士学位论文.2007:6-7.
    [41]D. Cohn, A. H. Salomon. Designing biodegradable multiblock PCL/PLA thermoplastic elastomers. Biomaterials.2005,26(15):2297-2305.
    [42]D. Cohn, A. H. Salomon. Biodegradable multiblock PEO/PLA thermoplastic elastomers:molecular design and properties. Polymer.2005,46(7):2068-2075.
    [43]S. S. Ray, K.Yamada, M. Okamato. New polylactide-layered silicate nanocomposites.2. Concurrent improvements of material properties, biodegradability and melt rheology. Polymer.2003,44(3):857-866.
    [44]S. S. Ray, M.Bousmina. Biodegradable polymers and their layered silicate nanocomposites:In greening the 21st century materials world. Progress Material Science. 2005,50(8):962-1079.
    [45]J. H. Chang, Y. U. An, D. Cho, E. P. Giannelis. Poly(lactic acid) nanocomposites: comparison of their properties with montmorillonite and synthetic mica (II). Polymer. 2003,44(13):3715-3720.
    [46]M. A. Paul, M. Alexandre, P. Degee, C. Henrist, A. Rulmont. New nanocomposite materials based on plasticized poly(L-lactide) and organo-modified montmorillonites: thermal and morphological study. Polymer.2003,44(2):443-450.
    [47]N. Ignjatovic, D. Uskokovic. Synthesis and application of hydroxyapatite/polylactide composite biomaterial. Applied Surface Science.2004,238(1-4):314-319.
    [48]周福刚,董向红,万怡灶,王玉林,王勤.碳纤维增强聚乳酸(C/PLA)复合材料的力学性能.材料工程.2000,26(5):16-18.
    [49]王玉林,齐锦刚,万怡灶.用于骨折内固定板的可吸收聚合物及其复合材料.材料工程.1999,(12):35-38.
    [50]T. Kasuga, Y. Ota, M. Nogami, Y. Abe. Preparation and mechanical properties of poly lactic acid composites containing hydroxyapatite fibers.BiomateriaIs.2001,22(1):19-23.
    [51]K. Oksman, M. Skrifvars, J. F. Selin. Natural fibres as reinforcement in polylactic acid (PLA) composites. Composites Science and Technology.2003,63(9):1317-1324.
    [52]A. S. Backstrom, R. M. Tulamo, J. E. Raiha, T. Pohjonen, T. Toivonen, P. Tormala, P. Rokkanen. Intramedullary fixation of femoral cortical osteotomies with interlocked biodegradable self-reinforced poly-96L/4D-lactide (SR-PLA96) nails. Biomaterials. 2004,25(13):2669-2677.
    [53]曹延生.聚乳酸及纳米填充改性材料的性能研究.北京化学工业大学硕士学位论文.2007:19-20.
    [54]L. Nadia, W. Bengt. The effects of plasticizers on the Dynamic mechanical and thermal properties of Poly(lactic acid). Journal of Applied Polymer Science.2002,86(5):1227-1234.
    [55]L. Nadia, C. Didier, W. Bengt. Plastieization of poly(lactic acid) with oligomeric malonate esteramides:Dy-namic mechanical and thermal film properties. Journal of Applied Polymer Science.2005,96(4):992-1002.
    [56]金水清,夏华,梁悦荣.化工新型材料.左旋聚乳酸的增塑改性.2007,35(1):63-67.
    [57]B. Massimo, F. Giovanna, S. Mariastella. Thermal and mechanical properties of plasticized Poly(L-lactic acid). Journal of Applied Polymer Science.2003,90(7):1731-1738.
    [58]N. L6pez-R, A. L6pez-A, E. Meaurio, J. R. Sarasua. Crystallization, morphology, and mechanical behavior of polylactide/poly(-caprolactone)blends. Polymer Engineering and Science.2006,46(9):1299-1308.
    [59]H. Tsuji, T. Yamada, M. Suzuki, S. Itsuno. Blends of aliphatic polyesters Part7:effects of poly(L-lactide-co-l-caprolactone) on morphology, structure, crystallization, and physical attachment of organic functional groups to single-walled carbon nanotube material. J Mater Res.1998,13:2423-2431.
    [76]Y. Ying, R. K. Saini, F. Liang, A. K. Sadana, W. E. Billups. Functionalization of Carbon Nanotubes by Free Radicals. Organic Letters.2003,5(9):1471-1473.
    [77]V. Georgakilas, K. Kordatos, M. Prato, D. M. Guldi, M. Holzinger, A. Hirsch. Organic Functionalization of Carbon Nanotubes. Journal. of the American Chemical Society. 2002,124(5):760-761.
    [78]T. Ito, L. Sun, R. M. Crooks. Observation of DNA transport through a single carbon nanotube channel using fluorescence microscopy. Chem commun.2003,13:1482-1483.
    [79]B. R. Azamian, J. J. Davis, K. S. Coleman. Bioelectrochemical single-walled carbon nanotubes. Journal of the American Chemical Society.2002,124(43):12664-12665.
    [80]V. Lordi, N. Yao, J. Wei. Method for supporting platinum on single-walled carbon nanotubes for a selective hydrogenation catalyst. Chemistry of Materials.2001,13(3):733-737.
    [81]A. Carrillo, J. A. Swartz, J. M. Camba. Noncovalent functionazation of graphite and carbon nanotubes with polymer multilayers and gold nanoparticles. Nano Letters.2003,3: 1437-1440.
    [82]B. R. Azamian, J. J. Davis, K. S. Coleman. Bioelectrochemical single-walled carbon nanotubes, J Am Chem Soc.2002,124:12664-12665.
    [83]G. R. Dieckmann, A. B. Dalton, P. A. Johnson, J. Razal, J. Chen, G. M. Giordano, E. Munoz, I. H. Musselman, R. H. Baughman, P. K. Draper. J Am Chem Mater.2001,13:733-737.
    [84]高尧.碳纳米管的功能化及其在聚合中的应用.西南交通大学硕士学位论文.2008:11
    [85]S. C. Tsang, Y. K. Chen, P. J. F. Harris. A simple chemical methou of opening and filling carbon nanotubes. Narure.1994,372:159-163.
    [86]S. Niyogi, B. T. Hemraj, S. S. Wong. Covalent surface chemistry of single-walled carbon nanotubes. Adv Mater.2005,17(1):17-29.
    [87]J. Chen, M. A. Hamon, H. Hu. Solution properties of single-walled carbon nanotubes. Science.1998,282:95-98.
    [88]P. Liang, Y. Liu, L. Guo. Determination of trace rare earth elements by inductively coupled plasma atomic emission spectrometry after preconcentration with mutiwalled carbon nanotubes. Spectroc Acta Pt B-Atom Spectr.2005,60:125-130.
    [89]W. J. Huang, S. Fernando, A. L. Fet. Solubilization of single-walled carbon nanotubes with diamine-terminated oligomeric poly(ethylene Glycol) in different functionalization reactions. Nano Lett.2003,3(4):565-568.
    [90]J. L. Stevens, A. Y. Huang, H. Q. Peng. Sidewall amino-functionalization of single-walled carbon nanotubes through fluorination and subsequent reactions with terminal diamines. Nano Lett.2003,3(3):331-336.
    [91]S. Banerjee, B. T. Hemraj, S. S. Wong. Covalent surface chemistry of single-walled carbon nanotubes. Adv Mater.2005,17(1):17-29.
    [92]孟涛,李玲,董风云.碳纳米管在聚合物基复合材料中的应用.中北大学学报.2005,26(3):7-8.
    [93]宋长文,颜红侠,李朋博,雷平森.碳纳米管表面改性及其在聚合物中的应用.中国塑料.2008,22(1):14-19.
    [94]M. L. Shofner, F. J. Rodriguez-Macias. Single wall nanotube and vapor grown carbon fiber reinforced polymers processed by extrusion freeform fabrication. Applied Science and Manufacturing.2003,34(12):1207-1217.
    [95]D. Qian, E. C. Kickey, R. Andrews. Load transfer and deformation mechanisms in carbon nanotube-polystyrene composites. Applied Physics Letters.2000,76(20):2868-2870.
    [96]H. Zhang, Z. Zhang. Impact behaviour of polypropylene filled with multi-walled carbon nanotubes. European Polymer Journal.2007,43(8):3197-3207.
    [97]R. E. Gorga, R. E. Cohen. Toughness enhancements in poly(methyl methacrylate) by addition of oriented multiwall carbon nanotubes. Journal of Polymer Science Part B:Polymer Physics.2004,42(14):2690-2702.
    [98]J. Zhu, J. D. Kim, H. Q.Peng, J. L. Margrave, V. N. Khabashesku, E. V. Barrera. Improving the dispersion and integration of single-walled carbon nanotubes in epoxy composites through functionalization. Nano Let.2003,3(8):1107-1113.
    [99]D. L. Shi, J. Lian, P. He, L. M. Wang, W. J. Ooij. Plasma coating of carbon nanofibers for enhanced dispersion and interfacial bonding in polymer composites. Applied Physics Letters.2003,83(25):5301-5303.
    [100]O. Probst, E. M. Moore, D. E. Resasco, B. P. Grady. Nucleation of polyvinyl alcohol crystallization by single-walled carbon nanotubes. Polymer.2004,45(13):4437-4443.
    [101]K. A. Anand, U. S. Agarwal, R. Joseph. Carbon nanotubes induced crystallization of poly(ethylene terephthalate). Polymer.2006,47(11):3976-3980.
    [102]D. Xu, Z. Wang. Role of multi-wall carbon nanotube network in composites to crystallization of isotactic polypropylene matrix. Polymer.2008,49(1):330-338.
    [103]R. Haggenmueller, J. E. Fischer, K. I. Winey. Single Wall Carbon Nanotube/
    [117]J. Y. Nam, M. Okamoto,H. Okamoto, M. Nakano, A. Usuki, M. Matsuda. Morphology and crystallization kinetics in a mixture of low-molecular weight aliphatic amide and polylactide. Polymer.2006,47(4):1340-1347.
    [118]L. Y. Li, C. Y. Li, C. Y. Ni, L. X. Rong, B. J. Hsiao. Structure and crystallization behavior of Nylon 66/multi-walled carbon nanotube nanocomposites at low carbon nanotube contents. Polymer.2007,48(12),3452-3460.
    [119]J. Y Kim, K. H. Park, S. H. Kim. Unique nucleation of multi-walled carbon nanotube and poly(ethylene 2,6-naphthalate) nanocomposites during non-isothermal crystallization. Polymer.2006,47(4):1379-1389.
    [120]Y. Gao, Y. Wang, J. Shi, H. W. Bai, B. Song. Functionalized multi-walled carbon nanotubes improve nonisothermal crystallization of poly(ethylene terephthalate). Polym Testing.2008,27(2):179-188.
    [121]K. Schmidt-Rohr, W. Hu, N. Zumbulyadis. Elucidation of the chain conformation in a glassy polyester, PET, by two-dimensional NMR. Science.1998,280:714-717.
    [122]T. Miyata, T. Masuko. Morphology of poly(-lactide) solution-grown crystals. Polymer. 1997,38(16):4003-4009.
    [123]P. J. Pan, W. H. Kai, B. Zhu, T. Dong, Y. Inoue. Polymorphous Crystallization and Multiple Melting Behavior of Poly(L-lactide):Molecular Weight Dependence. Macromolecules.2007,40(19):6898-6905.
    [124]J. M. Zhang, K. Tashiro, H. Tsuji, A. J. Domb. Disorder-to-Order Phase Transition and Multiple Melting Behavior of Poly(L-lactide) Investigated by Simultaneous Measurements of WAXD and DSC. Macromolecules.2008,41(4):1352-1357.
    [125]A. Saiter, N. Delpouve, E. Dargent, J. M. Saiter. Cooperative rearranging region size determination by temperature modulated DSC in semi-crystalline poly(1-lactide acid). Euro Polym J.2007,43(11):4675-4682.
    [126]J. Zhao, R. Song, Z. Zhang, X. Linghu, Z. Zheng, Q. Fan. A Study of the Physical Aging in Semicrystalline Poly(ethylene terephthalate) via Differential Scanning Calorimetry. Macromolecules.2001,34(3):343-345.
    [127]N. M. Alves, J. F. Mano, E. Balaguer, J. M. Duenas, J. L. Gomez. Glass transition and structural relaxation in semi-crystalline poly(ethylene terephthalate):a DSC study. Polymer. 2002,43(15):4111-4122.
    [128]Y He, Z. Y. Fan, Y F. Hu, T. Wu, J. Wei, S. M. Li. Glass transition and structural relaxation in semi-crystalline poly(ethylene terephthalate):a DSC study. Euro Polym J.2007, 43(10):4431-4439.
    [129]V. Krikorian, D. J. Pochan. Poly (L-Lactic Acid)/Layered Silicate Nanocompo-site: Fabrication, Characterization, and Properties. Chem Mater.2003,15(22):4317-4324.
    [130]L. Jiang, J. Zhang, M. P. Wolcott. Comparison of polylactide/nano-sized calcium carbonate and polylactide/montmorillonite composites:Reinforcing effects and toughening mechanisms. Polymer.2007,48(26):7632-7644.
    [131]D. F. Wu, Y. Zhang, M. Zhang, W. Yu. Selective localization of multiwalled carbon nanotubes in poly(ε-caprolactone)/polylactide blend. Biomacromolecules.2009,10(2), 417-424.
    [132]Z. Kulinski, E. Piorkowska. Crystallization, structure and properties of plasticized poly(l-lactide).Polymer.2005,46(23):10290-10300.
    [133]O. Martin, L. Averous. Poly(lactic acid):plasticization and properties of biodegradable multiphase systems. Polymer.2001,42(14):6209-6219.
    [134]L. Yu, H. Liu, K. Dean, L. Chen. Cold crystallization and postmelting crystallization of PLA plasticized by compressed carbon dioxide. J Polym Sci Part B Polym Phys.2008, 46(23):2630-2636.
    [135]X. Xiao, W. Lu, J. T. Yeh. Effect of plasticizer on the crystallization behavior of poly(lactic acid). J Appl Polym Sci.2009,113(1):112-121.
    [136]Y. He, Z. Y Fan, J. Wei, S. M. Li. Morphology and melt crystallization of poly(L-lactide) obtained by ring opening polymerization of L-lactide with zinc catalyst. Polym Eng Sci.2006,46(11):1583-1589.
    [137]M. Avrami. Kinetics of Phase Change. Ⅱ Transformation-Time Relations for Random Distribution of Nuclei. J Chem Phys.1940,8(2):212-224.
    [138]M. Avrami. Granulation, Phase Change, and Microstructure Kinetics of Phase Change. Ⅲ Melvin Avrami. J Chem Phys.1941,9(2):177-184.
    [139]B. Wunderlich. Macromolecular physics. Crystal nucleation, growth and annealing, vol. II. New York:Academic Press; 1976 (chapter 6).
    [140]Y. He, Z. Y. Fan, J. Wei, S. M. Li. Morphology and melt crystallization of poly (L-lactide) obtained by ring opening polymerization of L-lactide with zinc catalyst. Polym Eng Sci.2006,46(11):1583-1589.
    [141]-J. D. Hoffman. Regime Ⅲ crystallization in melt-crystallized polymers:The variable cluster model of chain folding. Polymer.1983,24(1):3-26.
    [142]L. Jiang, J. Zhang, M. P. Wolcott. Comparison of polylactide/nano-sized calcium carbonate and polylactide/montmorillonite composites:Reinforcing effects and toughening mechanisms. Polymer.2007,48(26):7632-7644.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700