用户名: 密码: 验证码:
含NO配体配位聚合物的水热合成、晶体结构及性质
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于功能金属配合物与超分子化学是集基础研究和应用研究于一体的新兴领域,它对于研究吸附、不对称催化剂等新材料有着非常重要的意义。从而它们的研究在过去的几十年一直受到配位化学、晶体学家以及材料化学家们的广泛的注意。本文主要探讨利用水热合成方法合成一些具有多维网络结构的配位聚合物,并研究其相关性质。本文共分四部分。
     引言部分系统地介绍了配位聚合物概念、方法和发展历程,比较全面地介绍了稀土配位聚合物和稀土—过渡金属配位聚合物的当前研究的方向,国内外的研究进展,以及水热条件下的有机配体反应。
     第二章描述了以两种芳香羧酸和稀土以及过渡金属在水热条件下所合成的两个系列的配位聚合物。通过反应条件的改变和结构研究表明:1)对于芳香羧酸这样的酸性弱、难溶性的配体来说,水热反应的条件要求比较苛刻; 2)在水热条件下,稀土引发C-S键的断裂;强氧化剂可能引发氧化反应进而影响物质的结构。
     第三章探讨了不同芳香羧酸、稀土、金属铜和银在加入第二配体后合成结构不同的配位聚合物,得到了一种一维结构的配合物和三种三维结构的配合物。通过对这四种配合物结构的分析,我们可以初步得出以下结论:不同的反应温度及第二配体的选择对配合物的结构起着很大的作用。
     第四章介绍了铟盐与3,5-吡啶二羧酸的配合物的水热合成、晶体结构及相关性质,初步发现如果采用V形的二羧酸容易导致螺旋化合物的形成,芳香螯合配体的π-π堆积由于其本身的特性在分子识别上起着非常重要的作用。
Over the past decade, coordination polymers and supramolecular architectures have received much attention in coordination chemistry, crystal chemistry and material chemistry. The fascinating structures of these complexes, coupled with their specific functionality, have made them highly promising in various applications, particularly absorption, catalysis, molecular magnetization and biochemistry. The aim of this work is to investigate how to control the structures and properties of desired coordination polymers and supramolecular architectures. This thesis is divided into four chapters.
     In the introduction, the concepts, methods and history of coordination polymers are concisely introduced, as well as the current survey and research significance of lanthanide coordination polymers, lanthanide-transition metal coordination polymers and the in situ ligand reaction in hydrothermal conditions.
     In the second chapter, a series of lanthanide coordination polymers and two transition metal coordination polymers have been described. The results show that: 1) Due to the weak acidity and less solubility of dicarboxylic acid and their complexes, the conditions to hydrothermally synthesize its coordination polymers are relatively critical; 2) The lanthanide triggers the cleavage of C-S bonds in hydrothermal conditions and the existence of strong oxidant changes the product.
     In the third chapter, a series of lanthanide-transition metal coordination polymers that generated by aromatic carboxylic acid, lanthanide and transition metal salt have been described. The results show that: The temperature of reaction and the choice of the second ligand can affect the structure of the coordination polymers.
     In the fourth chapter, the hydrothermal synthesis, crystal structure and luminescent properties of a novel homochiral coordination polymer are described. The results show that: the V-shaped dicarboxylate ligand plays a key role in the formation of In-OH-In helical chains, in which the chirality is transferred into the whole three dimensional framework.
引文
[1] Wells A. F., Three-Dimensional Nets and Polyhedra, Wiley, New York, 1977.
    [2] Wells A. F., Structural Inorganic Chemistry, Oxford University Press, Oxford, 1975.
    [3] Abrahams B. F., Hoskins B. F., Robson R., A new type of infinite 3D polymeric network containing 4-connected, peripherally-linked metalloporphyrin building blocks, J. Am. Chem. Soc., 1991, 113, 3606-3607.
    [4] Fujita M., Kown Y. J., Washizu S., et al, Preparation, Clathration Ability, and Catalysis of a Two-Dimensional Square Network Material Composed of Cadmium(II) and 4,4'-Bipyridine, J. Am. Chem. Soc., 1994, 116, 1151-1152.
    [5] Lin W., Evans O. R., Xiong R. G., et al., Supramolecular Engineering of Chiral and Acentric 2D Networks. Synthesis, Structures, and Second-Order Nonlinear Optical Properties of Bis(nicotinato)zinc and Bis{3-[2-(4-pyridyl)ethenyl]benzoato}cadmium, J. Am. Chem. Soc., 1998, 120, 13272-13273.
    [6] Yaghi O. M., Li H., Hydrothermal Synthesis of a Metal-Organic Framework Containing Large Rectangular Channels, J. Am. Chem. Soc., 1995, 117, 10401-10402.
    [7] Kahn O., Pei Y., Verdguer M., et al., Magnetic ordering of manganese(II) copper(II) bimetallic chains; design of a molecular based ferromagnet, J. Am. Chem. Soc., 1988, 110, 782-789.
    [8] Tamaki H., Zhong Z. J., Matsumoto N., et al., Design of metal-complex magnets. Syntheses and magnetic properties of mixed-metal assemblies {NBu4[MCr(ox)3]}x (NBu4+ = tetra(n-butyl)ammonium ion; ox2- = oxalate ion; M = Mn2+, Fe2+, Co2+, Ni2+, Cu2+, Zn2+), J. Am. Chem. Soc., 1992, 114, 6974-6979.
    [9] Yaghi O. M., Li H., Groy T. L., A Molecular Railroad with Large Pores: Synthesis and Structure of Ni(4,4'-bpy)2.5(H2O)2(ClO4)2·1.5(4,4'-bpy)·2H2O, Inorg. Chem., 1997, 36, 4292-4293.
    [10] Carlucci L., Ciani G., Proserpio D. M., A new type of supramolecular entanglement in the silver(I) coordination polymer [Ag2(bpethy)5](BF4)2 [bpethy = 1,2-bis(4-pyridyl)ethyne], Chem. Commun., 1999, 449-450.
    [11] Fujita M., Kwon Y. J., Sasaki O., et al., Interpenetrating Molecular Ladders and Bricks, J. Am. Chem. Soc., 1995, 117, 7287-7288.
    [12] Losier P., Zaworotko M. J., A Noninterpenetrated Molecular Ladder with Hydrophobic Cavities, Angew. Chem., Int. Ed., 1996, 35, 2779-2782.
    [13] Domasevitch K. V., Enright G. D., Moulton B., et al., A Neutral“Molecular Railroad”Coordination Polymer That Incorporates Polycyclic Aromatic Molecules: Synthesis and Single Crystal X-Ray Structure of [Co(4,4′bipyridine)2.5(NO3)2]·2phenanthrene, J. Solid StateChem., 2000, 152, 280-285.
    [14] Carlucci L., Ciani G., Proserpio D. M., Three-dimensional architectures of intertwined planar coordination polymers: the first case of interpenetration involving two different bidimensional polymeric motifs, New J. Chem., 1998, 1319-1321.
    [15] MacGillivray L. R., Groeneman R. H., Atwood J. L., Design and Self-Assembly of Cavity- Containing Rectangular Grids, J. Am. Chem. Soc., 1998, 120, 2676-2677.
    [16] Aakeroy C. B., Beatty A. M., Leinen D. S., A Versatile Route to Porous Solids: Organic- Inorganic Hybrid Materials Assembled through Hydrogen Bonds, Angew. Chem., Int. Ed., 1999, 38, 1815-1819.
    [17] Lu J., Paliwala T., Lim S. C., et al., Coordination Polymers of Co(NCS)2 with Pyrazine and 4,4'-Bipyridine: Syntheses and Structures, Inorg. Chem., 1997, 36, 923-929.
    [18] Subramanian S., Zaworotko M. J., Porous Solids by Design: [Zn(4,4’-bpy)2(SiF6)]n·xDMF, a Single Framework Octahedral Coordination Polymer with Large Square Channels, Angew. Chem., Int. Ed., 1995, 34, 2127-2129.
    [19] Rujiwatra A., Kepert C. J., Rosseinsky M. J., The organo-pillared porous magnetic framework Co4(SO4)(OH)6(H2NC2H4NH2)0.5·3H2O, Chem. Commun., 1999, 2307-2308.
    [20] Zaworotko M. J., Crystal engineering of diamondoid networks, Chem. Soc. Rev., 1994, 283-288.
    [21] Hirsch K. A., Venkataraman D., Wilson S. R., et al., Crystallization of 4, 4’-biphenyl- dicarbonitrile with silver(I) salts: a change in topology concomitant with a change in counterion leading to a ninefold diamondoid network Chem. Commun., 1995, 2199-2200.
    [22] Yaghi O. M., Li H., T-Shaped Molecular Building Units in the Porous Structure of Ag(4,4'-bpy)·NO3, J. Am. Chem. Soc., 1996, 118, 295-296.
    [23] Gudbjartson H., Biradha K., Poirier K. M., et al., Novel Nanoporous Coordination Polymer Sustained by Self-Assembly of T-Shaped Moieties, J. Am. Chem. Soc., 1999, 121, 2599-2600.
    [24] Carlucci L., Ciani G., Proserpio D. M., et al., A three-dimensional‘racemate’. Interpenetration of two enantiomeric networks of the SrSi2 topological type in the polymeric complex [Ag2(2,3-Me2pyz)3][SbF6]2(2,3-Me2pyz = 2,3-dimethylpyrazine), Chem. Commun., 1996, 1393-1394.
    [25] Abrahams B. F., Batten S. R., Hamit H., et al., A wellsian‘three-dimensional’racemate: eight interpenetrating, enantiomorphic (10,3)-a nets, four right- and four left-handed, Chem. Commun., 1996, 1313-1314.
    [26] Amabilino D. B., Stoddart J. F., Interlocked and Intertwined Structures and Superstructures, Chem. Rev., 1995, 95, 2725-2828.
    [27] Herrman W. A., Huber N. W., Runte O., Volatile Metal Alkoxides according to the Concept of Donor Functionalization, Angew. Chem. Int. Ed., 1995, 34, 2187-2206.
    [28] Stein A., Keller S. W., Mallouk T. E., Turning doun the heat: design and mechanism in solid-state synthesis, Science, 1993, 259, 1558-1564.
    [29] Lloret F., Munno G. D., Julve M., et al., Spin Polarization and Ferromagnetism in Two- Dimensional Sheetlike Cobalt(II) Polymers: [Co(L)2(NCS)2] (L=Pyrimidine or Pyrazine), Angew. Chem. Int. Ed. 1998, 37, 135-138.
    [30] Blake A. J., Champness N. R., Hubberstey P., et al., Inorganic crystal engineering using self-assembly of tailored building blocks, Coord. Chem. Rev., 1999, 183, 117-138.
    [31] Hagrman P. J., Hagrman D., Zubieta J., Organic-Inorganic Hybrid Materials: From‘Simple’Coordination Polymers to Organodiamine-Templated Molybdenum Oxides, Angew. Chem., Int. Ed. 1999, 38, 2638-2684.
    [32] Pan L., Woodlock E. B., Wang X. T., et al., A New Porous Three-Dimensional Lanthanide Coordination Polymer, Inorg. Chem., 2000, 39, 4174-4178.
    [33] Capecchi S., Renault O., Moon D., et al., High-Efficiency Organic Electroluminescent Devices Using an Organoterbium Emitter, Adv. Mater., 2000, 12, 1591-1594.
    [34] Ma B. Q., Shun D. S., Gao S., et al., From Cubane to Supercubane: The Design, Synthesis, and Structure of a Three-Dimensional Open Framework Based on a Ln4O4 Cluster, Angew. Chem. Int. Ed., 2000, 39, 3644-3646.
    [35] Ma L., Evans O. R., Foxman B. M., et al., Luminescent Lanthanide Coordination Polymers, Inorg. Chem., 1999, 38, 5837-5840.
    [36] Lu W. M., Cheng Y. Q., Dong N., Acta Cryst, 1995, C51, 1756.
    [37] Reineke T. M., Eddaoudi M., O′Keeffe M., et al., A Microporous Lanthanide-Organic Framework, Angew. Chem. Int. Ed., 1999, 38, 2590-2594.
    [38] Pan L., Huang X. Y., Li J., et al., Novel Single- and Double- Layer and Three Dimensional Structures of Rare-Earth Metal Coordination Polymers: The Effect of Lanthanide Contraction and Acidity Control in Crystal Structure Formation, Angew. Chem. Int. Ed., 2000, 39, 527-530.
    [39] Sun Y. Q., Zhang J., Chen Y. M., et al., Porous Lanthanide-Organic Open Frameworks with Helical Tubes Constructed from Interweaving Triple-Helical and Double-Helical Chains, Angew. Chem. Int. Ed., 2005, 44, 5814-5817.
    [40] Han Z. B., Cheng X. N., Li X. F., et al., Hydrothermal Syntheses and Structural Studies of Lanthanide Coordination Polymers Involving In-Situ Decarboxylation and their Luminescence Properties, Z. Anorg. Allg. Chem., 2005, 631, 937-942.
    [41] Liu W. S., Jiao T. Q., Li Y. Z., et al., Lanthanide Coordination Polymers and Their Ag+-Modulated Fluorescence, J. Am. Chem. Soc., 2004, 126, 2280-2281.
    [42] Guo X. D., Zhu G. S., Li Z. Y., et al., A lanthanide metal-organic framework with high thermal stability and available Lewis-acid metal sites, Chem. Commun., 2006, 3172-3174.
    [43] Li B., Gu W., Zhang L. Z., et al., [Ln2(C2O4)2(pyzc)2(H2O)2]n [Ln = Pr (1), Er (2)]: Novel Two-Dimensional Lanthanide Coordination Polymers with 2-Pyrazinecarboxylate and Oxalate, Inorg. Chem., 2006, 45, 10425-10426.
    [44] Qin C., Wang X. L., Wang E. B., et al., A Series of Three-Dimensional Lanthanide Coordination Polymers with Rutile and Unprecedented Rutile-Related Topologies, Inorg.Chem., 2005, 44, 7122-7129.
    [45] Gao H. L., Yi L., Zhao B., et al., Synthesis and Characterization of Metal-Organic Frameworks Based on 4-Hydroxypyridine-2,6-dicarboxylic Acid and Pyridine-2,6- dicarboxylic Acid Ligands, Inorg. Chem., 2006, 45, 5980-5988.
    [46] Jung O. S., Kim Y. J., Lee Y. A., et al., Smart Molecular Helical Springs as Tunable Receptors, J. Am. Chem. Soc. 2000, 122, 9921-9925.
    [47] Bisson A. P., Carver F. J., Eggleston D. S., et al., Synthesis and Recognition Properties of Aromatic Amide Oligomers: Molecular Zippers, J. Am. Chem. Soc., 2000, 122, 8856-8868.
    [48] Gangopadhyay P., Radhakrishnan T. P., Helical Superstructures of a C2-Symmetric Molecule Exhibiting Strong Second Harmonic Generation in the Solid-State, Angew. Chem., Int. Ed., 2001, 40, 2451-2455.
    [49] Bencini A., Benelli C., Caneschi A., et al., Crystal and molecular structure of and magnetic coupling in two complexes containing gadolinium(III) and copper(II) ions, J. Am. Chem. Soc. 1985, 107, 8128-8136.
    [50] Kahn O., Molecular engineering of coupled polynuclear systems: Orbital mechanism of the interaction between metallic centers, Inorg. Chem. Acta. 1982, 62, 3-14.
    [51] Benelli C., Caneschi A., Gatteschi D., et al., Structure and Magnetic Properties of a Gadolinium Hexafluoroacetylacetonate Adduct with the Radical 4,4,5,5-tetramethyl- 2-phenyl-4,5-dihydro-1H-imidazole 3-Oxide 1-Oxyl, Angew. Chem. Int. Ed. 1987, 26, 913-915.
    [52] Caneschi A., Gatteschi D., Sessoli R., et al., Toward molecular magnets: the metal-radical approach, Acc. Chem. Res. 1989, 22, 392-398.
    [53] Liang Y. C., Cao R., Su W. P., et al., Syntheses, Structures, and Magnetic Properties of Two Gadolinium(III)-Copper(II) Coordination Polymers by a Hydrothermal Reaction, Angew. Chem. Int. Ed., 2000, 39, 3304-3307.
    [54] Yang Y. Y., Wu Y. L., Long L. S., et al., Syntheis and structures of carboxylate-bridged polynuclear copper(II)-lanthanide(III) complexes [CuLn(C5H5N+CH2CO2-)5(H2O)5][ClO4]5 5·2H2O(Ln = La or Nd) and [Cu3Nd2(C5H5N+CH2CO2-)10(NO3)2(H2O)8][ClO4]10·4H2O, Dalton Trans., 1999, 2005-2008.
    [55] Zhang J. J., Hu S. M., Xiang S. C., et al., Syntheses, Structures, and Properties of High-Nuclear 3d-4f Clusters with Amino Acid as Ligand: {Gd6Cu24}, {Tb6Cu26}, and {(Ln6Cu24)2Cu} (Ln= Sm, Gd), Inorg. Chem., 2006, 45, 7173-7181.
    [56] Zhao B., Chen X. Y., Cheng P., et al., Coordination Polymers Containing 1D Channels as Selective Luminescent Probes, J. Am. Chem. Soc. 2004, 126, 15394-15395.
    [57] Zhang M. B., Zhang J., Zheng S. T., et al., A 3D Coordination Framework Based on Linkages of Nanosized Hydroxo Lanthanide Clusters and Copper Centers by Isonicotinate Ligands, Angew. Chem. Int. Ed. 2005, 44, 1385-1388.
    [58] Cheng J. W., Zhang J., Zheng S. T., et al., Lanthanide-Transition-Metal Sandwich Framework Comprising {Cu3} Cluster Pillars and Layered Networks of {Er36} Wheels, Angew. Chem. Int.Ed. 2006, 45, 73-77.
    [59] Gu X. J., Xue D. F., Spontaneously Resolved Homochiral 3D Lanthanide-Silver Heterometallic Coordination Framework with Extended Helical Ln-O-Ag Subunits, Inorg. Chem., 2006, 45, 9257-9261.
    [60] Zhang Y. Z., Wang Z. N., Gao S., Three-Dimensional Heterometallic Chiral Cr-Mn Compound Constructed by Cyanide and Dicyanamide Bridges, Inorg. Chem., 2006, 45, 10404-10406.
    [61] Wang F. Q., Zheng X. J., Wan Y. H., et al., Novel 3D LnIII-CuI Supramolecular Architecture Based on 2D MOFs with (6,3) Topology, Inorg. Chem., 2007, 46, 2956-2958.
    [62] Lin W. B., Wang Z. Y., Ma L., A Novel Octupolar Metal-Organic NLO Material Based on a Chiral 2D Coordination Network, J. Am. Chem. Soc. 1999, 121, 11249-11250.
    [63] Xiong R. G., Zhang J., Chen Z. F., et al., In situ ligand synthesis and the first crystallographically characterized lanthanide 3-D pillared networks containing benzene-1,4- disulfonate as a building block, Dalton Trans., 2001, 780-782.
    [64] Evans O. R., Lin W., Synthesis of Zinc Oxalate Coordination Polymers via Unprecedented Oxidative Coupling of Methanol to Oxalic Acid, Crystal Growth & Design, 2001, 1, 9-11.
    [65] Liu C. M., Gao S., Kou H. Z., Dehydrogenative coupling of phenanthroline under hydrothermal conditions: crystal structure of a novel layered vanadate complex constructed of 4,8,10-net sheets: [(2,2’-biphen)Co]V3O8.5, Chem. Commun., 2001, 1670-1671.
    [66] Tao J., Zhang Y., Tong M. L., et al., A mixed-valence copper coordination polymer generated by hydrothermal metal/ligand redox reactions, Chem. Commun. 2002, 1342-1343.
    [67] Zhang X. M., Tong M. L., Chen X. M., Hydroxylation of N-Heterocycle Ligands Observed in Two Unusual Mixed-Valence CuI/CuII Complexes, Angew. Chem. Int. Ed. 2002, 41, 1029-1031.
    [68] Zhang J. P., Zheng S. L., Huang X. C., et al., Two Unprecedented 3-Connected Three-Dimensional Networks of Copper(I) Triazolates: In Situ Formation of Ligands by Cycloaddition of Nitriles and Ammonia, Angew. Chem. Int. Ed., 2004, 43, 206-209.
    [69] Hu S., Chen J. C., Tong M. L., et al., Cu2+-Mediated Dehydrogenative Coupling and Hydroxylation of an N-Heterocyclic Ligand: From Generation of a New Tetratopic Ligand to the Designed Assembly of Three-Dimensional Copper(I) Coordination Polymers, Angew. Chem. Int. Ed. 2005, 44, 5471-5475.
    [70] Lu T. B., Zhuang X. M., Li Y. W., et al., C-C Bond Cleavage of Acetonitrile by a Dinuclear Copper(II) Cryptate, J. Am. Chem. Soc., 2004, 126, 4760-4761.
    [71] Han Z. B., He Y. K., Ge C. H., et al., Hydrothermal syntheses, crystal structures and magnetic properties of two copper(II) complexes involved in situ ligand synthesis, Dalton Trans., 2001, 3020-3024.
    [72] He Y. K., Han Z. B., Ma Y., et al., Syntheses, crystal structures and luminescence properties of lanthanide coordination polymers involving in situ C-S bond cleavage of (4-Pyridylthio) acetic acid, Inorg. Chem. Commun., 2007, 10, 829-832.
    [73] Sheldrick G. M. SHELXS-97, Program for Crystal Structure Solution, University of G?ttingen, Germany, 1997.
    [74] Sheldrick G. M. SHELXS-97, Program for Crystal Structure Solution and Refinement, G?ttingen University, Germany, 1997.
    [75] Sheldrick G. M. SHELXTL Version 5, Siemens Industrial Automation Inc., Madison, Wisconsin, U. S. A., 1995.
    [76] Ludise RA. Ed. Progress in Inorganic Chemistry, Vol. 3, Interscience: New York, 1962.
    [77] Zheng Y. Z., Tong M. L., Chen X. M., Controlled hydrothermal synthesis of copper(II or I,II) coordination polymers via pH-dependent in situ metal/ligand redox reactions, New J. Chem., 2004, 28, 1412-1415.
    [78] Gilbert A., Baggott J., Essentials of Molecular Photochemistry, CRC Press: Boca Raton, FL, 1991, 87-89.
    [79] Kahn O. Molecular Magnetism, VCH publishers, New York, 1993.
    [80] Rodríguez-Fortea A., Alemany P., Alvarez S, et al., Exchange Coupling in Carboxylato- Bridged Dinuclear Copper(II) Compounds: A Density Functional Study, Chem. Eur. J. 2001, 7, 627-637.
    [81] Xu Q. H., Li L. S., Liu X. S., et al., Incorporation of Rare-Earth Complex Eu(TTA)4C5H5NC16H33 into Surface-Modified Si-MCM-41 and Its Photophysical Properties, Chem. Mater., 2002, 14, 549-555.
    [82] Bünzli J. C. G., in Lanthanide Probes in life, Chemical and Earth Sciences. Theory and Practice (Eds. : Bünzli J. C. G., G.R. Choppin), Elsevier Scientific Publishers, Amsterdam, The Netherlands, 1989, Chapter 7.
    [83] Zhai B., Yi L., Wang H. S., et al., First 3D 3d-4f Interpenetrating Structure: Synthesis, Reaction, and Characterization of {[LnCr(IDA)2(C2O4)]}n, Inorg. Chem. 2006, 45, 8471-8473.
    [84] Ma B. Q., Gao S., Su G., et al., Cyano-Bridged 4f-3d Coordination Polymers with a Unique Two-Dimensional Topological Architecture and Unusual Magnetic Behavior, Angew. Chem. Int. Ed., 2001, 40, 434-437.
    [85] He Y. K., Han Z. B., Hexanuclear 4d–4f complexes [Ln2Ag4(ina)8(H2O)10][NO3]2·4H2O (Ln = Sm, Eu, Dy): synthesis, structure and photoluminescent properties, Inorg. Chem. Commun., 2007, 10, 1523-1526.
    [86] He Y. K., Han Z. B., 3D Pillar-Layered Coordination Polymers Based on 4d-4f Heterometallic Assembly, Solid State Science, in press.
    [87] He Y. K., Zhang P., Chen X., et al., A 3D pillar-layered coordination polymer {[EuCu(C2O4)(na)2]·2H2O}n: Synthesis, structure and photoluminescent properties, J. Coord. Chem., in press.
    [88] Bondi A., van der Waals Volumes and Radii, J. Phys. Chem. 1964, 68, 441-451.
    [89] Lee S. J., Hu A. G., Lin W. B., The First Chiral Organometallic Triangle for Asymmetric Catalysis, J. Am. Chem. Soc., 2002, 124, 12948-12949.
    [90] Mallouk T. E., Gavin J. A., Molecular Recognition in Lamellar Solids and Thin Films, Acc. Chem. Res., 1998, 31,209-217.
    [91] Ma Y., Han Z. B., He Y. K., et al., A 3D chiral Zn(II) coordination polymer with triple Zn-oba-Zn helical chains (oba = 4,4’-oxybis(benzoate)), Chem. Commun., 4107-4109.
    [92] Han Z. B., He Y. K., Tong M. L., et al., Spontaneously resolved 3D homochiral In(III) coordination polymer with extended In-OH-In helical chains, CryEngCommun., in press.
    [93] Sun J. Y., Weng L. H., Zhou Y. M., et al., QMOF-1 and QMOF-2: Three-Dimensional Metal-Organic Open Frameworks with a Quartzlike Topology, Angew. Chem. Int. Ed. 2002, 41, 4471-4473.
    [94] Lin Z. Z., Jiang F. L., Chen, L., et al., New 3-D Chiral Framework of Indium with 1,3,5- Benzenetricarboxylate, Inorg. Chem. 2005, 44, 73-76.
    [95] Piguet C., Bernardinelli G., Hopfgartner G., Helicates as Versatile Supramolecular Complexes, Chem. Rev., 1997, 97, 2005-2062.
    [96] Izumi H., Yamagami S., Futamura S., et al., Direct Observation of Odd-Even Effect for Chiral Alkyl Alcohols in Solution Using Vibrational Circular Dichroism Spectroscopy, J. Am. Chem. Soc., 2004, 126, 194-198.
    [97] Dai J. C., Wu X. T., Fu Z. Y., et al., Synthesis, Structure, and Fluorescence of the Novel Cadmium(II)-Trimesate Coordination Polymers with Different Coordination Architectures, Inorg. Chem., 2002, 41, 1391-1396.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700