用户名: 密码: 验证码:
含氮杂环、羧酸V型配体MOFs的合成及结构表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
金属有机框架材料(MOFs)是一类由中心金属原子和有机配体构成的一类新型功能材料,通过有机配体的设计,金属离子的选择可以构筑出具有不同拓扑结构、不同性能的配位聚合物,从而使这一类化合物在生物活性、医药、光学材料、催化、吸附、气体存储等多方面有潜在的应用研究价值。
     本文为了得到大孔洞材料为目的设计合成了8种具有V型框架结构的配体:(1)9,9'-二(4-羧酸苯基)芴(L1);(2)1,1'-二(4-羧酸苯基)环己烷(L1');(3)9,9'-二(4-(1H-四氮唑-5-)苯基)芴(L2);(4)9,9'-二(4-磷酸苯基)芴(L3);(5)1,1'-二(4-磷酸苯基)环己烷(L3-);(6)9,9'-二(4-(1-咪唑基)苯基)芴(L4);(7)9,9'-二(4-(1-1,2,3三氮唑基)苯基)芴(L5);(8)9,9'-二(4-(1-1,2,4三氮唑基)苯基)芴(L6)。对每一种配体都用NMR技术进行了表征。
     本文通过溶剂热的方法,利用配体L1和配体L1′同Zn(NO_3)_2·6H_2O、Cu(NO_3)_2·3H_2O、Co(NO_3)_2·6H_2O三种金属盐合成了5种配位聚合物: (1)[Cu(L1)(DMF)]_n ;(2)[Zn(L1)(H_2O)]_n;(3)[Co(L1)(DMF)]_n;(4)[Cu(L1′)(DEF)]_n;(5)[Zn(L1′)(DMF)]_n,其中配合物(1)-(3)是配体L1的配合物,配合物(4)~(5)是配体L1-的配合物。在对反应条件进行系统考察之后,得到了最优合成路线:
     配合物(1)最优合成路线:nL1:nCu(NO3)2-3H2O=1:1,溶剂选用DMF和甲醇,其体积比:VDMF:VCH3OH=1:1,反应温度115℃,反应时间4天,蓝色块状晶体,产率41.1%;
     配合物(2)、(3)的最优合成路线:nL1:nZn(NO3)2-6H2O(nL1:nCo(NO3)2-6H2O)=3:1,溶剂选用DMF,反应温度90℃,反应时间3天,分别获得无色透明块状晶体和深绿色块状透明晶体,产率:51.3%和约100%。
     配合物(4)的最优合成路线:nL1-:nCu(NO3)2-3H2O=3:1,溶剂选用DEF和H_2O,其体积比:VDEF:VH2O=3:1,反应温度90℃,反应时间3天,得到蓝色透明锥状晶体,产率45%。
     配合物(5)的最优合成路线:n_(L1)-:n_(Zn(NO3)2-6H2O)=3:1,溶剂DMF,反应温度90℃,反应时间3天,得无色透明块状晶体,产率69%。
     对每一种配位聚合物都用X-射线单晶衍射和热重分析(TGA)技术进行了表征。
     通过对这5种配合物的配位环境及空间堆积模式的分析可知:在这5种配位聚合物中,配合物(1)~(4)具有相同的配位模式,金属离子都是6配位的变形八面体模式,配体中羧酸根采取顺-顺二齿配位模式,而配合物(5)的金属离子采取五配位模式,而配体羧酸根则采取反-反二齿配位和螯合配位两种模式。从5种配位聚合物的堆积图可以看出,配合物(1)~(3)形成了二维结构,在堆积结构中存在左右两种螺旋结构,而配合物(4)和(5)则形成一维链状结构,链中存在简单的空洞结构。
     从配合物热重分析结果来看,这些配合物都发生了两个阶段的重量损失,配合物(1):261.8℃?386℃(失DMF),386℃?595℃(结构坍塌);配合物(2):125℃?211℃(失H2O),211℃?500℃(结构坍塌);配合物(3):180℃?311℃(失DMF),311℃?505℃(结构坍塌);配合物(4):227℃?267℃(失DEF),267℃?511℃(结构坍塌);配合物(5):186℃?276℃(失DMF),276℃?530℃(结构坍塌);从数据中我们可以看出,在空间形成二维结构的配合物(1)、(3)热稳定性要比在空间形成一维结构的配合物(4)、(5)好,配合物(1)、(3)的结构被破坏的温度都在300℃以上,而配合物(4)、(5)的结构破坏温度在250℃?300℃之间,配合物(2)虽然也形成了二维结构,但是由于结构骨架中含有H2O分子,从而导致了其失水温度和结构坍塌温度都较低。
Organic metal frame materials (MOFs) are a new type of porous materials, which are composed by central metal atoms and organic ligands. Through the design of organic ligand and the choice of metal ions, coordination polymers with different topology structure and properties could be built. This makes this sort of polymer compounds have potential applications in biological activity, medicine, optical materials, catalysis, adsorption, gas storage aspects.
     Based on the purpose of obtaining several kinds of material with big pores, eight v-type frame structure ligands were designed and synthesized: (1) 9,9′-Bis(4-carboxylic acid phenyl) fluorine (L1); (2) 1,1′-Bis(4-carboxylic acid phenyl) cyclohexane (L1′); (3) 9,9′-Bis (4-1-H-tetrazylphenyl) fluorine (L2); (4) 9,9′-Bis(4-phosphoric acid phenyl) fluorine (L3); (5) 1,1′-Bis(4-phosphoric acid phenyl) cyclohexane (L3′); (6) 9,9′-Bis(4-1-imidazolyl phenyl) fluorine(L4); (7) 9,9′-Bis(4-1,2,3-triazolylphenyl)fluorine(L5); (8) 9,9′-Bis (4-1,2,4-triazolyl phenyl) fluorene. For every kind of ligands were characterized by NMR.
     In this article, through solvent hot method, by using ligand L1 and ligand L1? with three metal salt of Zn(NO_3)_2·6H_2O, Cu(NO_3)_2·3H_2O, Co(NO_3)_2·6H_2O. Five coordination polymers were produced: (1) [Cu(L1)(DMF)]_n; (2) [Zn(L1)(H_2O)]_n; (3) [Co(L1)(DMF)]_n; (4) [Cu(L1′)(DEF)]_n; (5) [Zn(L1′)(DMF)]_n. In these complexes, complexes (1)~(3) were produced by the ligand L1, and complexes (4)?(5) were produced by ligand L1?, the optimal synthetic route was discovered after the reaction condition was investigated.
     The optimal synthetic route of coordination polymer (1) was followed: 1 molar ratio of L1 and Cu (NO_3)_2·3H)_2O. DMF and CH_3OH were used as the solvents, the volume ratio of them was 1:1, reaction temperature was 115℃, time was four days. Then obtained the blue block crystal, the yield was 41.1%.
     The optimal synthetic route of coordination polymer (2) and (3) were followed: 3 molar ratio of L1 and Zn(NO_3)_2·6H_2O or L1 and Co(NO_3)_2·6H_2O. DMF were used as the solvents, reaction temperature was 90℃, time was three days. Then obtained the colorless transparent crystal and dark green crystals, the yields were 51.3 % (complexes (2)) and about 100 % (complexes (3)).
     The optimal synthetic route of coordination polymer (4) was followed: 3 molar ratio of L1? and Cu(NO3)2?3H2O. DEF and H_2O were used as the solvents, the volume ratio of them is 3:1,reaction temperature was 90℃, time was three days. Then obtained the blue cone crystals, the yield was 45%.
     The optimal synthetic route of coordination polymer (5) was followed: 3 molar ratio of L1? and Zn(NO3)2?6H2O. DMF were used as the solvents, reaction temperature was 90℃, time was three days. Then we obtained the colorless transparent crystals. The yield was 69%.
     All of the five coordination polymers were investigated by XRD and thermogravimetric analysis (TGA) technology.
     By analyzing these five kinds of complexes coordination environment and space accumulation patterns, we knew that: In these five kinds of the coordination polymers, complexes (1) ~ (4) have the same coordination model, the coordination number of the metal ions was six, which belonged to distorted octahedron mode, the carboxylic acid root of ligands took the model of cis-cis bidental. the coordination number of the metal ion of complexes (5) was five, the carboxylic acid root of ligands took the model of tris-tris bidental and chelating patterns. From the packing diagrams of the five complexes. we can see that the complexes (1) ~ (3) formed the two-dimensional structure, in which the ligand exsisted the left spiral and right spiral structure. and one-dimensional chain structure was formed by the complexes (4) and (5), in which only simple hole existed.
     From the thermo gravimetric analysis results, we knew that two phases of weight loss were happened, coordination polymer (1): 261.8℃?386℃(DMF lost), 386℃?595℃(structure collapsed); coordination polymer (2): 125℃?211℃(H2O lost), 211℃?500℃(structure collapsed); polymer (3): 180℃?311℃(DMF lost) 311℃?505℃(structure collapsed); polymer (4): 227℃?267℃(DEF lost), 267℃?511℃(structure collapsed); polymer (5):186℃?276℃(DMF lost), 276℃?530℃( structure collapsed). From the data, we could see that the complexes (1) and (3) with two-dimensional structure in space had more thermal stability than the complexes (4) and (5) with one-dimensional structure. The destruction temperature of structure of complexes (1) and (3) was above 300℃; however the destruction temperature of structure of complexes (4) and (5) was from 250℃to 300℃. Although coordination polymers (2) also had two-dimensional structure, the water molecules existed in the structural frame. Which led to a lower temperature of water lost and structure collapse than the complexes (1) and (3).
引文
[1]孙为银.配位化学[M] .北京:化学工业出版社, 2010: 5-65
    [2]张明. N-杂环硅烯钯配合物的合成及其对Heck反应的催化研究[D]:无锡:江南大学, 2008
    [3]叶兵.防止煤炭自燃的阻化机理及阻化特性研究[D]:阜新:辽宁工程技术大学,2006
    [4]吕炉丹.三配位N-杂环硅烯的合成及其与金属配位反应的初步研究[D]:无锡:江南大学, 2008
    [5]游效曾.配位化学进展[M] .北京:高等教育出版社, 2000: 30-77
    [6]徐志固.现代配位化学[M] .北京:化学工业出版社, 1987: 12-58
    [7]张永安.无机化学[M] .北京:北京师范大学出版社, 1998: 35-69
    [8]岳琳.含氮、氧配体配位聚合物的合成及结构分析[D]:天津:河北工业大学, 2005
    [9]申泮文.无机化学[M] .北京:化学工业出版社, 2002: 88-120
    [10]储德清.过渡金属配位聚合物的合成、结构与性能研究[D]:长春:吉林大学, 2001
    [11]王超.含芳香环配体配合物的合成、结构与性质的研究[D]:无锡:江南大学, 2008
    [12]苗志新.新型含氮配位聚合物的合成、晶体结构和性质研究[D]:上海:上海大学, 2007
    [13]孟庆金,戴安邦.配位化学的创始与现代化[M] .北京:高等教育出版社, 1998: 59-71
    [14] Farrusseng D., Metal–Organic Frameworks: Opportunities for Catalysis[J].Angew. Chem. Int. Ed. 2009, 48(41): 7502–7513
    [15] Zou R., Storage and separation applications of nanoporous metal–organic frameworks[J]. CrystEngComm, 2010, 12(5), 1337–1353
    [16]蒙泽榕.稀土金属-羧酸配体配位聚合物的合成及结构解析[D]:福州:中国科学院福建物质结构研究所, 2006
    [17]高忆慈,史启祯等译.无机化学[M] .北京:高等教育出版社, 1997: 99-122
    [18]赵庆山.含氮杂环配体及其金属配合物的合成、结构和性质表征[D]:银川:宁夏大学, 2009
    [19]王夔.生物无机化学[M] .北京:清华大学出版社, 1998: 25-97
    [20]王会生.高核锰化合物的合成、结构和磁性研究[D]:福州:中国科学院福建物质结构研究所, 2007
    [21]席振峰,姚广庆,项斯芬.生物无机化学原理[M] .北京:北京大学出版社, 2000: 33-89
    [22]苗健,高琦,许思来.微量元素与相关疾病[M] .郑州:河南医科大学出版社, 1997: 6-25
    [23]雷鹏,吴为辉,李艳梅.过渡金属离子与神经退行性疾病[J]:大学化学, 2006, 21(06):156-159
    [24]郭子建,孙为银.生物无机化学[M] .北京:科学出版社, 2006: 46-67
    [25]殷麦华.新型NO配体的合成及过渡金属酶的小分子模拟[D]:西安:陕西师范大学, 2007
    [26]张洪全.含功能基团分子材料的设计、制备及表征[D]:哈尔滨:黑龙江大学, 2005
    [27]杜文平.含氮杂环羧酸及硫醚类配体配合物研究[D]:天津:南开大学, 2006
    [28]万纯娣,臧焰,胡永珠.磁化学[M] .南京:南京大学出版社, 1990: 87-102
    [29]游效曾.分子材料—光电功能化合物[M] .上海:上海科学技术出版社, 2001: 45-65
    [30]郭保章.中国现代化学史略[M] .南宁:广西教育出版社, 1995: 43-67
    [31]许颜清.新型含氮/多羧酸配体配合物的合成、结构与性能研究[D]:福州:中国科学院福建物质结构研究所, 2006
    [32]高恩庆,廖代正.多原子桥联异多核配合物的分子磁性研究进展[J]:高等学校化学学报, 1999, 20(8): 1179~1185.
    [33]何海燕.基于苯多酸配体的金属有机配合物的合成及其性能研究[D]:济南:山东大学, 2010
    [34]王庆伦,廖代正.单分子磁体及其磁学表征[J]:化学进展, 2003, 15: 161~169.
    [35]黄玲,黄春辉.稀土配合物的光致发光和电致发光研究[J]:化学学报, 2000, 58(12): 1493~1498.
    [36]杨宏秀,谷云骊,傅希贤.化学与社会发展[M] .北京:化学工业出版社, 2002: 99-105
    [37]黄春辉.稀土配位化学[M] .北京:科学出版社, 1997: 33-69
    [38]王文华.芳香羧酸配体构筑的金属―有机超分子配合物的设计、合成、结构及性能研究[D]:兰州:兰州大学, 2006
    [39]时茜.新型羧酸和席夫碱配合物的合成、结构解析和性能研究[D]:福州:中国科学院研究生院福建物质结构研究所, 2003
    [40]许莹.含N杂环羧酸配体配位化合物的合成、结构及性能关系研究[D]:福州:中国科学院福建物质结构研究所, 2004
    [41] Long L. S., pH effect on the assembly of metal–organic architectures[J]. CrystEngComm, 2010, 12(5): 1354–1365
    [42]张晓锋,含N杂环羧酸配体配位化合物的合成、结构及性能关系研究[D]:福州:中国科学院研究生院福建物质结构研究所, 2003.
    [43]李星.新型含N杂环多齿配体配位化学研究[D]:福州:中国科学院福建物质结构研究所, 2004
    [44] Li W., Qiao J., Duan L., et al. Novel fluorene/carbazole hybrids with steric bulk as host materials for blue organic electrophosphorescent devices[J]. Tetrahedron, 2007, 63(41): 10161-10168.
    [45] Dinca M., Dailly A., Tsay C., et al. Expanded sodalite-type metal-organic frameworks: increased stability and H(2) adsorption through ligand-directed catenation[J]. Inorganic Chemistry, 2008, 47(1): 11-13.
    [46] Galaup C., Couchet J.-m., Tisne P., et al. Direct Access to Terpyridine-Containing Polyazamacrocycles as Photosensitizing Ligands for Eu ( III ) Luminescence in Aqueous Media[J]. Journal of Organic Chemistry, 2005, 70(6): 2274-2284.
    [47] Vasylyev M.V., Astruc D., and Neumann R. Dendritic Phosphonates and thein situ Assembly of Polyperoxophosphotungstates: Synthesis and Catalytic Epoxidation of Alkenes with Hydrogen Peroxide[J]. Advanced Synthesis & Catalysis, 2005, 347(1): 39-44;
    [48] Vasylyev M.V., Wachtel E.J., Popovitz-Biro R., et al. Titanium Phosphonate Porous Materials Constructed from Dendritic Tetraphosphonates [J]. Chemistry - A European Journal, 2006, 12(13): 3507-3514
    [49] Li Z. X., Xu Y., Zuo Y., et al. Varying Ligand Backbones for Modulating the Interpenetration of Coordination Polymers Based on Homoleptic Cobalt(II) Nodes[J]. Crystal Growth & Design, 2009, 9(9): 3904-3909.
    [50]陈小明,童明良.羧基配位结构--共面与非共面[J]:大学化学. 1997, 6(2): 98-101
    [51]王贞.有机羧酸和含氮配体构筑的MOFs合成与结构表征[D]:天津:天津大学, 2007
    [52] Zhou Y., Han L., Pan J., et al. A novel 2D (4, 4) cobalt (II)-organic framework based ontetranuclear cluster nodes and double stranded organic linkers [J]. Inorganic Chemistry Communications, 2008, 11(10): 1107-1109
    [53] Murthy S. N., Madhav B., Reddy V. P., et al. A New Efficient and Recyclable Lanthanum (III) Oxide-Catalyzed C-N Cross-Coupling[J]. Adv. Synth. Catal, 2010, 6(3): 114-117
    [54] Liu D., Xie Z., Ma L., et al. Three-Dimensional Metal-Organic Frameworks Based on Tetrahedral and Square-Planar Building Blocks: Hydrogen Sorption and Dye Uptake Studies[J]. Inorganic Chemistry, 2010, 49(20): 9107-9109
    [55] Zhao Z., He X., Zhao Y., et al. Coordination polymer based on Cu(II), Co(II) and 4,4'-bipyridine-2,6,2',6'-tetracarboxylate: synthesis, structure and adsorption properties[J]. Dalton transactions (Cambridge, England: 2003), 2009(15): 2802-11
    [56] Young N. A., Mechanisms and kinetics in the solid state[J]. Organic Chemsistry, 2000 31(8):507-533
    [57] Wen G. L., Wang Y. Y., Zhang W. H., et al. Self-assembled coordination polymers of V-shaped bis(pyridyl)thiadiazole dependent upon the spacer length and flexibility of aliphatic dicarboxylate ligands[J]. CrystEngComm, 2010, 12(4): 1238-1238
    [58] Wei G. H., Yang J., Ma J. F., et al. Syntheses, structures and luminescent properties of zinc(II) and cadmium(II) coordination complexes based on new bis(imidazolyl)ether and different carboxylate ligands[J]. Dalton transactions (Cambridge, England: 2003), 2008, 2008(23): 3080-3092
    [59] Wang Y., Bredenkotter B., Rieger B., et al. Two-dimensional metal-organic frameworks (MOFs) constructed from heterotrinuclear coordination units and 4,4'-biphenyldi carboxylate ligands[J]. Dalton transactions (Cambridge, England: 2003), 2007, 2007(6): 689-696.
    [60] Wang M. S., Guo G. C., Cai L.-Z., et al. Zinc complexes of T-shaped trans-1,2,3-propene tricarboxylic acid with 1-D ribbon-like chain, 2-D rhombus-grid-like and herringbone- like layers, and non-interpenetrating 3-D open framework[J]. Dalton transactions (Cambridge, England: 2003), 2004, 2004(15): 2230-2236
    [61] Wang G. H., Li Z. G., Jia H. Q., et al. Metal–organic frameworks based on the pyridine-2,3-dicarboxylate and a flexible bispyridyl ligand: syntheses, structures, andphotoluminescence[J]. CrystEngComm, 2009, 11(2): 292-293
    [62] Uemura T., Yanai N., Kitagawa S., Polymerization reactions in porous coordination polymers[J]. Chemical Society reviews, 2009, 38(5): 1228-1236
    [63] Sun L. X., Qi Y., Wang Y. M., et al. A variety of novel complexes constructed from biphenyl-3,3′,4,4′-tetracarboxylate and flexible bis(imidazole) ligands[J]. CrystEng Comm, 2010, 12(5): 1540-1540
    [64] Plater M. J., Roberts A. J., Marr J., et al. Hydrothermal synthesis and characterisation of alkaline-earth metal salts of benzene-1,3,5-tricarboxylic acid[J]. (Journal of the Chemical Society), Dalton Transactions, 1998, 1998(5): 797-802
    [65] Liu H. K., Huang X. H., Lu T. H., et al. Discrete and infinite 1D, 2D/3D cage frameworks with inclusion of anionicspecies and anion-exchange reactions of Ag3L2 type receptor with tetrahedral and octahedral anions [J]. Dalton Trans, 2008, 2008(24) 3178–3188
    [66] Noro S. I. Rational synthesis and characterization of porous Cu(II) coordination poly mers[J]. Physical chemistry chemical physics, 2010, 12(11): 2519-2531.
    [67] Nadeem M. A., Bhadbhade M., and Stride J. A., Four new coordination polymers constructed from benzene tricarboxylic acid: synthesis, crystal structure, thermal and magnetic properties[J]. Dalton transactions (Cambridge, England: 2003), 2010, 2(6):189-192
    [68] Mukherjee P. S., Konar S., Zangrando E., et al. Synthesis, crystal structure and magneto- structural correlation of two bi-bridging 1D copper(II) chains[J]. Dalton Transactions, 2002, 2002(18): 3471-3476
    [69] Mondal R., Bhunia M. K., Dhara K., Crystal engineering of zinc(II) metal–organic frameworks: role of steric bulk and angular disposition of coordinating sites of the ligands[J]. CrystEngComm, 2008, 10(9): 1167-1167
    [70] Martin D. P., Supkowski R. M., and LaDuca R. L., Cadmium dicarboxylate coordination polymers incorporating a long-spanning organodiimine: in situ alkene isomerization and an unprecedented chiral 6(5)8 two-dimensional network[J]. Dalton transactions, 2009, 2009(3): 514-520.
    [71] Liu G. X., Huang R. Y., Huang L. F., et al. Zn(II) and Cu(II) coordination polymersassembled from V-shaped tetracarboxylate ligands and N-donor ancillary ligands: syntheses, structures and properties[J]. CrystEngComm, 2009, 11(4): 643-643
    [72] Liu C. S., Wang J. J., Chang Z., et al. Cadmium(II) coordination polymers based on a bulky anthracene-based dicarboxylate ligand: crystal structures and luminescent properties[J]. CrystEngComm, 2010, 12(6): 1833-1834
    [73] Lan Y. Q., Li S. L., Fu Y. M., et al., d(10)-Metal coordination polymers based on analogue di(pyridyl)imidazole derivatives and 4,4'-oxydibenzoic acid: influence of flexible and angular characters of neutral ligands on structural diversity[J]. Dalton transactions, 2008, 2008(47): 6796-6807
    [74] Kanoo P., Gurunatha K. L., and Maji T. K., Versatile functionalities in MOFs assembled from the same building units: interplay of structural flexibility, rigidity and regularity[J]. Journal of Materials Chemistry, 2010, 20(7): 1322-1323
    [75] Jiang K., Ma L. F., Sun X. Y., et al. Syntheses, structures and luminescent properties of zinc(II) coordination polymers based on bis(imidazole) and dicarboxylate[J]. CrystEngComm, 2010, 3(5): 634-638
    [76] Ji C., Huang L., Li J., et al. Solvothermal syntheses, structures, and physical properties of four new coordination compounds constructed from a bent dicarboxylate ligand [J]. Dalton transactions, 2010, 39(35): 8240-8247
    [77] Deng Z. P., Huo L. H., Wang H. Y., et al. A series of three-dimensional lanthanide metal–organic frameworks with biphenylethene-4, 4′-dicarboxylic acid: Hydrothermal syntheses and structures[J]. CrystEngComm, 2010, 12(5): 1526-1526

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700