用户名: 密码: 验证码:
脂联素通过LKB1调节SD大鼠肝脏AMPK活性
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景腺苷酸活化蛋白激酶(AMPK)信号通路是调节细胞能量状态的中心环节,其激活后可关闭消耗ATP的合成代谢途径,启动产生ATP的分解代谢途径,被称为“细胞能量调节器”。脂联素是一种由脂肪组织分泌的胶原样蛋白,具有调节脂肪酸和葡萄糖代谢、抗炎、减轻动脉硬化等多种生物学功能。AMPK是脂联素信号通路中的关键信号分子。肿瘤抑制因子LKB1是AMPK的上游激酶,可以磷酸化AMPK a亚单位活化环上的第172位苏氨酸(Thr172)进而激活AMPK。LKB1可与热激蛋白90(heat-shock protein 90,Hsp90)以及Hsp90的特异性亚基Cdc37形成复合物,而LKB1结合到Hsp90和Cdc37是稳定LKB1所必需的。根赤壳菌素是大环抗真菌抗生素,是一类Hsp90抑制剂,能够与Hsp90结合并十预其功能,从而影响LKB1的稳定性。脂联素和LKB1对AMPK活性有重要调节作用。
     目的研究脂联素是否通过LKB1激活SD大鼠肝脏组织AMPK,进而调节体内的能量代谢。
     方法(1)30只6周龄雄性SD大鼠随机分为2组:普通饮食组(NC组)与高脂饮食组(HF组)各15只。NC组给予普通饲料,HF组给予高脂饲料。16周喂养结束后禁食并处死大鼠。分别测定体重(Bw)、血清游离脂肪酸(FFA)、甘油三酯(TG)、总胆固醇(TCH)、空腹血糖(FPG)、空腹胰岛素(FINS)等代谢指标。采用ELISA方法测定血清总脂联素。Western blot方法检测肝脏组织中AMPKα、P-AMPK a和P-LKB1蛋白表达,计算AMPK活性(P-AMPKα/AMPKα)。(2)原代培养肝细胞,第四代肝细胞随机分为三组:脂联素组、根赤壳菌素+脂联素组和对照组,前两组分别给予脂联素(10μg/ml)、根赤壳菌素(10μmmol/l)+脂联素(10μg/ml)干预,对照组未进行任何干预。采用免疫荧光方法检测各组肝细胞中AMPKα、P-AMPKα和P-LKB1的含量。实验重复三次。两组和多组之间的差异性比较分别采用t-检验和单因素方差分析(ANOVA),相关性分析采用Pearson相关检验。
     结果(1)与NC组比较,HF组大鼠BW、FFA、TG、FPG和FINS均增高(P(0.05),TCH无明显变化(P>0.05)。(2)HF组血清中总脂联素水平降低(P(0.05)。(3)与NC组比较,HF组大鼠肝脏组织P-AMPKα减少,AMPK活性下降(P(0.05),AMPK a蛋白则无明显变化(P>0.05)。(4)HF组P-LKBl下降(P<0.05)。(5)血清总脂联素与P-AMPKα、P-LKB1呈正相关性,与大鼠BW.FFA.TG以及FPG呈负相关性。(6)原代肝细胞中,脂联素能增加P-LKB1表达(P(0.05)。(7)脂联素能激活原代肝细胞中AMPKα,而根赤壳菌素则抑制脂联素激活AMPKα(P<0.05).
     结论长期高脂饮食导致血清总脂联素水平下降,引起磷酸化的LKB1表达减少,降低肥胖SD大鼠AMPK的活性。脂联素可能是通过LKB1调节AMPK活性。
Background:The AMP-activated protein kinase (AMPK) acts as a sensor of cellular energy status. Once activated, AMPK switches on catabolic pathways that generate ATP. while switching off ATP-consuming processes. It appears to play a key role in maintaining energy balance at the whole body level. Adiponectin, derived mainly from adipose tissue,regulates glucose and fatty acid metabolism and has anti-inflammatory and anti-atheorscleroticp roperties. AMPK is the key molecule in adiponectin signaling pathway. Tumor suppressor LKB1 which is the upstream AMPK kinase can phosphory-late AMPK at Thrl72. It is associated with the heat-shock protein 90 (Hsp90) chaperone and the Cdc37 kinase-specific targetting subunit for Hsp 90. Binding with Hsp90 and Cdc37 is necessary for LKB1 stability. Radicicol,a class of Hsp90 inhibitor.is macrolide antibiotic. It combines with Hsp90 and interferes with its function, thus affecting the stability of LKB1. Adiponectin and LKB1 play an important role on regulating AMPK.
     Objective:To investigate whether adiponectin activates AMPK to mediate metabolism by up-expressing LKB1 in rats liver tissues.
     Methods:Total 30 male Sprague-Dawley (SD) rats were randomly divided into two groups and received either a rat maintenance diet (Control group) or high-fat diet (HF group) for 16 weeks. We determined respectively the levels of adiponectin in serum, AMPKα, phospho-AMPKα(P-AMPKα) and phospho-LKB1(P-LKB1) in liver tissues. Metabolic parameters of the rats were also performed. In addition, the expression of AMPKa, P-AMPKa and P-LKB1 were measured in primary hepatic cells which were treated of adiponectin or pretreated of radicicol. Every condition was repeated three times.
     Results:(1) In the SD rats.16 weeks of high-fat feeding induced obesity and increased triglyceride (TG),total cholesterol (TCH), free fatty acid (FFA), fasting blood glucose (FBS) and free insulin (FINS) (All P<0.05). (2) The obese rats possesed the lower adiponectin level in serum (P<0.05). (3) 16 weeks of high-fat treatment lead to a significant decrease of P-AMPKa protein contents (P<0.05). while it did not alter AMPKa protein levels (P>0.05). (4) Protein levels of P-LKB1 also diminished after high-fat feeding (P<0.05). (5) Serum total adiponectin was positive relation with P-AMPKa, as well as P-LKB1,but negatively correlated with BW, FFA, TG and FPG, (P<0.05 for all). (6) In primary liver cells, adiponectin up-expressed P-LKB1(P<0.05). (7) And adiponectin activated AMPKa in primary liver cells, while after radicicol pretreated cells, the effect induced by adiponectin were dramaticly hindered (P<0.05).
     Conclusion:Impaired adiponectin which was induced by high-fat feeding decreased P-LKB1 expression, resulting in down-regulating the activity of AMPKa in obese SD rats liver.
引文
1. International Diabetes Federation. The IDF consensus worldwide definition of the metabolicsyndrome[EB/OL].http://www.idf.org/webdata/docs/IDF-Meta-def-final.pdf,2 006
    2. Scherer PE. Willians S, Fogliano M, et al. A novel serum protein similar to C1q. produced exclusively in adipocytes. J Biol Chem,1995,270(45):2646-2649.
    3. Waki H.Yamauchi T,Kamon J, et al. Impaired multimerization of human adiponectin mutants associated with diabetes:Molecular structure and multimer formation of adiponectin. J Biol Chem 2003;278(41):40352-40363
    4.Xue B Z. Kahn BB. AMPK integrates nutrient and hormonal signals to regulate food intake and energy balance through effects in the hypothalamus and peripheral tissues. J Physiol.2006,574:73-83
    5. Scott JW, Ross F A, Liu JK, et al. Regulation of AMP-activated protein kinase by a pseudosubstrate sequence on the gamma subunit. EMBO J,2007,26 (3):806-815.
    6. Schimmack G, Defronzo RA, Musi N. AMP-activated protein kinase:Role in metabolism and therapeutic implications. Diabetes Obes Metab,2006,8 (6):591-602.
    7.Tamas P, Hawley SA, Clarke RG, et al. Regulation of the energy sensor AMP-activated protein kinase by antigen receptor and Ca2+in Tlymphocytes. J Exp Med,2006,203 (7):1665-1670.
    8. Hemminki A,Markie D, Tomlinson I, et al. A serine/threonine kinase gene defective in Peutz-J eghers syndrome 1 Nature,1998,391:184-187.
    9. Xie Z, Dong Y,Scholz R, et al. Phosphorylation of LKB1 at serine 428 by protein kinase C-zeta is required for metformin-enhanced activation of the AMP-activated protein kinase in endothelial cells. Circulation 2008;117(7):952-962.
    10. Shaw RJ, Kosmatka M,Bardeesy N, et al.The tumor suppressor LKB1 kinase directly activates AMP-activated kinase and regulates apoptosis in response to energy stress. Proc Natl Acad Sci USA.2004,101(10):3329-3335.
    11. Boudeau J, Deak M. Lawlor MA. et al. Heat-shock protein 90 and Cdc37 interact with LKB1 and regulate its stability. Biochem J,2003 Mar 15;370(Pt 3):849-857.
    12. Chinetti G, Zawadski C, Fruchart J, et al. Expression of adiponectin receptors in human macrophages and regulation by agonists of the nuclear receptors PPARalpha, PPARgamma, and LXR. Biochem Biophys Res Commun,2004,314(1):151-158.
    13. Hattoria y, Nakanob Y, Hattoria S. et al. High molecular weight adiponectin activates AMPK and suppresses cytokine-induced NF-κB activation in vascular endothelial cells. FEBS Lett,2008 582:1719-1724.
    14. Tang CH,Chiu YC, Tan TW. et al. Adiopnectin Enhances IL-6 Production in human Synovial Fibroblast via an AdipoRl Receptor, AMPK, p38, and NFκB pathway. Journal Immunol,2007179 (8):5483-92.
    15. Yamauchi T, Kamom J, Ito Y, et al. Cloning of adiponectin receptors that mediate antidiabetic metabolic effects. Nature,2003,423(6941):762-769.
    16.Yamauchi T, Kamon J, Minokoshi Y. et al. Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase. Nat Med,2002,8(11):1288-1295.
    17. Yang WS, Lee WJ. Funahashi T, et al. Plasma adiponectin levels in overweight and obese Asians. Obes Res,2002,10 (11):1104-1110.
    18. Kubota N, Terauchi Y, Yamauchi T, et al. Disruption of adiponectin causes insulin resistance and neointimal formation. J Biol Chem,2002,277(29):25863-6.
    19. Weyer C, Funahashi T, Tanaka S et al. Hypoadiponectinemia in Obesity and Type 2 Diabetes:Close Association with Insulin Resistance and Hyperinsulinemia. J Clin Endocrinol Metab,2001,86(5):1930-1935.
    20. Kern, PA., Di Gregorio GB, Lu T, et al. Adiponectin expression from human adipose tissue:relation to obesity,insulin resistance, and tumor necrosis factor-alpha expression. Diabetes,2003.52(7),1779-1785.
    21. Naderali EK. Fatani S. Telles M, et al. The effects of physiological and pharmacological weight loss on adiponectin and leptin mRNA levels in the rat epididymal adipose tissue. European J Pharmacol.2008,579(1-3):433-438.
    22. Kim C, Park J. Park J, et al. Comparison of body fat composition and serum adiponectin levels in diabetic obesity and non-diabetic obesity. Obesity (Silver Spring), 2006.14(7):1164-1171.
    23. Basu R, Pajvani UB, Rizza RA. et al. Selective downregulation of the high molecular weight form of adiponectin in hyperinsulinemia and in type 2 diabetes: Differential regulation from nondiabetic subjects. Diabetes,2007,56(8):2174-2177.
    24. Ribot J, Rodriguze AM, Rodriguez E,et al. Adiponectin and resistin response in the onset of obesity in male and female rats. Obesity (Silver Spring),2008,16(4):723-730.
    25. Inoue E, Yamauchi J. AMP-activated protein kinase regulates PEPCK gene expression by direct phosphorylation of a novel zinc finger transciption factor. Biochem Biophys Res Commun,2006,351 (4).793-799.
    26. Misra P. AMP activated protein kinase:a next generation target for total metabolic control. Expert Opin Ther Targets,2008,12 (1):91-100.
    27. Andreelli F, Foretz M, Knauf C, et al. Liver adenosine monophosphate-activated kinase-alpha catalytic subunit is a key target for the control of hepatic glucose production by adiponectin and leptin but not by insulin. Endocrinology,2006,147 (5):2432-2442
    28. Xue B, Kahn BB. AMPK integrates nutrient and hormonal signals to regulate food intake and energy balance through effects in the hypothalamus and peripheral tissues. J Physiol,2006,574 (Pt1):73-83.
    29. Assifi MM, Suchankova G, Constant S, et al. AMP-activated protein kinase and coordination of hepatic fatty acid metabolism of starved/carbohydraterefed rats. Am J Physiol,2005,289 (5):E794-800.
    30. Kukidome D, Nishikawa T, Sonod K, et al. Activation of AMP-activated protein kinase reduces hyperglycemia-induced mitochondrial reactive oxygen species prodution and promotesmitochondrial biogenesis in human umbilical vein endothelial cells. Diabetes,2006,55(1):120-127.
    31. Tomas E, Tsu-shuen T, Asish K, et al. Enhanced muscle fat oxidation and glucose transport by Acrp30 globular domain:Acetyl-CoA carboxylase inhibition and AMP-activated protein kinase activation. Pro Natl Acad Sci U.S.A., 2002,99(25):16309-16313.
    32. Rowan A, Churchman M. Jefferey R, et al. In situ analysis of LKB1/STK11 mRNA expression in human normal tissues and tumours. J Patho,2000,192(2):203-206.
    33. Hawley SA, Boudeau J, Reid JL. et al. Complexes between the LKB1 tumor suppressor, STRAD alpha/beta and MO25 alpha/beta are up st ream kinases in the AMP-activated protein kinase cascade. J Biol,2003,2 (4):28.
    34. Woods A. Johnstone SR, Dickerson K, et al. LKB1 is the upstream kinase in the AMP-activated protein kinase cascade. Curr Biol,2003,13(22):2004-2008.
    35. Sakamoto K, McCart hy A, Smit h D. et al. Deficiency of LKB1 in skeletal muscle prevents AMPK activation and glucose uptake during contraction. EMBO J. 2005,24:1810-1820.
    36. Shaw RJ, Lamia KA, Vasquez D, et al. The kinase LKB1 mediates glucose homeostasis in liver and therapeutic effects of metformin. Science, 2005,310:1642-1646.
    37. Chen MB, McAinch AJ. Macaulay SL, et al. Impaired activation of AMP-kinase and fatty acid oxidation by globular adiponectin in Cultured human skeletal muscle of obese type 2 diabetics. J Clin Endocrinol Metab 2005 Jun;90(6):3665-72.
    38. Brown KA, Mclnnes KJ, Hunger NI, et al. Subcellular localization of cyclic AMP-responsive element binding protein-regulated transcription coactivator 2 provides a link between obestiy and breast cancer in postmenopausal women. Cancer Res.2009 Jul 1;69(13):5392-9.
    39. Kenta Imai. Kouichi Inukai, Yuichi Ikegami et al LKBl,an upstream AMPK kinase, regulates glucose and lipid metabolism in cultured liver and muscle cells, BBRC.2006, 351(3):595-601.
    1. Fryer LG, Carling D. AMP-activated protein kinase and the metabolic syndrome. Biochem Soc Trans,2005,33(Pt 2):362-366.
    2. Kemp BE, Mitchelhill KI, Stapleton D, et al. Dealing with energy demand:the AMP-activated protein kinase. Trends Biochem Sci.1999,24 (1):22-25.
    3. Cheung PC, Salt IP, Davies SP, et al. Characterization of AMP-activated protein kinase gamma-subunit isoforms and their role in AMP binding. Biochem J,2000,346 (3):659-669.
    4. Misra P. AMP activated protein kinase:a next generation target for total metabolic cont rol. Expert Opin Ther Targets,2008,12 (1):91-100.
    5. Winder WW. Energy-sensing and signaling by AMP-activated protein kinase in skeletal muscle. J Appl Physiol.2001,91(3):1017-1028.
    6. Hemminki A,Markie D, Tomlinson I, et al. A serine/threonine kinase gene defective in Peutz-Jeghers syndrome. Nature,1998,391(6663):184-187.
    7. Hawley SA, Boudeau J, Reid JL, et al.Complexes between the LKB1 tumor suppressor, STRAD alpha/beta and MO25 alpha/beta are upstream kinases in the AMP-activated protein kinase cascade. J Biol,2003,2(4):28.
    8. Shaw RJ, Kosmatka M, Bardessy N, et al. The tumor suppressor LKB1 kinase diretcly activates AMP-activated kinase and regulates apoptosis in response to energy stress. Proc Natl Acad Sci USA,2004,101 (10):3329-35.
    9. Chinetti G, Zawadski C, Fruchart J, et al. Expression of adiponectin receptors in human macrophages and regulation by agonists of the nuclear receptors PPARa, PPARβ,and LXR. Biochem Biophys Res Commun,2004,314(1):151-158.
    10. Sakamoto K. McCarthy A, Smit h D, et al. Deficiency of LKB1 in skeletal muscle prevents AMPK activation and glucose uptake during contraction. EMBO J,2005.24 (10):1810-1820.
    11.Minokoshi Y. Kim YB, Peroni OD, et al. Leptin stimulates fatty-acid oxidation by activating AMP-activated protein kinase. Nature,2002,415(6869):339-343.
    12. Winder WW, Thomson DM. Cellular energy sensing and signaling by AMP-activated protein kinase. Cell Biochem Biophys,2007,47 (3):332-347.
    13. Yamauchi T, Kamon J, Minokoshi Y. et al. Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase. Nat Med,2002,8(11):1288-1295.
    14. Yamauchi T, Kamom J, Ito Y, et al. Cloning of adiponectin receptors that mediate antidiabetic metabolic effects. Nature.2003,423(6941):762-769.
    15. Tomas E, Tsao TS, Saha AK, et al. Enhanced muscle fat oxidation and glucose transport by Acrp30 globular domain:acetyl-CoA carboxylase inhibition and AMP-activated protein kinase activation. Proc Natl Acad Sci U.S.A,2002, 99(25):16309-16313.
    16. Hardie DG. Role of AMP-activated protein kinase in the metabolic syndrome and in heart disease. FEBS Lett,2008,582 (1):81-89.
    17. Longnus SL, Wambolt RB, Parsons HL, et al.5-amino-imidazole-4-carboxamide-beta-ribofuranoside (AICAR) stimulates myocardial glycogenolysis by allosteric mechanisms. Am J Physiol Regul Integr Comp Physiol,2003,284 (4):936-944.
    18. Inoue E, Yamauchi J. AMP-activated protein kinase regulates PEPCK gene expression by direct phosphorylation of a novel zinc finger transciption factor. Biochem Biophys Res Commun,2006,351 (4):793-799.
    19. Halse R, Fryer LG, McCormack JG, et al. Regulation of glycogen synthase by glucose and glycogen:a possible role for AMP-activated protein kinase. Diabetes, 2003,52(1):9-15.
    20. Andreelli F.Foretz M, Knauf C, et al. Liver adenosine monophosphate-activated kinase-alpha catalytic subunit is a key target for the control of hepatic glucose production by adiponectin and leptin but not by insulin. Endocrinology,2006,147 (5):2432-2442.
    21. Kurth-Kraczek EJ, Hirshman MF, Goodyear LJ, et al.5-AMP-activated protein kinase activation causes GLUT4 translocation in skeletal muscle. Diabetes.1999, 48(8):1667-1671.
    22. Lee ES. Uhm KO. Lee YM, et al. CAPE (caffeic acid phenethyl ester) stimulates glucose uptake through AMPK (AMP-activated protein kinase) activation in skeletal muscle cells. Biochem Biophys Res Commun.2007,361 (4):854-858.
    23. McGee SL, van Denderen BJ, Howlett KF, et al. AMP-activated protein kinase regulates GLUT4 transcription by phosphorylating histone deacetylase 5. Diabetes, 2008,57(4):860-867.
    24. Fryer LG, Foufelle F, Barnes K, et al. Characterization of the role of the AMP-activated protein kinase in the stimulation of glucose transport in skeletal muscle ceils. Biochem J,2002,363(1):167-174.
    25. Koistimn HA, Galuska D, Chibalin AV, et al.5-amino-imidamle carboxamide riboside incerases glucoset ransport and cell-surface GLUT4 content in skeletal muscle from subjects with type 2 diabetes. Diabetes,2003,52(5):1066-1072.
    26. Henin N, Vincent MF, Gruber HE, et al. Inhibition of fatty acid and cholesterol synthesis by stimulation of AMP-activatedprotein kinase. FASEB J,1995,9(7):541 546.
    27. Raney MA, Yee AJ.Todd MK, et al. AMPK activation is not critical in the regulation of muscle FA uptake and oxidation during low intensity muscle contraction. Am J Physiol Endocrinol Metab,2005,288(3):E592-E598.
    28. Daval M, Diot-Dupuy F, Bazin R, et al. Anti-lipolytic action of AMP-activated protein kinase in rodent adipocytes. J Biol Chem,2005,280(26):25250-25257.
    29. Da Silva Xavier G, Leclerc I, Varadi A, et al. Role for AMP-activated protein kinase in glucose-stimulated insulin secretion and preproinsulin gene expression. Biochem J,2003,371 (3):761-774.
    30. Eto K, Yamashita T. Matsui J, et al. Genetic manipulations of fatty acid metabolism in beta-cells are associated with dysregulated insulin secretion. Diabetes. 2002,51:S414-S4201.
    31. Minokoshi Y, Alquier T. Furukawa N. et al.AMP-kinase regulates food intake by responding to hormonal and nutrient signals in the hypothalamus. Nature,2004.428 (6982):569-574.
    32. Lopez M, Lelliott CJ, Vidal-Puig A. Hypothalamic fatty acid metabolism:a housekeep ing pathway that regulates food intake. Bioessays,2007,29 (3):248-261.
    33. Gao S, Kinzig KP. Aja S.et al. Leptin activates hypothalamic acetyl-CoA carboxylase to inhibit food intake. Proc Natl Acad Sci USA.2007,104 (44):17358-17363.
    34. Cavuoto P, McAinch AJ, Hatzinikolas G, et al. Effects of cannabinoid receptors on skeletal muscle oxidative pathways. Mol Cell Endocrinol,2007,267 (1-2):63-9.
    35. Kohno D, Sone H, Minokoshi Y, et al. Ghrelin raises [Ca2+] via AMPK in hypothalamic arcuate nucleus NPY neurons. Biochem Biophys Res Commun,2008, 366 (2):388-92.
    36. Misra P, Chakrabarti R. The role ofAMP kinase in diabetes. Indian J M ed Res, 2007,125 (3):389-98.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700