用户名: 密码: 验证码:
图像稀疏编码算法及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
图像处理技术已成为人类生活与生产实践不可或缺的重要信息获取手段,已广泛应用于空间技术、医学影像、遥感图像处理、工业控制、文化艺术、计算机视觉、视频与多媒体系统、科学可视化、电子商务等众多领域。生物视觉系统是一种高效的图像处理系统。随着脑科学研究的不断发展,人类对生物视觉系统的研究逐步深入,从初级视皮层到高级视觉区域,从初级视觉感知到高级知觉组织等,都取得了许多重要的研究成果。
     从视网膜接收到光刺激作为输入信号开始,视觉系统利用一套完整的信息处理机制对输入图像进行处理和加工。尽管我们尚未透彻了解生物视觉系统的工作机制,但视觉信息处理过程的“稀疏编码”特性已证实了其合理性及有效性。广义的视觉图像稀疏编码特性是一种符合生物进化过程能量最节约原则的视觉信息表达方式。图像处理的稀疏编码算法及应用正是基于这一生物学背景而发展起来的一种高效信息处理技术。已有的研究成果表明:有效的视觉信息稀疏编码系统一般具有多分辨、临界采样及过完备性;用于表示图像的基函数具有局部性、带通性、方向性、各向异性等特点。基于这些规律,本文以图像稀疏编码算法的应用为重点,研究了图像信息的基本稀疏编码模型、基于优化Gabor字典的图像稀疏编码算法、基于过完备稀疏表示的图像处理及应用、基于多分辨分析理论的图像稀疏表示及应用,以及视觉皮层脉冲耦合神经网络模型及应用。所取得的研究成果如下:
     1.提出了一种基于优化Gabor字典的图像稀疏编码算法。图像稀疏表示的关键问题之一是如何构造有效的过完备字典。二维Gabor函数具有良好的局部性、方向选择性及空间频率选择性等特点,可有效模拟视觉皮层V1区简单细胞的感受野特性。以Gabor函数为原子生成函数构造的过完备字典能匹配图像中的边缘、纹理等几何机构,可实现图像的有效表示。但该字典仍存在原子数量巨大,匹配追踪算法计算开销大等问题。针对这些不足,提出了一种基于优化Gabor字典的图像稀疏编码算法。新算法主要采用两种策略对上述问题做一改进:其一是采用图像重叠分块的策略,以有效减少输入样本的长度;其二是采用粒子群优化算法(Particle Swarm Optimization,PSO),模拟视皮层神经元的竞争机制,以输入样本在Gabor原子上投影的模值为适用度值,以优化求解最匹配Gabor原子的自由度参数代替在大规模字典上的搜索过程,最后在优化所得的Gabor字典上采用正交匹配追踪(Orthogonal MatchingPursuit,OMP)算法完成图像的稀疏分解。实验结果验证了所提算法的有效性,算法在较低时间复杂度的前提下可获得较高的重建图像质量。
     2.基于图像的过完备稀疏表示理论,针对传统变换域方法的适应性及噪声鲁棒性问题,提出了一种自适应字典学习的多传感器图像融合算法。算法首先从待融合图像中随机取块构成训练样本集,经自适应字典学习算法迭代运算获取过完备字典;然后由OMP算法完成图像块的稀疏分解;再按分解系数的显著性选择融合系数并完成图像块的重构;重构块经重新排列并取平均后获得最后的融合图像。实验结果可见,新算法具有较好的噪声抑制能力,融合图像的主观质量及客观评价指标均要好于传统算法。
     3.基于图像的过完备稀疏表示理论,针对实例学习图像超分辨方法中低分辨图像块与高分辨图像块特征映射不一致问题,提出一种在线字典学习的图像超分辨重建算法。在学习阶段,算法首先获取一组高分辨图像,并经降质获得对应的低分辨图像,以该两组实例图像构建相应的高分辨及低分辨特征训练集,在低分辨训练集上经在线字典学习算法迭代运算获得低分辨字典,然后采用OMP算法获得输入样本在低分辨字典上的稀疏编码矩阵,通过共享稀疏编码系数求解高分辨字典;在超分辨重建阶段,对输入的低分辨图像块首先在低分辨字典上采用OMP算法实现稀疏编码,同样依据高分辨图像块与低分辨图像块共享稀疏编码系数的原则,以高分辨字典实现待估计高分辨图像块的稀疏逼近,最后经块重新排序并取平均实现高分辨图像的重建。实验结果可见,所提方法可取得优于传统方法的图像超分辨质量,重建图像的细节及纹理保持能力较好,且能有效抑制图像边缘的伪影现象。
     4.基于图像稀疏表示的多尺度几何分析(Multiscale Geometric Analysis,MGA)理论,提出了一种改进的非下采样Contourlet变换(Nonsubsampled ContourletTransform,NSCT)结合高斯比例混合模型(Gaussian Scale Mixtures Model,GSM)的图像去噪算法。MGA是近年来发展起来的一种新的高维函数多尺度多分辨分析方法,可实现较小波变换更优的图像“稀疏表示”能力。NSCT是一种有效的多尺度几何分析工具,具有多尺度、多方向性及平移不变性等特点。NSCT结合GSM的图像去噪算法能获得较满意的去噪效果,算法具有一定的通用性,但算法耗时较大。针对这一问题,提出一种改进的快速NSCT变换,以拓展其在算法时间要求较高场合下的应用。由于方向滤波器组主要影响NSCT的性能,故采用一种具有提升结构并经优化处理的方向滤波器改进了NSCT变换中的非下采样方向滤波器组,同时将改进后的NSCT结合GSM应用于图像去噪。实验结果可见,改进算法保持了原NSCT结合GSM算法的图像去噪效果,同时将算法速度提高了近11倍。
     5.基于图像稀疏表示的多分辨分析理论,模拟视觉系统同步振荡机制及视皮层神经元分层分级信息处理机制,提出了一种基于改进拉普拉斯金字塔(Laplacian Pyramid,LP)变换结合脉冲耦合神经网络(Pulse Coupled NeuralNetworks,PCNN)的抗噪声多聚焦图像融合算法。算法采用改进的LP变换构造图像的多分辨数据结构,分解系数按照分层多尺度的方式激励PCNN,经迭代运算生成其对应的神经元点火映射图,并以此为依据经判决算子完成数据融合,再采用一种新的伪逆重构算法(又称对偶框架算子)生成融合图像。实验结果证实新算法具有抗加性噪声及JPEG压缩系统噪声的能力,融合图像的客观评价指标较高,其中PSNR比原LP方法平均提升19.4%,且能有效减弱原LP算法融合图像边缘的伪影现象。
Image processing technology has been become one of very important methods forinformation acquisition in human society, and has been widely used in space technology,medical imaging, remote sensing image processing, industrial control, computer vision,video and multimedia systems, etc. Thus, the study on high efficient image processingsystem has deep significance. Biological visual system has been proved to be veryefficient for image processing. Accompanied by the deep study on brain science, manyresearch results on biological visual system are reported, from the primary propertyextraction to high level perceptual organization. Currently, the perception mechanismand related core technologies of visual system have become a very important researchfield of cognitive science.
     From the start input stimulated by the scene light on retina, visual system uses acomplete set of information processing mechanism to deal with the input image.Although, we have not understood the whole mechanism of visual system, the sparserepresentation ways for input features are accepted by many researches and proved bymany neurophysiology experiments. An efficient sparse coding method must be withmultiscale, critical sampling, and over-complete properties, and the basis function mustbe with local, directional, and anisotropic properties. Base on these principles, thispaper studied the basic image sparse coding model, multiscale and multiresolutiontheory for image processing, over-complete representation methods for imageprocessing, and visual cortex neuron model (the pulse coupled neural networks). Themain research work and contributions are summarized as follows:
     1. An image sparse representation algorithm over optimal Gabor dictionary isproposed. For image sparse representation, one of the key factors is to constructan efficient over-complete dictionary.2-D Gabor function has perfect local,directional, and space-frequency selective properties; this is very similar to thereceptive field properties of simple cells in primary visual cortex. The dictionaryelements generated by Gabor function can well match the geometric structure(e.g., edge, texture) in natural image, and can achieve well sparse representationfor image. However, because of the over-complete demands, the elements of thisdictionary are very bulky, and lead to an intensive computational efficiency inorthogonal pursuit matching procedure. To overcome this problem, two mainstrategies are adopted:(1) divide the original image into overlapped patches to reduce the length of input sample;(2) adopt Particle Swarm Optimization (PSO)algorithm to imitate the competition activity of neurons in visual cortex. In theoptimization procedure of PSO, the norm of the projection of input signal on thedictionary element is used as fitness value, to optimize a set of optimal Gaborparameters is used to replace the pursuit procedure on the whole dictionary. At thefinal stage of the algorithm, the Orthogonal Matching Pursuit (OMP) algorithm isused for image coding. Experimental results demonstrate that our algorithm canachieve high reconstructed image quality under a low algorithm complexity.
     2. The traditional algorithm can not adapt to noise environments in transformdomain. To alleviate this problem and improve the adaptability and the noiserobustness of them, a novel multi-sensor image fusion algorithm based on imagesparse representation theory is introduced. For the new algorithm, the relatedimage is partitioned into image patches, and the patches are decomposed by theOMP algorithm, then the sparse coefficients are selected demanding theirprominent property. The selected coefficients are used for the reconstructed imagepatches, and the patches are realigned according to the partition order. Finally, theoverlapped patches are averaged to get the fused image. Experimental resultsshow that the proposed algorithm is with anti-noise property, and outperforms thetypical algorithms in term of objective criteria and visual appearance.
     3. These methods based on sample learning are more efficient for imagesuper-resolution (SR). However, there are always one-to-many mappings betweenlow-resolution (LR) image patches and high-resolution (HR) image patches. Toovercome or at least reduce the problem induced by the disagreement of LR andHR patches, an algorithm based on image sparse representation and onlinedictionary leaning method is proposed for single image SR problem. Thealgorithm is processed by two stages:1) Training stage. A set of HR images areused as HR samples. They are blurred, subsampled and then upsampled toconstructed the LR samples which are with same size with the HR samples, thenthese two sample sets are filtered to get the feature sample set. The LR featuresample set is used to obtain LR dictionary and the sparse code by onlinedictionary learning algorithm and OMP algorithm. Because LR samples and HRsamples can share the sparse code, the HR dictionary can be calculated;2)Reconstruction stage. When a LR image is inputted, it is also filtered to constructthe feature sample set, and then be processed by the OMP algorithm to get itssparse code. These codes are shared by the HR dictionary to estimate the HR patches. Finally, all the HR patches are arranged according their partitioning order,and the overlapped patches are averaged to reconstruct the HR image. Theexperimental results show that the proposed algorithm outperforms in bothobjective and subjective evaluation compared with several conventional methods.Moreover, the proposed method performs better for detail and texture recover, andalso can reduce the artifacts around edge in the reconstructed HR image.
     4. A fast image denoising algorithm based on a modified Nonsubsampled ContourletTransform (NSCT) combined with Gaussian Scale Mixtures Model (GSM) isproposed. The Multiscale Geometric Analysis (MGA) theory can achieve optimalsparse representation for high dimension function and can lead to highperformance over wavelets. As one of the effective tools of MGA, the NSCT iswith fully shift-invariant, multiscale, and multidirection properties. For imagedenoising, the algorithm using NSCT combined with GSM seems to be one of theexcellent options. However, the computational efficiency of it is lower. Aiming atthis problem, a modified NSCT is proposed to be applicable to wide applicationsin speed demanding environments. Since the Nonsubsampled Directional FilterBank (NSDFB) mainly affects the performance of NSCT, an optimizedDirectional Filter Bank (DFB) with lifting scheme is adopted to modify theNSDFB for a fast NSCT. Moreover, combined with GSM, the modified NSCT isused for image denoising. The numerical experiments show that the processingspeed of the proposed algorithm is increased by11times than that of theconventional one, while keeping good visual quality of the denoised image.
     5. In view of the applied peculiarity of ordinary optics, based on the new LaplacianPyramid (LP) transform and the Pulse Coupled Neural Networks (PCNN), a novelmultifocus image fusion algorithm which is with antinoise properties is proposed.For the algorithm, the new LP transform is adopted to construct the pyramidal dataof the related images; the data is then inputted into PCNN. Through the iterativeoperation by the PCNN, the firing map of neurons can be obtained, and then thesemaps are used by the decision operator for data fusion. The fused pyramidal dataare reconstructed by the new pseudo inverse (also named dual frame operator) toobtain the fused image. The experimental results show that new algorithmoutperforms the traditional algorithm, both in visual appearance and objectiveevaluation criteria. The PSNR value increases19.4percent than that of the old LPalgorithm. Moreover, the proposed algorithm is with antinoise properties foradditive noise and system noise from JPEG compression, and can efficiently reduce the “pseudo Gibbs” phenomenon which is inevitable in the fused image bythe old LP algorithm.
引文
[1] Rafael C. Gonzalez, Richard E. Woods著,阮秋琦等译,数字图像处理(第二版),北京:电子工业出版社,2007.
    [2]章毓晋.图像工程(上册)—图像处理(第2版).北京:清华大学出版社,2006.
    [3]张凯兵.基于广义稀疏表示的图像超分辨重建算法研究.博士学位论文,西安电子科技大学,2012.
    [4] L. Roberts. A call to action on a Human Brain Project. Science,1991,252(5014):1794.
    [5] G. M. Shepherd, J. S. Mirsky, M. D. Healy, et al. The Human Brain Project:neuroinformatics tools for integrating, searching and modeling multidisciplinaryneuroscience data. Trends in Neuroscience,1998, vol.21, pp.460-468.
    [6]郭雷,郭宝龙.视觉神经系统与分布式推理理论.西安:西安电子科技大学出版社,1995.
    [7]郭宝龙.郭雷.视觉信息处理的神经基础.自然杂志.1991, vol.11, pp.838-841.
    [8]郭雷,郭宝龙,陆心如.视觉运动信息处理神经系统.软件学报.1994,5(7):38-43.
    [9] B. L. Guo, L. Guo. Figure-ground separation using a diffusion-concentration neuralnetwork, Chinese Science Bulletin,1994,39(24):2086-2090.
    [10]唐孝威,杜继曾,陈学群,等编著.脑科学导论.杭州:浙江大学出版社,2006.
    [11] F. Attneave. Some informational aspects of visual perception. PsychologicalReview,1954,61(3):183-193.
    [12] H. B. Barlow. Possible principles underlying the transformation of sensorymessages. Sensory Communication. Edited by W. A. Rosenbluth (Cambridge, MA:MIT Press),1961, pp.217-234.
    [13] D. H. Hubel, T. N. Wiesel. Receptive fields of single neurons in the cat’s striatecortex. Journal of Physiology,1959, vol.148, pp.574-591.
    [14] D. H. Hubel, T. N. Wiesel. Receptive fields, binocular interaction and functionalarchitecture in the cat’s visual cortex. Journal of Physiology,1962, vol.160,pp.106-154.
    [15] B. Olshausen, D. Field. Sparse coding with an overcomplete basis set: A strategyemployed by V1?. Vision Research,1997,37(23):3311-3325.
    [16] E. Candès, D. L. Donoho. New Tight Frames of Curvelets and OptimalRepresentations of Objects with Piecewise C2Singularities. Communications onPure and Applied Mathematics,2004,57(2):219-266.
    [17]庄永文.基于稀疏编码理论的自然图像处理研究.硕士学位论文,厦门大学,2008.
    [18]李清勇.视觉感知的稀疏编码理论及其应用研究.博士学位论文,中国科学院计算技术研究所,2006.
    [19]刘丹华.信号稀疏分解及压缩感知理论应用研究.博士学位论文,西安电子科技大学,2009.
    [20]罗四维.视觉信息认知计算理论.北京:科学出版社,2010.
    [21]尚丽.稀疏编码算法及其应用研究.博士学位论文,中国科学技术大学,2006.
    [22] H. B. Barlow. Single units and sensation: A neuron doctrine for perceptualpsychology?. Perception,1972,1(4):371-394.
    [23] D. J. Field. Relations between the statistics of natural images and the responseproperties of cortical cells. Journal of Optical Society. America A,1987,4(12):2379-2394.
    [24] D. J. Field. What the statistics of natural images tell us about visual coding. InProceedings of the International Society for Optical Engineering (SPIE), HumanVision, Visual Processing, and Digital Display,1989, Vol.1077, pp.269-276.
    [25] B. A. Olshausen, D. J. Field. Emergence of simple cell receptive field properties bylearning a sparse code for natural images. Nature,1996, vol.381, pp.607-609.
    [26] A. Bell, T. J. Sejnowski. The‘independent components’of natural scenes are edgefilters. Vision Research,1997, vol.37, pp.3327-3338.
    [27] A. Hyv rinen, E. Oja, P. O. Hoyer, J. Horri. Image feature extraction by sparsecoding and independent component analysis. In Proceedings of InternationalConference on Pattern Recognition (ICPR’98), Brisbane, Australia,1998,pp.1268-1273.
    [28] A. Hyv rinen, P. O. Hoyer. A two-layer sparse coding model learns simple andcomplex cell receptive field and topography from natural images. Vision Research,2001,41(18):2413-2423.
    [29] E. P. Simoncelli, B. A. Olshausen. Natural Image Statistics and NeuralRepresentation. Annual Review of Neuroscience.2001, vol.24, pp.1193-1216.
    [30] P. O. Hoyer, Non-negative sparse coding. In Proceedings of the200212th IEEEWorkshop on Neural Networks for Signal Processing,2002, pp.557-565.
    [31] P. O. Hoyer, A. Hyv rinen. A multi-layer sparse coding network learns contourcoding from natural images. Vision Research,2002,42(12):1593-1605.
    [32] G. M. Boynton, J. Hegdé. Visual Cortex: The Continuing Puzzle of Area V2.Current Biology,2004,14(13): R523-524.
    [33] A. Plebe. A model of angle selectivity development in visual area V2.Neurocomputing,2007,70(10-12):2060-2063.
    [34] S. Mallat著,杨力华,戴道清,黄文良,等译.信号处理的小波导引(第二版).北京:机械工业出版社,2002.
    [35]焦李成,侯彪,王爽,等.多尺度几何分析理论与应用—后小波分析理论与应用.西安:西安电子科技大学出版社,2008.
    [36]焦李成,公茂果,王爽,等.自然计算、机器学习与图像理解前沿.西安:西安电子科技大学出版社,2008.
    [37]焦李成,谭山.图像的多尺度几何分析:回顾和展望.电子学报,2003,31(12A):1975-1981.
    [38]焦李成,杨淑媛.自适应多尺度网络理论与应用.北京:科学出版社,2008.
    [39] F. G. Meyer, R. R. Coifman. Brushlets: A tool for directional image analysis andimage compression. Journal of Applied and Computational Harmonic Analysis,1997,4(2):147-187.
    [40] D. L. Donoho. Wedgelets: Nearly minimax estimation of edges. The Annals ofStatistics,1999,27(3):859-897.
    [41] E. L. Pennec, S. Mallat. Sparse geometric image representations with Bandelets.IEEE Transactions on Image Processing,2005,14(4):423-438.
    [42] G. Peyre, S. Mallat. Discrete Bandelets with geometric orthogonal filters. InProceedings of IEEE International Conference on Image Processing,2005.
    [43] V. Velisavljevic, B. Beferull-Lozano, M. Vetterli, et al. Directionlets: anisotropicmulti-directional representation with separable filtering. IEEE Transactions onImage Processing,2006,15(7):1916-1933.
    [44] E. J. Candès. Ridgelets: theory and application. Ph. D. Dissertation, StanfordUniversity,1998.
    [45] E. J. Candès. Monoscale Ridgelet for the representation of images with edges.Technical Report, Department of Statistics, Stanford University,1999.
    [46] E. J. Candès, D. L. Donoho. Curvelets: a surprisingly effective nonadaptiverepresentation for objects with edges. Curves and Surface Fitting,2000, pp.105-120.
    [47] J. L. Strack, E. J. Candès, D. L. Donoho. The curvelet transform for imagedenoising. IEEE Transactions on Image Processing,2002,11(6):670-684.
    [48] E. J. Candès, F. Guo. New multiscale transforms, minimum total variationsynthesis: applications to edge-preserving image reconstruction. Signal Processing,2002,82(11):1519-1543.
    [49] E. J. Candès, L. Demanet, D. L. Donoho, et al. Fast discrete Curvelet transforms.SIAM Multiscal Modeling and Simulation,2006,5(3):861-899.
    [50] M. N. Do, M. Vetterli. The Contourlet transform: an efficient directionalmultiresolution image representation. IEEE Transactions on Image Processing,2005,14(12):2091-2106.
    [51] M. N. Do. Directional multiresolution image representations. Ph. D. Dissertation,Lausanne Federal Polytechnic School, Lausanne, Swiss,2003.
    [52] A. L. Cunha, J. P. Zhou, M. N. Do. The nonsubsampled Contourlet transform:theory, design and application. IEEE Transactions on Image Processing,2006,15(10):3089-3101.
    [53]言敬文,屈小波.超小波分析及应用.北京:国防工业出版社,2008.
    [54] S. G. Mallat, Z. F. Zhang. Matching Pursuit with Time-frequency Dictionaries.IEEE Transactins on Signal Processing,1993,41(12):3397-3415.
    [55] S. Chen, D. L. Donoho, M. A. Saunders. Atomic Decomposition by Basis Pursuit.SIAM Journal on Scientific Computing,1998,20(1):33-61.
    [56] R. R. Coifman, M. V. Wicherhauser. Entropy-based Algorithms for Best-basisSelection. IEEE Transactions on Information Theory,1992,38(2):713-718.
    [57] Y. C. Pati, R. Rezaiifar, P. S. Krishnaprasad. Orthogonal Matching Pursuit:Recursive Function Approximation with Applications to Wavelet Decomposition.In Proceedings of the27th IEEE Annual Asilomar Conference on Signals, Systems,and Computers. Los Alamitos,1993,1(11):40-44.
    [58] I. Daubechies. Time Frequency Localization Operators: A Geometric Phase SpaceApproach. IEEE Trans. on Information Theory,1988,34(4):605-612.
    [59] M. Aharon, M. Elad, A. Bruckstein. The K-SVD: An Algorithm for Designing ofOvercomplete Dictionaries for Sparse Representation. IEEE Transactions on SignalProcessing,2006,54(11):4311-4322.
    [60] J. Mairal, F. Bach, J. Ponce, G. Sapiro. Online learning for matrix factorization andsparse coding. Journal of Machine Learning Research,2010,11(1):19-60.
    [61] Y-L. Boureau, F. Bach, Y. LeCun, J. Ponce. Learning Midlevel Features forRecognition. In Proceedings of IEEE Conference on Computer Vision and PatternRecognition (CVPR),2010, pp.2559-2566.
    [62] V. E. DeBrunner, L. Chen, H. Li. Lapped multiple basis algorithms for still imagecompression without blocking effect. IEEE Transactions on Image Processing,1997,6(9):1316-1321.
    [63] A. P. Berg, W. B. Mikhael. A survey of mixed transform techniques for speech andimage coding. In Proceedings of the1999IEEE International Symposium onCircuits and Systems,1999, vol.4, pp.106-109.
    [64] E. J. Candès, N. Braun, M. B. Wakin. Sparse Signal and Image Recovery fromCompressive Samples. In Proceedings of4th International Symposium onBiomedical Imaging,2007, pp.976-979.
    [65] E. J. Candès, M. B. Wakin. An Introduction to Compressive Sampling. IEEESignal Processing Magazine,2008,25(2):21-30.
    [66] J. Romberg. Imaging via compressive sampling. IEEE Signal Processing Magazine,2008,25(2):14-20.
    [67] E. J. Candès, J. Romberg, T. Tao. Robust uncertainty principles: Exact signalreconstruction from highly incomplete frequency information. IEEE Transactions onInformation Theory,2006,52(2):489-509.
    [68] E. Candès, T. Tao. Near optimal signal recovery from random projections:universal encoding strategies, IEEE Transactions on Information Theory,2006,52(12):5406-5425.
    [69] D. L. Donoho. Compressed sensing. IEEE Transactions on Information Theory.2006,52(4):1289-1306.
    [70] H. Rauhut, K. Schass, P. Vandergheynst. Compressed sensing and redundantdictionaries. IEEE Transactions on Information Theory.2008,54(5):2210-2219.
    [71] M. Elad, M. Aharon. Image denoising via sparse and redundant representationsover learned dictionaries. IEEE Transactions on Image Processing,2006,15(12):3736-3745
    [72] M. Protter, M. Elad. Image sequence denoising via sparse and redundantrepresentations. IEEE Transactions on Image Processing,2009,18(1):27-35.
    [73] S. Li, D. S. Huang, C. H. Zheng, et al. Noise removal using a novel non-negativesparse coding shrinkage technique. Neurocomputing,2006, vol.69, pp.874-877.
    [74] X. B. Qu, J. W. Yan, H. Z. Xiao, et al. Image fusion algorithm based on spatialfrequency-motivated pulse coupled neural networks in nonsubsampled Contourlettransform domain. Acta Automatica Sinica,2008,34(12):1508-1514.
    [75] S. Y. Yang, M. Wang, Y. X. Lu, et al. Fusion of multiparametric SAR imagesbased on SW-nonsubsampled contourlet and PCNN. Signal Processing,2009,89(12):2596-2608.
    [76] J. Yang, J. Wright, T. S. Huang, et al. Image super-resolution via sparserepresentation. IEEE Transactions on Image Processing,2010,19(11):2861-2873.
    [77] Z. H. Zheng, B. Wang, K. Sun. Single remote sensing image super-resolution anddenoising via sparse representation. International Workshop onMulti-Platform/Multi-Sensor Remote Sensing and Mapping,2011, pp.1-5.
    [78] P. J. Phillips. Matching pursuit filters applied to face identification. IEEETransactions on Image Processing,1998,7(8):1150-1164.
    [79] J. Wright, A.Y. Yang, A. Ganesh, et al. Robust face recognition via sparserepresentation. IEEE Transactions on Pattern Analysis and Machine Intelligence,2009,31(2):210-227.
    [80] J. W. Ma, F. X. L. Dimet. Deblurring from highly incomplete measurements forremote sensing. IEEE Transactions on Geoscience and Remote Sensing.2009,47(3):792-802.
    [81] R. Gomathi, A.V.A. Kumar. An efficient GEM model for image inpainting using anew directional sparse representation: Discrete Shearlet Transform. In Proceedingsof IEEE International Conference on Computational Intelligence and ComputingResearch (ICCIC),2010, pp.1-4.
    [82] B. Vidhya, S. Valarmathy. Novel video inpainting using patch sparsity. InProceedings of International Conference on Recent Trends in InformationTechnology (ICRTIT),2011, pp.810-814.
    [1] Livingstone, S. Margaret. Art, Illusion and the Visual System. Scientific American,1988,258(1):78-85.
    [2]罗四维.视觉信息认知计算理论.北京:科学出版社,2010.
    [3] Rafael C. Gonzalez, Richard E. Woods著,阮秋琦等译,数字图像处理(第二版),北京:电子工业出版社,2007.
    [4]尚丽.稀疏编码算法及其应用研究.博士学位论文,中国科学技术大学,2006.
    [5] J. J. Atick, A. N. Redlich. What does the retina know about natural scenes. NeuralComputation,1992,4(2):196-210.
    [6] G. B. Stanley, F. F. Li, D. Yang. Reconstruction of Natural Scenes from EnsembleResponses in the Lateral Geniculate Nucleus. Journal of Neuroscience,1999, vol.19,pp.8036-8042.
    [7] D. W. Dong, J. J. Atick. Temporal decorrelation: a theory of lagged and nonlaggedresponses in the lateral geniculate nucleus.Network Computation in Neural Systems,1995,6(2):159-178.
    [8] M. C. Schmid, S. W. Mrowka, J. Turchi, et al. Blindsight depends on the lateralgeniculate nucleus. Nature,2010, vol.466, pp.373-377.
    [9] M. S. Livingstone, D. H. Hubel. Anatomy and physiology of a color system in theprimate visual cortex.Journal of Neuroscience.1984, vol.4, pp.2830-2835.
    [10] B. G. Cumming. An unexpected specialization for horizontal disparity in primateprimary visual cortex. Nature,2002, vol.418, pp.633-636.
    [11] D. H. Hubel, T. N. Wiesel. Receptive fields and functional architecture of monkeystriate cortex. Journal of Physiology,1968,195(1):215-243.
    [12] C. C. Pack, R. T. Born. Temporal dynamics of a neural solution to the apertureproblem in visual area MT of macaque brain. Nature,2001, vol.409, pp.1040-1042.
    [13] A. Thiele, G. Stoner. Neuronal synchrony does not correlate with motion coherencein cortical area MT. Nature,2003, vol.421, pp.366-370.
    [14] D. J. Field, D. J. Tolhurst. The structure and symmetry of simple-cellreceptive-field profiles in the cat’s visual codex. Proceedings of the Royal Society ofLondon, Series B,1986,228(1253):379-400.
    [15] B. A. Olshausen, D. J. Field. Emergence of simple cell receptive field properties bylearning a sparse code for natural images. Nature,1996, vol.381, pp.607-609.
    [16] L. G. Ungerleider, M. Mishkin. Two cortical visual system. Analysis of VisualBehavior.Cambridge, MA: MIT Press,1982, pp.549-586.
    [17] C. G Gross. Brain Vision and Memory: Tales in the History of Neuroscience. MITPress.1998.
    [18]杨雄里.视觉的神经机制.上海:上海科学技术出版社,1996.
    [19]钱乐乐.基于视觉层次感知机制的图像理解方法研究.博士学位论文,合肥:合肥工业大学,2009.
    [20]焦李成,杨淑媛.自适应多尺度网络理论与应用.北京:科学出版社,2008.
    [21] M. Aharon, M. Elad, A. M. Bruckstein. The K-SVD: An algorithm for designing ofovercomplete dictionaries for sparse representation. IEEE Transactions on SignalProcessing,2006,54(11):4311-4322.
    [22] M. Protter, M. Elad. Image sequence denoising via sparse and redundantrepresentations. IEEE Transactions on Image Processing,2009,18(1):27-35.
    [23] X. B. Qu, J. W. Yan, H. Z. Xiao, et al. Image fusion algorithm based on spatialfrequency-motivated pulse coupled neural networks in nonsubsampled Contourlettransform domain. Acta Automatica Sinica,2008,34(12):1508-1514.
    [24] S. Y. Yang, M. Wang, Y. X. Lu, et al. Fusion of multiparametric SAR imagesbased on SW-nonsubsampled contourlet and PCNN. Signal Processing,2009,89(12):2596-2608.
    [25] J. Yang, J. Wright, T.S. Huang, et al. Image super-resolution via sparserepresentation. IEEE Transactions on Image Processing,2010,19(11):2861-2873.
    [26] Z. H. Zheng, B. Wang, K. Sun. Single remote sensing image super-resolution anddenoising via sparse representation. International Workshop onMulti-Platform/Multi-Sensor Remote Sensing and Mapping,2011, pp.1-5.
    [27] J. Wright, A.Y. Yang, A. Ganesh, et al. Robust face recognition via sparserepresentation. IEEE Transactions on Pattern Analysis and Machine Intelligence,2009,31(2):210-227.
    [28] J. W. Ma, F. X. L. Dimet. Deblurring from highly incomplete measurements forremote sensing. IEEE Transactions on Geoscience and Remote Sensing,2009,47(3):792-802.
    [29] R. W. Rodieck, J. Stone. Analysis of receptive fields of cat retinal ganglion cells.Journal of Neurophysiolgy,1965,28(5):833-849.
    [30] D. H. Hubel, T. N. Wiesel. Receptive fields, binocular interaction and functionalarchitecture in the cat's visual cortex. Journal of Physiology,1962, vol.160, pp.106-154.
    [31] D. H. Hubel. Exploration of the primary visual cortex. Nature,1982, vol.299, pp.515-524.
    [32] J. G. Daugman. Uncertainty relations for resolution in space, spatial frequency, andorientation optimized by two-dimensional visual cortical filters. Journal of theOptical Society of America A,1985, vol.2, pp.1160-1169.
    [33] S. Mallat著,杨力华,戴道清,黄文良,等译.信号处理的小波导引(第二版).北京:机械工业出版社,2002.
    [34] J. P. Jones, A. Palmer. An evaluation of the two-dimensional Gabor filter model ofsimple receptive fields in cat striate cortex. Journal of Neurophysiology,1987, vol.58, no.6, pp.1233-1258.
    [35] N. Petkov, P. Kruizinga. Computational models of visual neurons specialised in thedetection of periodic and aperiodic oriented visual stimuli: bar and grating cells.Biological Cybernetics,1997,76(2):83-96.
    [36] S. E. Grigorescu, N. Petkov, P. Kruizinga. Comparison of texture features based onGabor filters. IEEE Transactions on Image Processing,2002,11(10):1160-1167.
    [37] B. A. Olshausen, D. J. Field. Emergence of simple-cell receptive field properties bylearning a sparse code for natural images. Nature,1996, vol.381, pp.607-609.
    [38] B. A. Olshausen, D. J. Field. Natural image statistics and efficient coding. Network:Computation in Neural Systems,1996, vol.7, pp.333-339.
    [39] B. Olshausen, D. Field. Sparse coding with an overcomplete basis set: A strategyemployed by V1?. Vision Research,1997,37(23):3311-3325.
    [40] D. J. Field, N. Brady. Visual sensitivity, blur and the sources of variability in theAmplitude Spectra of Natural Scenes. Vision Research,1997, vol.37, pp.3367-3383.
    [41] N. Brady, D. J. Field. Local Contrast in Natural Images: Normalisation and CodingEfficiency. Perception,2000, vol.29, pp.1-15.
    [42] B. A. Olshausen, D. J. Field. How close are we to understanding V1?. NeuralComputation.2005, vol.17, pp.1665-1699.
    [43] D. J. Graham, D. J. Field. Statistical regularities of art images and natural scenes:Spectra, sparseness and nonlinearities. Spatial Vision,2007, vol.21,149-164.
    [44] Jutten C, Herault J. Independent component analysis versus PCA. In Proceedingsof European Signal Processing Conference,1988, pp.287-314.
    [45] A. Hyv rinen, J. Karhunen, E. Oja. Independent Component Analysis. WileyInterscience,2001.
    [46] A. Hyv rinen, E. Oja. A fast fixed-point algorithm for independent componentanalysis. Neural Computation,1997,9(7):1483-1492.
    [47]杨竹青,李勇,胡德文.独立成分分析方法综述.自动化学报,2002,28(5):762-772.
    [48] A. Bell, T. J. Sejnowski.The‘independent components’of natural scenes are edgefilters. Vision Research,1997, vol.37, pp.3327-3338.
    [49] A. Hyv rinen, E. Oja, P. Hoyer, J. Horri. Image feature extraction by sparse codingand independent component analysis. International Conferrence on PatternRecognition(ICPR’98), Brisbane,Australia,1998, vol.2, pp.1268-1273.
    [50] A. Hyv rinen, E. Oja. Simple neuron models for independent component analysis.Int. J. of Neural Systems,1996,7(6):671-687.
    [51] T. Kohonen. Emergence of invariant-feature detectors in the adaptive-subspaceself-organizing map. Biological Cybernetics,1996, vol.75, pp.281-291.
    [52] A. Hyv rinen, P. O. Hoyer. Emergence of phase and shift invariant features bydecomposition of natural images into independent feature subspaces. NeuralComputation,2000,12(7):1705-1720.
    [53] A. Hyv rinen and U. Koster. Complex cell pooling and the statistics of naturalimages. Network: Computation in Neural Systems,2007,18(2):81-100.
    [54] A. Hyv rinen, P. O. Hoyer. Topographic independent component analysis as amodel of V1organization and receptive fields. Neurocomputing,2001, vol.38-40,pp.1307-1315.
    [55] A. Hyv rinen, P. O. Hoyer, and M. Inki. Topographic independent componentanalysis. Neural Computation,2001,13(7):1527-1558.
    [56]郭雷,郭宝龙.视觉神经系统与分布式推理理论.西安:西安电子科技大学出版社,1995.
    [57] D. H. Hubel, T.N. Wiesel. Brain Mechanism of Vision. The Brain: A ScientificAmerican Book. W. H. Freeman, New York.1979.
    [58] L. Itti., C. Koch, E. Niebur. A model of saliency based visual attention for rapidscene analysis.IEEE Transactions on Pattern Analysis and Machine Intelligence,1998,20(11):1254-1259.
    [59]任璐.基于视觉注意机制的数字水印技术研究.硕士学位论文,西安电子科技大学,2011.
    [60]李清勇.视觉感知的稀疏编码理论及其应用研究.博士学位论文,中国科学院计算技术研究所,2006.
    [61] V. A. F. Lamme, H. Super, H. Spekreijse. Feedforward, horizontal, and feedbackprocessing in the visual codex. Current Opinion in Neurobiology,1998,8(4):529-535.
    [62] E. M. Callaway. Feedforward, feedback and inhibitory connections in primatevisual cortex. Neural Networks,2004,17(5-6):625-632.
    [63] F. Crick, C. Koch. Constraints on cortical and thalamic projections: theno-strong-loops hypothesis. Nature,1998,391(6664):245-250.
    [64] B. Bridgeman. Metacontrast and lateral inhibition. Psychological Review,1971,78(6):528-539.
    [65] C. M. Gray. Synchronous oscillations in neuronal systems: mechanisms andfunctions.Journal of Computational Nenroscience,1994, vol.l, pp.11-38.
    [66] R. Eckhorn, R. Bauer, W. Jordan, et a1. Coherent oscillations:a mechanism offeature linking in the visual cortex? Biological Cybemetics,1988,60(2):121-130.
    [67]刘旭辉.基于视觉生理特性的视皮层假体图像处理策略.博士学位论文,郑州:郑州大学,2010.
    [1] G. Davis, S. Mallat, M. Avellaneda. Adaptive greedy approximations. Journal ofConstructive Approximation,1997,13(1):57-98.
    [2] S. Chen, D. Donoho, M. Saunders. Atomic Decomposition by Basis Pursuit. SIAM,Journal on Scientific Computing,1998,20(1):33-61.
    [3] S. G. Mallat, Z. Zhang. Matching pursuits with time-frequency dictionaries. IEEETransactions on Signal Processing,1993,41(12):3397-3415.
    [4] Y. C. Pati, R. Rezaiifar, P. S. Krishnaprasad. Orthogonal matching pursuit: recursivefunction approximation with applications to wavelet decomposition. In27thasilomar Conference on Signals, Systems and Computers,1993, vol.1, pp.40-44.
    [5] R. Gribonval, P. Vandergheynst. On the Exponential Convergence of MatchingPursuits in Quasi-incoherent Dictionaries. IEEE Transactions on Information Theory,2006,52(1):255-261.
    [6] M. A. Davenport, M. B. Wakin. Analysis of Orthogonal Matching Pursuit Using theRestricted Isometry Property. IEEE Transactions on Information Theory,2010,56(9):4395-4401.
    [7] D. L. Donoho, X. Huo. Uncertainty Principle and ideal Atomic Decomposition,IEEE Trans. Inform Theory,2001,47(7):2845-2862.
    [8] A. Feuer, A. Nemirovsky. On sparse representation in pairs of bases. IEEETransactions on Inform Theory,2003,49(6):1579-1581.
    [9] Bergeau F, Malt S. Match pursuit of images. In Proceedings of the InternationalConference on Image Processing.Washington D.C., USA,1995, vol.1, pp.53-56.
    [10] R. F. Ventura, P. Vandergheynst, P. Frossard. Low rate and scalable image codingwith redundant representations. IEEE Transactions on Image Processing,2006,15(3):726-739
    [11]孙玉宝,肖亮,韦志辉,邵文泽.基于Gabor感知多成份字典的图像稀疏表示算法研究.自动化学报,2008,34(11):1379-1387.
    [12] J. G. Daugman. Uncertainty relations for resolution in space, spatial frequency, andorientation optimized by two-dimensional visual cortical filters, Journal of theOptical Society of America A,1985, vol.2, pp.1160-1169.
    [13] N. Petkov. Biologically motivated computationally intensive approaches to imagepattern recognition, Future Generation Computer Systems,1995,11(4-5):451-465.
    [14] N. Petkov, P. Kruizinga. Computational models of visual neurons specialised in thedetection of periodic and aperiodic oriented visual stimuli: bar and grating cells,Biological Cybernetics,1997,76(2):83-96.
    [15] P. Kruizinga, N. Petkov. Non-linear operator for oriented texture, IEEE Trans. onImage Processing,1999,8(10):1395-1407.
    [16] S. E. Grigorescu, N. Petkov, P. Kruizinga: Comparison of texture features based onGabor filters, IEEE Trans. on Image Processing,2002,11(10):1160-1167.
    [17] N. Petkov, M. A. Westenberg. Suppression of contour perception by band-limitednoise and its relation to non-classical receptive field inhibition, BiologicalCybernetics,2003, vol.88, pp.236-246.
    [18] C. Grigorescu, N. Petkov, M. A. Westenberg. Contour detection based onnonclassical receptive field inhibition, IEEE Trans. on Image Processing,2003,12(7):729-739.
    [19] D. H. Hubel, T. N. Wiesel. Receptive fields, binocular interaction and functionalarchitecture in the cat's visual cortex. Journal of Physiology,1962, vol.160, pp.106-154.
    [20] D. H. Hubel. Exploration of the primary visual cortex. Nature,1982, vol.299, pp.515-524.
    [21] S. Mallat著,杨力华,戴道清,黄文良,等译.信号处理的小波导引(第二版).北京:机械工业出版社,2002.
    [22]王建英,尹忠科,张春梅.信号与图像的稀疏分解及初步应用.成都:西南交通大学出版社,2006.
    [23] M. Elad, A. M. Bruckstein. A Generalized Uncertainty Principle and SparseRepresentation in Pairs of Bases. IEEE Transactions on information theory,2002,48(9):2558-2567.
    [24] L. K. Jones. On a Conjecture of Huber Concerning the Convergence of ProjectionPursuit Regression. The Annals of Statistics.1987,15(2):880-882.
    [25] J. Kennedy, R. C. Eberhart. Particle Swarm Optimization. In Proceedings of IEEEInternational Conference on Neural Networks, IV, IEEE Service Center, Piscataway,NJ,1995:1942-1948.
    [26]段晓东,王存睿,刘向东.粒子群算法及其应用.沈阳:辽宁大学出版社,2007,11-91.
    [27] Y. Shi, R. C. Eberhart. A modified particle swarm Optimizer. In Proceedings of theIEEE Congress on Evolutionary Coputation, Piscataway, NJ: IEEE Press,1998, pp.69-73.
    [28] R. C. Eberhart. Y. Shi. Comparing inertia weights and constriction factors inParticle Swarm Optimization. In Proceedings of the Congress on EvolutionaryComputation, San Diego, CA: IEEE,2000, pp.84-88.
    [29] M. Clerc, J. Kennedy. The particle swarm-explosion, stability and convergence in amultidimensional complex space. IEEE Transactions on Evolutionary Computation,2002,6(1):58-73.
    [30] A. Ratnaweera, S. K. Halgamuge, H. C. Watson. Self-organizing hierarchicalparticle swarm optimizer with time-varying acceleration coefficients. IEEETransactions on Evolutionary Computation,2004,8(3):240-255.
    [31] R. Mendes, J. Kennedy, J. Neves. The Fully Informed Particle Swarm: Simpler,Maybe Better. IEEE Transactions on Evolutionary Computation,2004,8(3):204-210.
    [32] J. S. Vesterstrom, J. Riget, T. Krink. Division of labor in particle swarmoptimization. Proceedings of the Congress on Evolutionary Computation (CEC '02).Honolulu, Hawaii USA. Vol.2,2002, pp.1570-1575.
    [33] F. van den Bergh, A. P. Engelbrecht. A Cooperative approach to particle swarmoptimization. IEEE Transactions on Evolutionary Computation.2004,8(3):225-239.
    [34]段晓东,高红霞,刘向东,基于种群熵的自适应粒子群算法.计算机工程,2007,33(18):222-223,248.
    [35] Y. Y. Yan, B. L. Guo. Particle Swarm Optimization Inspired by r-and K-Selectionin Ecology. Proceedings of EEE Congress on Evolutionary Computation (CEC2008), Hong Kong, China: IEEE Press,2008, pp.1117-1123.
    [36]吴宪祥.微型足球机器人位姿辨识与群智能路径规划技术研究.博士学位论文,西安电子科技大学,2009.
    [37] Hengzhen Gao, M. K. Mandal, Gencheng Guo, et al. SemisupervisedHyperspectral Image Classification with SVM and PSO. In Proceedings ofInternational Conference on Measuring Technology and Mechatronics Automation(ICMTMA),2010, pp.321-324.
    [38] M. Taherdangkoo, M. Yazdi, M. H.Rezvani. Segmentation of MR brainimagesusing FCMimproved by artificial bee colony (ABC) algorithm. InProceedings of International Conference on Information Technology andApplications in Biomedicine (ITAB),2010, pp.1-5.
    [39] Tang Hongmei, Wu Cuixia, Han Liying, et al. Image segmentation based onimproved PSO. Proceedings of International Conference on Computer andCommunication Technologies in Agriculture Engineering (CCTAE),2010,pp.191-194.
    [1]焦李成,侯彪,王爽,等.多尺度几何分析理论与应用—后小波分析理论与应用.西安:西安电子科技大学出版社,2008.
    [2]言敬文,屈小波.超小波分析及应用.北京:国防工业出版社,2008.
    [3]王建英,尹忠科,张春梅.信号与图像的稀疏分解及初步应用.成都:西南交通大学出版社,2006.
    [4]张强.基于多尺度几何分析的多传感器图像融合算法研究.博士学位论文,西安:西安电子科技大学,2008.
    [5] C. Pohl, J. L. Van Genderen. Multisensor image fusion in remote sensing: Concepts,methods, and applications. International Journal of Remote Sensing,1998,19(5):823-854.
    [6]毛士艺,赵魏.多传感器图像融合技术综述.北京航空航天大学学报,2002,28(5):512-518,
    [7] D. Hill, P. Edwards, D. Hawkes. Fusing medical images. Image Processing,1994,6(2):109-113.
    [8] M. Kam, X. X. Zhu, P. Kalata. Sensor fusion for mobile robot navigation.Proceedings of the IEEE,1997,85(1):108-119.
    [9] D. D. Sworder, J. E. Boyd, G. A. Clapp. Image fusion for tracking manoeuvringtargets. International Journal of Systems Science,1997,28(1):1-14.
    [10] V. Tsagaris, V. Anastassopoulos. Fusion of visible and infrared imagery for nightcolor vision. Displays,2005,26(4-5):191-196.
    [11]李振华.像素级多源图像融合研究.博士学位论文,上海:上海交通大学,2005.
    [12]王宏,敬忠良,李建勋.多分辨率图像融合的研究与发展.控制理论与应用,2004,21(4):145-151.
    [13] H. A. Eltoukhy, S. Kavusi. A computationally efficient algorithm for multi-focusimage reconstruction. In Proceedings of SPIE Electronic Imaging,2003,pp.332-341.
    [14] Y. H. Jia. Fusion of Landsat TM and SAR images based on principal componentanalysis. Remote Sensing Technology and Application,1998,13(1):46-49.
    [15] R.S. Blum. On multisensor image fusion performance limits from and estimationtheory perspective. Information Fusion,2006,7(3):250-263.
    [16] R. K. Sharma, T. K. Leen, M. Pavel. Bayesian sensor image fusion using locallinear generative models. Optical Engineering,2001,40(7):1364-1376.
    [17] R. P. Broussard, S. K. Rogers, M. E. Oxley, et al. Physiologically motivated imagefusion for object detection using a pulse coupled neural network. IEEE Transactionson Neural Networks,1999,10(3):554-563.
    [18] S. T. Li, J. T. Kwork, Y. N. Wang. Multifocus image fusion using artificialnetworks. Pattern Recognition Letters,2002,23:985-997.
    [19] Zhaobin Wang, Yide Ma, Jason Gu. Multi-focus image fusion using PCNN. PatternRecognition,2010,43(6):2003-2016.
    [20] G. Piella. A general framework for multiresoltuion image fusion: from pixels toregions. Information Fusion,2003,4(4):259-280.
    [21] G. Pagares, J. M. de la Cruz. A wavelet-based image fusion tutorial. PatternRecognition,2004,37:1855-1872.
    [22] J. Nunez, X. Otazu, O. Fors, et al. Multiresolution-based image fusion withadditive wavelet decomposition. IEEE Transactions on Geoscience and RemoteSensing,1999,37(3):1204-1211.
    [23]张登荣,张宵宇,愈乐,等.基于小波包移频算法的遥感图像融合技术.浙江大学学报,2007,41(7):1098-1100.
    [24] J. J. Lewis, R. J. Callaghan, S. G. Nikolov, et al. Pixel-and region-based imagefusion with complex wavelets. Information Fusion,2007,8(2):119-130.
    [25]张强,郭宝龙.基于Curvelet变换的多光谱图像与全色波段图像融合.系统工程与电子技术,2006,28(12):1786-1789.
    [26]张强,郭宝龙.应用第二代Curvelet变换的遥感图像融合.光学精密工程,2007,15(7):1130-1136.
    [27]屈小波,闫敬文,杨贵德.改进拉普拉斯能量和的尖锐频率局部化Contourlet域多聚焦图像融合方法.光学精密工程,2009,17(5):1203-1212
    [28] Qu Xiaobo, Yan Jingwen, Xiao Hongzhi, et al. Image fusion algorithm based onspatial frequency-motivated pulse coupled neural networks in nonsubsampledContourlet transform domain. Acta automatica sinaca,2008,34(12):1508-1514.
    [29]何卫华,郭永彩,高潮,等.利用NSCT实现夜视图像的彩色化增强.计算机辅助设计与图形学学报,2011,23(5):884-890.
    [30] P. J. Burt. The pyramid as a structure for efficient computation.In: MultiresolutionImage Processing and Analysis, London: Springer-Verlag,1984, pp.6-35.
    [31] V. S. Petrovic, C. S. Xydeas. Cross-band pixel selection in multiresolution imagefusion. In Proceedings of SPIE,1999, pp.319-326.
    [32] M. Li, W. Cai, Z. Tan. A region-based multi-sensor image fusion scheme usingpulse-couple neural network. Pattern Recognition Letters,2006,27(16):1948-1956.
    [33] G. X. Liu, W. J. Chen, W. J. Ling. An image fusion method based on directionalcontrast and are-based standard deviation. In Proceedings of SPIE,2005, pp.50-56.
    [34] J. P. Pan, J. Y. Gong, J. Lu, et al. Image fusion based on local deviation andhigh-pass filtering of wavelet transform. In Proceedings of SPIE,2004, pp.191-198.
    [35]杨志,毛士艺,陈炜.基于局部方向能量的鲁棒图像融合算法.电子与信息学报,2006,28(9):1537-1541.
    [36]苗启广.多传感器图像融合方法研究.博士学位论文,西安:西安电子科技大学,2005.
    [37] J. Mairal, F. Bach, J. Ponce, et al. Online learning for matrix factorization andsparse coding. Journal of Machine Learning Research,2010, vol.11, pp.19-60.
    [38] M. Aharon, M. Elad, A. M. Bruckstein. The K-SVD: An Algorithm for Designingof Overcomplete Dictionaries for Sparse Representation. IEEE Transactions onSignal Processing,2006,54(11):4311-4322.
    [39] Y. Boureau, F. Bach, Y. LeCun, et al. Learning Mid-level Features for Recognition.In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition(CVPR). Washington D C: IEEE Computer Society Press,2010, pp.2559-2566.
    [40]那彦,焦李成.基于多分辨分析理论的图像融合方法.西安:西安电子科技大学出版社,2007.
    [41] C. S. Xydeas, V. Petrovic. Objective Image Fusion Performance Measure.Electronics Letters,2000,36(4):308-309.
    [1] J. Mairal. Sparse Coding for Machine Learning, Image Processing and ComputerVision. PhD thesis. Ecole Normale Superieure de Cachan.2010.
    [2] J. Mairal, F. Bach, J. Ponce and G. Sapiro. Online Learning for Matrix Factorizationand Sparse Coding Journal of Machine Learning Research,2010, vol.11, pp.19-60.
    [3] Julien Mairal, Francis Bach, Jean Ponce: Task-Driven Dictionary Learning. IEEETransactions on Pattern Analysis and Machine Intelligence,2012,34(4):791-804.
    [4]卓力,王素玉,李晓光.图像/视频的超分辨率复原.北京:人民邮电出版社,2011.
    [5]张凯兵.基于广义稀疏表示的图像超分辨重建算法研究.博士学位论文,西安电子科技大学,2012.
    [6] J. Harris. Diffraction and resolving power.J0ournal of the Optical Society ofAmerica,1964,54(7):931-936.
    [7] T. S. Huang, R. Y.Tsai. Multi-frame image restoration and registration. Adv. Comput.Vis. Image Process.,1984, vol.1, pp.317-339.
    [8] J. Goodman. Introduction to Fourier optics. New York: Mc Graw-Hill,1968.
    [9]赵前进,胡敏,檀结庆.基于局部梯度特征的自适应多结点样条图像插值,计算机研究与发展,2001,43(10):1927-1938.
    [10]石友学,罗钟铉.利用几何特征和小波变换实现图像的缩放匹配.计算机辅助设计与图形学学报,2005,17(4):825-828.
    [11] H. Takeda, S. Farsiu, P. Milanfar. Kernel regression for image processing andreconstruction. IEEE Transactions on Image Processing,2007,16(2):349-366.
    [12] S. Farsiu, M. Robinson, M. Elad, P. Milanfar. Fast and robust multi-frame superresolution. IEEE Transactions on Image Processing,2004,13(10):1327-1344.
    [13] X. Li, X. Gao, Y. Hu, et al. A multi-frame image super-resolution method. SignalProcessing,2010,90(2):405-414.
    [14] H. Zhang, J. Yang, Y. Zhang, et al. Non-local kernel regression for image and videorestoration. In Proceedings of European Conference on Computer Vision,2010, pp.566-579.
    [15] R. Schulz, R. Stevenson. Extraction of high-resolution frames video sequences.IEEE Transactions on Image Processing,1996,5(6):996-1011.
    [16]乔建苹,刘琚.基于支持向量机的盲超分辨图像复原算法.电子学报,2007,36(10):1927-1933.
    [17] W. Freeman, E. Pasztor, O. Carmichael. Learning low-level vision. InternationalJournal of Computer Vision,2000,40(1):25-47.
    [18] W. Freeman, T. Jones, E. Pasztor. Example-based super-resolution. IEEE ComputerGraphics and Applications,2002,22(2):56-65.
    [19] H. Chang, D-Y. Yeung, Xiong Y. Super-resolution through neighbor embedding. InProceedings of IEEE Conference on Computer Vision and Pattern Recognition,2004, pp.275-282.
    [20] T. M. Chan, J. Zhang, J. Pu, et al. Neighbor embedding based super-resolutionalgorithm through edge detection and feature selection. Pattern Recognition Letters,2009,30(5):494-502.
    [21] W. Fan, D. Yeung. Image hallucination using neighbor embedding over visualprimitive manifolds. In Proceedings of IEEE Conference on Computer Visionand Pattern Recognition,2007, pp.1-7.
    [22] K. Zhang, X. Gao, X. Li, et al. Partially supervised neighbor embedding forexample-based image super-resolution. IEEE Journal of Selected Topic in SignalProcessing,2011,5(2):230-239.
    [23] K. Ni, T. Nguyen. Image superresolution using support vector regression. IEEETransactions on Image Processing,2007,16(6):1596-1610.
    [24] J. Yang, J.Wright, T. S. Huang, et al. Image super-resolution as sparserepresentation of raw image patches. In Proceedings of IEEE Conference onComputer Vision and Pattern Recognition,2008, pp.1-8.
    [25] R. Zeyde, M. Elad, M. Protter. On single image scale-up usingsparse-representations. Curves&Surfaces, Avignon-France,2010, pp.24-30.
    [26] J. Yang, J. Wright, T. S. Huang, et al. Image super-resolution via sparserepresentation. IEEE Transactions on Image Processing,2010,19(11):2861-2873.
    [27] S. Mallat著,杨力华,戴道清,黄文良,等译.信号处理的小波导引(第二版).北京:机械工业出版社,2002.
    [28] B. A. Olshausen, D. J. Field.Emergence of simple-cell receptive field properties bylearning a sparse code for natural images. Nature,1996, vol.381, pp.607-609.
    [29] P. O. Hoyer, Non-negative sparse coding. Proceedings of the200212th IEEEWorkshop on Neural Networks for Signal Processing,2002, pp.557-565.
    [30] P. O. Hoyer. Modeling receptive fields with non-negative sparse coding.neurocomputing,2003,52-54(1):547-552.
    [31] S. Li, D. S. Huang, C. H. Zheng, et al. Noise removal using a novel non-negativesparse coding shrinkage technique. Neurocomputing,2006, vol.69, pp.874-877.
    [32] M. Aharon, M. Elad, A. M. Bruckstein. The K-SVD: An Algorithm for Designingof Overcomplete Dictionaries for Sparse Representation. IEEE Transactions onSignal Processing,2006,54(11):4311-4322.
    [33] M. Elad. Sparse and redundant representation-from theory to applications in signaland image processing. Springer,2010.
    [34] H. Hou, H. Andrews. Cubic spline for image interpolation and digital filtering.IEEE Transactions on Signal Processing,1978,26(6):508-517.
    [35] Chang H, Yeung D-Y, and Xiong Y. Super-resolution through neighbor embedding.In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition,2004, pp.275-282.
    [36] A. Marquina, S. Osher. Image super-resolution by TV-regularization and Bregmaniteration, Journal on Scientific Computing,2008, vol.37, pp.367-382.
    [37] Z. Wang, A. Bovik, H. Sheikh, et al. Image quality assessment: From errorvisibility to structural similarity. IEEE Transactions on Image Processing,2004,13(4):600-612.
    [1]焦李成,杨淑媛.自适应多尺度网络理论与应用.北京:科学出版社,2008.
    [2]焦李成,侯彪,王爽,等.多尺度几何分析理论与应用—后小波分析理论与应用.西安:西安电子科技大学出版社,2008.
    [3]焦李成,公茂果,王爽,等.自然计算、机器学习与图像理解前沿.西安:西安电子科技大学出版社,2008.
    [4] F. G. Meyer, R. R. Coifman. Brushlets: A tool for directional image analysis andimage compression. Journal of Applied and Computational Harmonic Analysis,1997,6(4):147-187.
    [5] D. L. Donoho. Wedgelets: Nearly minimax estimation of edges. The Annals ofStatistics,1999,27(3):859-897.
    [6] E. L. Pennec, S. Mallat. Sparse geometric image representations with Bandelets.IEEE Transactions on Image Processing,2005,14(4):423-438.
    [7] G. Peyre, S. Mallat. Discrete bandelets with geometric orthogonal filters. InProceedings of IEEE International Conference on Image Processing,2005, pp.65-68.
    [8] V. Velisavljevic, B. Beferull-Lozano, M. Vetterli, et al. Directionlets: anisotropicmulti-directional representation with separable filtering. IEEE Transactions onImage Processing,2006,15(7):1916-1933.
    [9] E. J. Candès. Ridgelets: theory and application. Ph. D. Dissertation, StanfordUniversity,1998.
    [10] E. J. Candès. Monoscale Ridgelet for the representation of images with edges.Technical Report, Department of Statistics, Stanford University,1999.
    [11] E. J. Candès, D. L. Donoho. Curvelets:a surprisingly effective nonadaptiverepresentation for objects with edges. Curves and Surfaces,2000, pp.105-120.
    [12] J. K. Strack, E. J. Candès, D. L. Donoho. The curvelet transform for imagedenoising. IEEE Transactions on Image Processing,2002,11(6):670-684.
    [13] E. J. Candès, F. Guo. New multiscale transforms, minimum total variationsynthesis: applications to edge-preserving image reconstruction. Signal Processing,2002,82(11):1519-1543.
    [14] E. J. Candès, L. Demanet, D. L. Donoho, et al. Fast discrete Curvelet transforms.SIAM Multiscal Modeling and Simulation,2006,5(3):861-899.
    [15] M. N. Do. Directional multiresolution image representations. Ph. D. Dissertation,Lausanne: Swiss Federal Institute of Technology,2001.
    [16] M. N. Do, M. Vetterli. The contourlet transform: an efficient directionalmultiresolution image representation. IEEE Transactions on Image Processing,2005,14(12):2091-106.
    [17] A. L. Cunha, J. P. Zhou, M. N. Do. the nonsubsampled Contourlet transform:theory, design and application. IEEE Transactions on Image Processing,2006,15(10):3089-3101.
    [18]杨镠.基于Contourlet变换的图像处理关键技术研究.博士学位论文,西安电子科技大学,2009.
    [19] Wenhui Li, Mingqiang Yang. NSCT-based image denoising using3-D directionalwindows. In Proceedings of IEEE13th International Conference onCommunication Technology (ICCT),2011, pp.810-813.
    [20] Qu Xiaobo, Yan Jingwen, Xiao Hongzhi, et al. Image fusion algorithm based onspatial frequency-motivated pulse coupled neural networks in nonsubsampledContourlet transform domain. Acta Automatica Sinaca,2008,34(12):1508-1514.
    [21]严春满,郭宝龙,杨秀红.一种抗噪声的高效多聚焦图像融合算法.西安电子科技大学学报,2011,38(3):63-68.
    [22] Bamberger R H, Smith M J T. A filter bank for the directional decomposition ofimages: Theory and design. IEEE Transactions on Signal Processing,1992,40(4):882-893
    [23] Yi Chen, Michael D. Adams, Wu-Sheng Lu. Design of Optimal Quincunx FilterBanks for Image Coding. Hindawi Publishing Corporation, Journal on Advances inSignal Processin, Volume2007, Article ID83858.
    [24] W. Sweldens. The lifting scheme: A custom-design construction of biorthogonalwavelets. Applied and Computational Harmonic Analysis,1996,3(2):186-200.
    [25] T. D. Tran, R. L. de Queiroz, T. Q. Nguyen. Linear-phase perfect reconstructionfilter bank: Lattice structure, design, and application in image coding. IEEETransactions on Signal Processing,2000,48(1):133-147.
    [26] A. Gouze, M. Antonini, M. Barlaud. Quincunx lifting scheme for lossy imagecoding. In Proceedings of IEEE International Conference on Image Processing,2000, vol.1, pp.665-668.
    [27] D. L. Donoho, I. M. Johnstone. Ideal spatial adaptation by wavelet shrinkage.Biometrika,1994,81(3):425-455.
    [28] D. L. Donoho. De-noising by soft-threshoding. IEEE Transactions on InformationTheory,1995,41(3):613-627.
    [29] Blu T, Luisier F. The SURE-LET approach to image denoising. IEEE Transactionson Image Processing.2007,16(11):2778-2786.
    [30]焦李成,谭山.图像的多尺度几何分析:回顾和展望.电子学报,2003,31(12A):1975-1981.
    [31] Y-L. Boureau, F. Bach, Y. LeCun, J. Ponce. Learning midlevel features forrecognition. In Proceedings of the IEEE Conference on Computer Vision andPattern Recognition (CVPR),2010, pp.2559-2566.
    [32] J. Mairal, F. Bach, J. Ponce, et al. Online learning for matrix factorization andsparse coding. Journal of Machine Learning Research,2010, vol.11, pp.19-60.
    [33] M. Aharon, M. Elad, A. M. Bruckstein. The K-SVD: An algorithm for designing ofovercomplete dictionaries for sparse representation. IEEE Transactions on SignalProcessing,2006,54(11):4311-4322.
    [34] J. Portilla, V. Strela, M. Wainwright, et al. Image denoising using scale mixtures ofGaussians in the wavelet Domain. IEEE Transactions on Image Processing.2003,12(11):1338-1351.
    [35] M. J. Wainwright, E. P. Simoncelli. Scale mixtures of Gaussians and the statisticsof natural images. Advance in Neural Information Processing Systems,2000, vol.12,pp.855-861.
    [36] A. Buades, B. Coll, J. M Morel. A review of image denoising algorithms, with anew one. Multiscale Modeling and Simulation (SIAM interdisciplinary journal),2005,4(2), pp:490-530.
    [37] T. Tasdizen. Principal neighborhood dictionaries for nonlocal means imagedenoising. IEEE Transaction on Image Processing,2009,18(12):2649-2600.
    [38]周汉飞,王孝通,徐晓刚.基于高斯比例混合模型的图像非下采样Contourlet域去噪.电子与信息学报,2009,31(8):1796-1800.
    [39]武晓玥.图像无损压缩及去噪技术研究.博士学位论文,西安电子科技大学,2010.
    [1]马义德,李廉,王亚馥,等.脉冲耦合神经网络原理及其应用.北京:科学出版社,2006.
    [2] T. Lindblad, J. M. Kinser著,马义德,绽琨,王兆滨译.脉冲耦合神经网络图像处理(第二版).北京:高等教育出版社,2008.
    [3] C. M. Gray, P. K nig, A. K. Engel, et al. Oscillatory responses in cat visual cortexexhibit inter-columnar synchronization which reflects global stimulus properties.Nature,1989, vol.338, pp.334-337.
    [4] R. Eckhorn, H. J. Reitboeck, M. Arndt, et al. Feature linking via synchronizationamong distributed assemblies: simulations of results from cat visual cortex. NeuralComputation,1990,2(3):293-307.
    [5] Zhaobin Wang, Yide Ma, Feiyan Cheng, et al. Review of pulse-coupled neuralnetworks.I1mage and Vision Computing,2010,28(1):5-13.
    [6] J. L. Johnson, M. L. Padgett. PCNN Models and Applications. IEEE Transactions onNeural Networks,1999,10(3):480-498.
    [7]焦李成,张向荣,侯彪,等.智能SAR图像处理与解译.北京:科学出版社,2008:377-382,452.
    [8] N. Otsu. A threshold selection method from gray level histograms. IEEETransactions on Systems, Man and Cybernetics,1979,9(1):62-66.
    [9] A. M. Cross, D. C. Mason, S. J. Dury. Segmentation of remotely-sensed images by asplit-and-merge process. International Journal of Remote Sensing.1988,9(8):1329-1345.
    [10]宋锦萍,侯玉华,杨晓艺,等.基于小波域多状态隐马尔科夫树模型的自适应文本图像分割算法.电子学报,2007,35(1):118-122.
    [11] N. Isa, S. A Salamah, U. K. Ngah. Adaptive fuzzy moving K-means clusteringalgorithm for image segmentation. IEEE Transactions on Consumer Electronics,2009,55(4):2145-2153.
    [12] Bin Wang, Xinbo Gao, Dacheng Tao, et al. A unified tensor level set for imagesegmentation. IEEE Transactions on Systems, Man, and Cybernetics, Part B,2010,40(3):857-867.
    [13]宁纪锋,吴成柯,姜光,等.基于偏微分方程和分水岭算法的图像分割.模式识别与人工智能,2008,21(5):664-669.
    [14]张军英,樊秀菊,董继扬,等.一种改进型脉冲耦合神经网络及其图像分割.电子学报,2004,32(7):1223-1226.
    [15]毕英伟,邱天爽.一种基于简化PCNN的自适应图像分割方法.电子学报,2005,33(4):647-650.
    [16]马义德,戴若兰,李廉.一种基于脉冲耦合神经网络和图像熵的自动图像分割方法.通信学报,2002,23(1):46-51.
    [17]邓灵博.基于PCNN和最大相关准则的图像分割算法.弹箭与制导学报,2008,28(3):237-239.
    [18]齐永锋,火元莲,张家树.基于简化的PCNN与类内最小离散度的图像自动分割方法.光电子激光,2008,19(9):1258-1260,1264.
    [19] Ma Yi-De, Liu Qing, Qian Zhi-Bai. Automated image segmentation usingimproved PCNN model based on cross-entropy. In Proceedings of InternationalSymposium on Intelligent Mutimedia, Video and Speech Processing. Hong Kong,2004, pp.743-746.
    [20] Robert D. Stewart, Iris Fermin, Manfred Opper. Region Growing WithPulse-Coupled Neural Networks: An Alternative to Seeded Region Growing. IEEEtransactions on neural networks,2002,13(6):1557-1562.
    [21]严春满,郭宝龙,杨秀红.一种抗噪声的高效多聚焦图像融合算法.西安电子科技大学学报,2011,38(3):63-68.
    [22] Zhaobin Wang,Y2ide Ma, Jason Gu. Multi-focus image fusion using PCNN. PatternRecognition,2010,43(6):2003-2016.
    [23] Zhaobin Wang, Yide Ma. Medical image fusion using m-PCNN.I3nformationFusion,2008,9(2):176-185.
    [24] Wang Min, Peng Dongliang, Yang Shuyuan. Fusion of Multi-band SAR ImagesBased on Nonsubsampled Contourlet and PCNN. In Proceedings of FourthInternational Conference on Natural Computation,2008:529-533.
    [25] Qu Xiaobo, Yan Jingwen, Xiao Hongzhi, et al. Image fusion algorithm based onspatial frequency-motivated pulse coupled neural networks in nonsubsampledContourlet transform domain. acta automatica sinaca,2008,34(12):1508-1514.
    [26]那彦,焦李成.基于多分辨分析理论的图像融合方法.西安:西安电子科技大学出版社,2007:114-133.
    [27]何贵青,陈世浩,田沄,等.多传感器图像融合效果综合评价研究.计算机学报.2008,31(3):486~492.
    [28]阳方林,郭红阳,杨风暴.像素级图像融合效果的评价方法研究.测试技术学报.2002,16(4):276~279.
    [29]胡良梅,高隽,何柯峰.图像融合质量评价方法的研究.电子学报,2004,32(12A):218-221.
    [30] C. S. Xydeas, V. Petrovic. Objective image fusion performance measure.Electronics Letters,2000,36(4):308-309.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700