用户名: 密码: 验证码:
抗精神病药物对少突胶质细胞发育和髓鞘再生作用的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
精神分裂症是一组病因未明的重性精神病,全球年发病率为0.4-1%,给患者、社会和国家造成生理上、经济上及社会和谐的沉重负担。
     近年来在对精神分裂症的研究中发现精神分裂症患者均有不同程度的脑白质异常以及少突胶质细胞谱系(oligodendrocyte lineage cells, OLs)和髓鞘病理改变。DNA微阵列分析发现精神分裂症患者的多个脑区皮层髓鞘相关基因,包括CNP、MAG、GALC、MOG等表达明显下调。影像学更进一步证实精神分裂症患者MRI核磁共振显影观察到侧脑室扩大,内侧颞叶,颞上回皮层、顶叶体积减少,全脑或局部白质体积有不同程度的减少,胼胝体、小脑、丘脑等皮层下结构异常。以上研究均提示,精神分裂症认知障碍可能起因于神经元相关髓鞘体积减少从而导致上述结构的信号转导紊乱。所以少突胶质细胞功能异常有可能是精神分裂症发病原因之一,为此少突胶质细胞不失为精神分裂症治疗的靶点。
     由于精神分裂症的病因未明,因此目前对精神分裂症的一线治疗主要仍依靠使用抗精神病药物治疗。典型性抗精神病药,如氟哌啶醇(Haloperidol,HAL),主要通过抑制多巴胺D2类受体(包括D2r、D3r和D4r),进行药物治疗。尽管HAL能有效改善精神分裂症的阳性症状,却无法有效治疗阴性症状,也无法逆转病程。近年来,许多非典型性抗精神病药,如喹硫平(Quetiapine, QUE)、奥氮平(Olanzopine, OLA)等,通过双向调节多巴胺、5羟色胺等神经递质受体,能显著改善精神分裂症的阴性症状,部分能改善阳性症状,且能有效的逆转病情的进程。
     最近系列研究提示,作为白质主要细胞成分的少突胶质细胞与抗精神病药的药物作用存在潜在的关联,但抗精神病药物对少突胶质细胞发育或髓鞘修复的作用事实上并不明确。
     本研究拟以抗精神病药为工具,比较典型性及非典型性抗精神病药对少突胶质细胞发育的作用,进而利用中枢神经脱髓鞘模型,比较两类抗精神病药对脱髓鞘的再生修复以及对动物行为学变化的影响,并检测非典型性抗精神病药可能促进少突胶质细胞发生的细胞学机制。为少突胶质细胞的退变参与精神分裂症病理生理过程的阐明提供神经药理学实验依据,并为中枢神经脱髓鞘疾病治疗的药物开发研究提供新的线索。
     本实验分为以下三个部分:
     第一部分:抗精神病药对成年小鼠大脑少突胶质细胞前体细胞(Oligododendrocyte precursor cells,OPCs)的影响
     通过慢性摄入两类抗精神病药HAL、QUE,分别检测抗精神病药对大脑中OLs细胞的发育的影响,阐明不同脑区的OLs分布、密度的变化。主要结果如下:
     1. HAL可以抑制小鼠在开场试验中的自发活动的活性和对陌生环境的探索行为。
     2. HAL可以促进成年小鼠脑胼胝体NG2+细胞增生。
     3. HAL可以促进成年小鼠大脑各脑区(胼胝体、海马、皮层)Olig2+OPCs增生以及Olig2蛋白表达量增加。
     4. HAL对APC+、GFAP+、CD68+细胞数目没有改变。
     5. QUE对正常小鼠大脑中OLs无任何影响。
     以上结果表明HAL可以促进成年小鼠脑内OPCs增生且不引起神经胶质细胞增生,并从另一个方面提示OPCs和精神分裂症病理机制的关系,即OPCs可能是抗精神病药作用的靶点。
     第二部分:抗精神病药对脱髓鞘模型中髓鞘修复的影响
     本研究通过建立Cuprizone诱导的小鼠脱髓鞘模型,分别观察两类抗精神病药HAL、QUE对髓鞘修复的作用,明确脑白质损伤在精神分裂症病理机制中的作用,同时了解脱髓鞘疾病的髓鞘再生机制。主要结果如下:
     1.成功建立Cuprizone诱导的脱髓鞘动物模型。0.2% Cupriozone摄入6周,胼胝体脱髓鞘损伤达到最大,停药3周后,髓鞘自发性修复,几乎达到正常水平。持续摄入0.2% cuprizone12周后停药3周,仍可见较低水平的髓鞘修复。
     2. HAL可以推迟髓鞘的自发性修复。QUE能促进慢性髓鞘再生的进程。
     3. HAL在急性髓鞘修复过程中可以促进OPCs增生活化,但是在慢性髓鞘修复中HAL使OPCs数目减少。QUE可以促进慢性髓鞘修复中的OPCs增生。
     4. QUE可以减少髓鞘修复过程中小胶质细胞的募集和活化。
     以上结果说明,两类抗精神病药物对髓鞘的修复作用有所不同:HAL抑制髓鞘的修复再生,在急性髓鞘修复中促进OPCs增生,但在慢性髓鞘修复过程中减少OPCs细胞数量;而QUE在慢性髓鞘修复中诱导OPCs数量的增加,促进髓鞘再生。此外,QUE抑制小胶质细胞在髓鞘损伤部位的活化和聚集。
     第三部分:喹硫平调节脂多糖诱导的小胶质细胞活化的实验研究
     本研究通过建立脂多糖(LPS)诱导的小胶质N9细胞活化模型,观察QUE对小胶质细胞活化的影响,结合细胞培养、流式细胞术、免疫荧光细胞化学等,探讨QUE对小胶质细胞活化的影响极其调控方式。主要结果如下:
     1.建立LPS诱导的N9小胶质细胞活化模型,证明LPS并不影响N9细胞增殖,但促进NO释放而使细胞活化。
     2. QUE(10nM)可以减少LPS激活N9细胞所释放的NO产物含量,以及减少CD11b在胞膜的表达量。从而抑制N9细胞的活化。
     3. QUE能抑制NFκB的活化及位移入核。
     以上结果说明, QUE可以抑制LPS诱导的N9小胶质细胞的活化,并且这种作用可能通过抑制小胶质细胞中NFκB的活化来达成。
     综上所述:在正常小鼠体内,HAL可以激活成年小鼠大脑内静息的OPCs细胞;QUE对正常小鼠没有明显作用。在脱髓鞘模型中,HAL抑制髓鞘自发修复,QUE可以促进慢性髓鞘修复的进程,其机制可能与两种药物对OPCs的不同作用有关。因此,OPCs可能是抗精神病药治疗的靶点。此外,QUE还能抑制脱髓鞘损伤部位的小胶质细胞的活化,可能也是QUE促进髓鞘修复的原因之一。
Schizophrenia is one kind of devastating mental disorder of unknown etiology that affects approximately 0.4-0.6% of general population per year. The impacts may include the psychological, social and financial resources of the patient, family and large community.
     Recent study results showed that the abnormality of white matter and pathological changes of oligodendrocyte lineage cells and myelination existed in several brain areas of schizophrenia. DNA microarray analyses have been performed in post-mortem brain regions of patients and healthy individuals to investigate the down-regulation of myelin-related genes, including CNP, MAG, GALC, and MOG. Further evidence for the role of oligodendrocytes and myelin in schizophrenia is obtained from imaging studies. Magnetic resonance imaging (MRI) findings in patients diagnosed with schizophrenia include lateral ventricle enlargement, medial temporal lobe volume reduction, neocortical superior temporal gyrus volume reduction, parietal lobe abnormalities, global and regional reduction in white matter volume, such as corpus callosum, and subcortical abnormalities affecting the basal ganglia, thalamus and cerebellum. These findings reveal congnitive dysfunction of schizophrenia possibly result from disconnection in both local neural circuitries that spanning several brain areas. It is assumed that the oligodendrocyte may be one of the therapeutic targets in the treatment of the patients with of schizophrenia.
     Based on the limited understanding on etiology of schizophrenia, the first line psychiatric treatment for schizophrenia is antipsychotic medication. The typical antipsychotic drugs, such as haloperidol, are dopamine D2-like subfamily receptor (D2r, D3r and D4r) antagonists. Although typical antipsychotic drugs can reduce the positive symptoms of psychosis, they fail neither to significantly ameliorate the negative symptoms, nor reverse the progress of mental disorder. Currently available atypical antipsychotic drugs, such as quetiapine, clozapine, olanzapine, can improve both positive and negative symptoms. These drugs can therefore prevent aggravation of psychotic symptoms, by modulating multiple neurotransmitter receptors, including dopamine receptor, 5-HT receptor.
     Recently, a series of studies suggest that a potential relationship between oligodendroglia, the main component of white matter regions of the brain and schizophrenia. aIt is, however, still not clear about the effect of antipsychotics treatmen on oligodendrocyte/myelin in brain.
     In this study, we have investigated the effect of antipsychotic on oligodendrocyte linage in brain of mice, and the remyelination in cuprizone-induced demyelin model, by using two kind of antipsychotic in comparison. The results presented in this paper may provide us a new insight into the degeneration of oligodendrocyte, which may involve in the pathophysiology of schizonphrenia, and reveal a new clue to pharmaprojects for demyelianaton disease in central neural system.
     This investigation is composed of three parts:
     Part 1: The effect of antipsychotic on OPCs in brain of adult mice
     Young adult C57Bl/6 mice were given antipsychotic treatment in their drinking water for three or six weeks. Based on the investigations of the effect of two kind of antipsychotic on the development of oligodendrocyte lineage, we found that:
     1. HAL decreases the locomotion of animal in open-field test.
     2. HAL increases the number of NG2-expression cells in the corpus callosum.
     3. haloperidol increases the number of Olig2-expressiong cells and the amount of Olig2 protein
     4. haloperidol treatment has no effect on the maturation of OLs, and also has no effect on the numbers of GFAP+ and CD68+ cells in the brain.
     5. QUE has no effect on the oligodendrocyte lineage in brain of healthy adult mice.
     The first part revealed that chronic haloperidol treatment activates quiescent OPCs in adult mouse brain in the absence of gliosis. OPCs are potential targets of antipsychotic medication.
     Part 2: The effect of antipsychotic on the remyelination of cuprizone-induced demyelin model.
     To establish the cuprizone-induced demyelination animal model and to investigate the effect of two kind of antipsychotic haloperidol, quetiapine on remyelination, the studies plan to clarify the role of dysfunction of white matter in pathophysiology of schizonphrenia, and to investigate the molecular mechinsm of remyelination in demyelin diseases. The findings are as follows:
     1. The establishment cuprizone-induced demyelination model, using a diet supplemented with 0.2% cuprizone. The loss of myelin is more pronounced in mice fed the cuprizone diet at 6 weeks. There is spontaneous remyeliantion fowllowing the subsequent 3 weeks when mice are fed normal chow. For the prolonged administration of cuprizone for 12 weeks, the extent of remyelination turns to be very limited when mice change to normal chow.
     2. Haloperidol can delay the progress of spontaneous remyeliantion; quetiapine can promote the progress of spontaneous remyeliantion in chronic demyelination model.
     3. In acute demyeliantion model, haloperidol can increase the number of Olig2-expression cells, but decrease the number of this type of cells in chronic demyelination model. Quetiapine can increase the the number of Olig2-expression cells in chronic demyelination model.
     4. Quetiapine can reduce the recruitment and activation of microglia/macrophage in lesion location of demyeliantion.
     The second part revealed that we established the cuprizone-induced demyeliantion animal model successfully. Different kinds of antipsychotic play different roles in remyelination: Haloperidol can inhibit the remyelination while quetiapine can promote the progress of remyelination. Haloperidol can increase the number of oligodendrocyge precursor cells (OPCs) in acute demyelination, but decrease this type of cell in chronic demyelination. Quetiapine can increase the OPCs in chronic demyeliantion progress. Additionally, quetiapine can inhibit the recruitment and activation of microglia/macrophage in lesion location of demyeliantion.
     Part 3: Quetiapine can reduce LPS-induced activation of microglia.
     This study use lipopolysaccharide (LPS)-activated mouse microglial cell line N9 as an in vitro model to mimic microglia activation seen in mouse. The effects of quetiapine on the LPS-stimulate N9 cells were investigated. The findings are as followings:
     1. Cell culture and identification of N9 cell. To choose the antibody CD11b to identification N9 cells and count the positive cells, more than 95% N9 cell can be marked with CD11b.
     2. The establishement of LPS-activated N9 cells model. LPS do not affect the cell viability of N9 cell. However, the release of NO by LPS-stimulated N9 cells resulted in significant increase, which proves the successful establishment of LPS-activated N9 cells.
     3. Quetiapine can reduce the activation of LPS-stimulated N9 cells. Quetiapine can decrease the NO production induced by LPS-stimulated N9 cells, and decrease the expression amount of CD11b in cell membrane.
     4. Quetiapine can inhibit the activation of NFκB and prevent the immigration of NFκB to nuclear.
     The third part revealed that we established the LPS-activated N9 cells model successfully. Quetiapine can inhibit the activation of LPS-stimulated N9 cells. Quetiapine may regulat the activation of NFκB to inhibit the activation of N9 cells.
     In summary, this study demonstrated that chronic haloperidol treatment activates quiescent OPCs in the brain of normal adult mouse. Haloperidol can delay the progress of spontaneous remyeliantion while quetiapine can promote the progress of spontaneous remyeliantion in chronic demyelination model. The mechanism may be due to the different effects of these two kinds of antipsychotic on OPCs. Therefore, OPCs is a potential target of antipsychotic medication. Additionally, quetiapine can inhibit the recruitments and activation of microglia/macrophage in lesion location of demyeliantion through regulating the activation of NFκB. This may be one of the mechanisms underlying the effect of quetiapine in promotion of remyelination.
引文
1. Goldner, E.M., et al., Prevalence and incidence studies of schizophrenic disorders: a systematic review of the literature. Can J Psychiatry, 2002. 47(9): p. 833-43.
    2. Bhugra, D., The global prevalence of schizophrenia. PLoS Med, 2005. 2(5): p. e151; quiz e175.
    3. Karoutzou, G., H.M. Emrich, and D.E. Dietrich, The myelin-pathogenesis puzzle in schizophrenia: a literature review. Mol Psychiatry, 2008. 13(3): p. 245-60.
    4. Bernardo, M., et al., Double-blind olanzapine vs. haloperidol D2 dopamine receptor blockade in schizophrenic patients: a baseline-endpoint. Psychiatry Res, 2001. 107(2): p. 87-97.
    5. Lynch, M.R., Selective effects on prefrontal cortex serotonin by dopamine D3 receptor agonism: interaction with low-dose haloperidol. Prog Neuropsychopharmacol Biol Psychiatry, 1997. 21(7): p. 1141-53.
    6. Murphy, B.P., et al., Pharmacological treatment of primary negative symptoms in schizophrenia: a systematic review. Schizophr Res, 2006. 88(1-3): p. 5-25.
    7. Sirota, P., et al., Quetiapine versus olanzapine for the treatment of negative symptoms in patients with schizophrenia. Hum Psychopharmacol, 2006. 21(4): p. 227-34.
    8. Trollor, J.N., X. Chen, and P.S. Sachdev, Neuroleptic malignant syndrome associated with atypical antipsychotic drugs. CNS Drugs, 2009. 23(6): p. 477-92.
    9. Frith, C., Neuropsychology of schizophrenia, what are the implications of intellectual and experiential abnormalities for the neurobiology of schizophrenia? Br Med Bull, 1996. 52(3): p. 618-26.
    10. Flynn, S.W., et al., Abnormalities of myelination in schizophrenia detected in vivo with MRI, and post-mortem with analysis of oligodendrocyte proteins. Mol Psychiatry, 2003. 8(9): p. 811-20.
    11. Barley, K., S. Dracheva, and W. Byne, Subcortical oligodendrocyte- and astrocyte-associated gene expression in subjects with schizophrenia, major depression and bipolar disorder. Schizophr Res, 2009. 112(1-3): p. 54-64.
    12. Davis, K.L. and V. Haroutunian, Global expression-profiling studies and oligodendrocyte dysfunction in schizophrenia and bipolar disorder. Lancet, 2003.362(9386): p. 758.
    13. Shenton, M.E., et al., A review of MRI findings in schizophrenia. Schizophr Res, 2001. 49(1-2): p. 1-52.
    14. Kubicki, M., et al., A review of diffusion tensor imaging studies in schizophrenia. J Psychiatr Res, 2007. 41(1-2): p. 15-30.
    15. Hakak, Y., et al., Genome-wide expression analysis reveals dysregulation of myelination-related genes in chronic schizophrenia. Proc Natl Acad Sci U S A, 2001. 98(8): p. 4746-51.
    16. Sugai, T., et al., Prefrontal abnormality of schizophrenia revealed by DNA microarray: impact on glial and neurotrophic gene expression. Ann N Y Acad Sci, 2004. 1025: p. 84-91.
    17. Schachner, M. and U. Bartsch, Multiple functions of the myelin-associated glycoprotein MAG (siglec-4a) in formation and maintenance of myelin. Glia, 2000. 29(2): p. 154-65.
    18. Xu, H., et al., Behavioral and neurobiological changes in C57BL/6 mouse exposed to cuprizone: effects of antipsychotics. Front Behav Neurosci, 2010. 4: p. 8.
    19. Xu, H., et al., Behavioral and neurobiological changes in C57BL/6 mice exposed to cuprizone. Behav Neurosci, 2009. 123(2): p. 418-29.
    20. Franco-Pons, N., et al., Behavioral deficits in the cuprizone-induced murine model of demyelination/remyelination. Toxicol Lett, 2007. 169(3): p. 205-13.
    21. Matsushima, G.K. and P. Morell, The neurotoxicant, cuprizone, as a model to study demyelination and remyelination in the central nervous system. Brain Pathol, 2001. 11(1): p. 107-16.
    22. Zhang, Y., et al., Quetiapine alleviates the cuprizone-induced white matter pathology in the brain of C57BL/6 mouse. Schizophr Res, 2008. 106(2-3): p. 182-91.
    23. Yang, H.J., et al., Region-specific susceptibilities to cuprizone-induced lesions in the mouse forebrain: Implications for the pathophysiology of schizophrenia. Brain Res, 2009. 1270: p. 121-30.
    24. Gregg, J.R., et al., Downregulation of oligodendrocyte transcripts is associated with impaired prefrontal cortex function in rats. Schizophr Res, 2009. 113(2-3): p. 277-87.
    25. Xiao, L., et al., Quetiapine facilitates oligodendrocyte development and prevents micefrom myelin breakdown and behavioral changes. Mol Psychiatry, 2008. 13(7): p. 697-708.
    26. Narayan, S., K.E. Kass, and E.A. Thomas, Chronic haloperidol treatment results in a decrease in the expression of myelin/oligodendrocyte-related genes in the mouse brain. J Neurosci Res, 2007. 85(4): p. 757-65.
    27. Konopaske, G.T., et al., Effect of chronic antipsychotic exposure on astrocyte and oligodendrocyte numbers in macaque monkeys. Biol Psychiatry, 2008. 63(8): p. 759-65.
    28. Kanes, S.J., B.A. Hitzemann, and R.J. Hitzemann, On the relationship between D2 receptor density and neuroleptic-induced catalepsy among eight inbred strains of mice. J Pharmacol Exp Ther, 1993. 267(1): p. 538-47.
    29. Kantor, D.B., et al., Semaphorin 5A is a bifunctional axon guidance cue regulated by heparan and chondroitin sulfate proteoglycans. Neuron, 2004. 44(6): p. 961-75.
    30. Ughrin, Y.M., Z.J. Chen, and J.M. Levine, Multiple regions of the NG2 proteoglycan inhibit neurite growth and induce growth cone collapse. J Neurosci, 2003. 23(1): p. 175-86.
    31. Jones, L.L., et al., NG2 is a major chondroitin sulfate proteoglycan produced after spinal cord injury and is expressed by macrophages and oligodendrocyte progenitors. J Neurosci, 2002. 22(7): p. 2792-803.
    32. Missale, C., et al., Dopamine receptors: from structure to function. Physiol Rev, 1998. 78(1): p. 189-225.
    33. Levine, J.M., Increased expression of the NG2 chondroitin-sulfate proteoglycan after brain injury. J Neurosci, 1994. 14(8): p. 4716-30.
    34. Keirstead, H.S., J.M. Levine, and W.F. Blakemore, Response of the oligodendrocyte progenitor cell population (defined by NG2 labelling) to demyelination of the adult spinal cord. Glia, 1998. 22(2): p. 161-70.
    35. Levine, J.M. and R. Reynolds, Activation and proliferation of endogenous oligodendrocyte precursor cells during ethidium bromide-induced demyelination. Exp Neurol, 1999. 160(2): p. 333-47.
    36. Nishiyama, A., et al., Normal and reactive NG2+ glial cells are distinct from resting and activated microglia. J Neurosci Res, 1997. 48(4): p. 299-312.
    37. Levine, J.M., L.W. Enquist, and J.P. Card, Reactions of oligodendrocyte precursor cells to alpha herpesvirus infection of the central nervous system. Glia, 1998. 23(4): p. 316-28.
    38. Ong, W.Y. and J.M. Levine, A light and electron microscopic study of NG2 chondroitin sulfate proteoglycan-positive oligodendrocyte precursor cells in the normal and kainate-lesioned rat hippocampus. Neuroscience, 1999. 92(1): p. 83-95.
    39. Wennstrom, M., et al., Electroconvulsive seizures induce proliferation of NG2-expressing glial cells in adult rat hippocampus. Biol Psychiatry, 2003. 54(10): p. 1015-24.
    40. Wennstrom, M., J. Hellsten, and A. Tingstrom, Electroconvulsive seizures induce proliferation of NG2-expressing glial cells in adult rat amygdala. Biol Psychiatry, 2004. 55(5): p. 464-71.
    41. Rygula, R., et al., Pharmacological validation of a chronic social stress model of depression in rats: effects of reboxetine, haloperidol and diazepam. Behav Pharmacol, 2008. 19(3): p. 183-96.
    42. Sokolov, B.P., Oligodendroglial abnormalities in schizophrenia, mood disorders and substance abuse. Comorbidity, shared traits, or molecular phenocopies? Int J Neuropsychopharmacol, 2007. 10(4): p. 547-55.
    43. Chambers, J.S. and N.I. Perrone-Bizzozero, Altered myelination of the hippocampal formation in subjects with schizophrenia and bipolar disorder. Neurochem Res, 2004. 29(12): p. 2293-302.
    44. Ligon, K.L., et al., Development of NG2 neural progenitor cells requires Olig gene function. Proc Natl Acad Sci U S A, 2006. 103(20): p. 7853-8.
    45. Lu, Q.R., et al., Common developmental requirement for Olig function indicates a motor neuron/oligodendrocyte connection. Cell, 2002. 109(1): p. 75-86.
    46. Zhou, Q. and D.J. Anderson, The bHLH transcription factors OLIG2 and OLIG1 couple neuronal and glial subtype specification. Cell, 2002. 109(1): p. 61-73.
    47. Niu J, Mei F, Li N, Wang H, Li X, Kong J, Xiao L. Haloperidol promotes proliferation but inhibits differentiation in rat oligodendrocyte progenitor cell cultures. Biochemistry and cell biology. 2010.(in press)
    48. Fancy, S.P., C. Zhao, and R.J. Franklin, Increased expression of Nkx2.2 and Olig2identifies reactive oligodendrocyte progenitor cells responding to demyelination in the adult CNS. Mol Cell Neurosci, 2004. 27(3): p. 247-54.
    49. Islam, M.S., et al., Olig2-expressing progenitor cells preferentially differentiate into oligodendrocytes in cuprizone-induced demyelinated lesions. Neurochem Int, 2009. 54(3-4): p. 192-8.
    50. Bartzokis, G., et al., Differential effects of typical and atypical antipsychotics on brain myelination in schizophrenia. Schizophr Res, 2007. 93(1-3): p. 13-22.
    51. Martin, P.M. and J.P. O'Callaghan, A direct comparison of GFAP immunocytochemistry and GFAP concentration in various regions of ethanol-fixed rat and mouse brain. J Neurosci Methods, 1995. 58(1-2): p. 181-92.
    52. Cudrici, C., et al., Dendritic cells are abundant in non-lesional gray matter in multiple sclerosis. Exp Mol Pathol, 2007. 83(2): p. 198-206.
    53. Zhao, J.W., et al., Astrocytes and oligodendrocytes can be generated from NG2+ progenitors after acute brain injury: intracellular localization of oligodendrocyte transcription factor 2 is associated with their fate choice. Eur J Neurosci, 2009. 29(9): p. 1853-69.
    54. Fukuda, S., et al., Negative regulatory effect of an oligodendrocytic bHLH factor OLIG2 on the astrocytic differentiation pathway. Cell Death Differ, 2004. 11(2): p. 196-202.
    55. Setoguchi, T. and T. Kondo, Nuclear export of OLIG2 in neural stem cells is essential for ciliary neurotrophic factor-induced astrocyte differentiation. J Cell Biol, 2004.
    166(7): p. 963-8.
    56. Creese, I., D.R. Burt, and S.H. Snyder, Dopamine receptor binding predicts clinical and pharmacological potencies of antischizophrenic drugs. Science, 1976. 192(4238): p. 481-3.
    57. Howard, S., et al., Postnatal localization and morphogenesis of cells expressing the dopaminergic D2 receptor gene in rat brain: expression in non-neuronal cells. J Comp Neurol, 1998. 391(1): p. 87-98.
    58. Rosin, C., et al., Dopamine D2 and D3 receptor agonists limit oligodendrocyte injury caused by glutamate oxidative stress and oxygen/glucose deprivation. Glia, 2005. 52(4): p. 336-43.
    1. Dubois-Dalcq, M., C. Ffrench-Constant, and R.J. Franklin, Enhancing central nervous system remyelination in multiple sclerosis. Neuron, 2005. 48(1): p. 9-12.
    2. Hakak, Y., et al., Genome-wide expression analysis reveals dysregulation of myelination-related genes in chronic schizophrenia. Proc Natl Acad Sci U S A, 2001. 98(8): p. 4746-51.
    3. Sugai, T., et al., Prefrontal abnormality of schizophrenia revealed by DNA microarray: impact on glial and neurotrophic gene expression. Ann N Y Acad Sci, 2004. 1025: p. 84-91.
    4. Wright, I.C., et al., Meta-analysis of regional brain volumes in schizophrenia. Am J Psychiatry, 2000. 157(1): p. 16-25.
    5. Shenton, M.E., et al., A review of MRI findings in schizophrenia. Schizophr Res, 2001. 49(1-2): p. 1-52.
    6. Kubicki, M., et al., A review of diffusion tensor imaging studies in schizophrenia. J Psychiatr Res, 2007. 41(1-2): p. 15-30.
    7. Buchsbaum, M.S., et al., MRI white matter diffusion anisotropy and PET metabolic rate in schizophrenia. Neuroreport, 1998. 9(3): p. 425-30.
    8. Okugawa, G., et al., Subtle disruption of the middle cerebellar peduncles in patients with schizophrenia. Neuropsychobiology, 2004. 50(2): p. 119-23.
    9. Hao, Y., et al., White matter integrity of the whole brain is disrupted in first-episode schizophrenia. Neuroreport, 2006. 17(1): p. 23-6.
    10. Frith, C., Neuropsychology of schizophrenia, what are the implications of intellectual and experiential abnormalities for the neurobiology of schizophrenia? Br Med Bull, 1996. 52(3): p. 618-26.
    11. Davis, K.L., et al., White matter changes in schizophrenia: evidence for myelin-related dysfunction. Arch Gen Psychiatry, 2003. 60(5): p. 443-56.
    12. Xiao, L., et al., Quetiapine facilitates oligodendrocyte development and prevents mice from myelin breakdown and behavioral changes. Mol Psychiatry, 2008. 13(7): p. 697-708.
    13. Zhang, Y., et al., Quetiapine alleviates the cuprizone-induced white matter pathology
    in the brain of C57BL/6 mouse. Schizophr Res, 2008. 106(2-3): p. 182-91.
    14. Wang, H., et al., Haloperidol activates quiescent oligodendroglia precursor cells in the adult mouse brain. Schizophr Res, 2010. 119(1-3): p. 164-174.
    15. Kipp, M., et al., The cuprizone animal model: new insights into an old story. Acta Neuropathol, 2009. 118(6): p. 723-36.
    16. Matsushima, G.K. and P. Morell, The neurotoxicant, cuprizone, as a model to study demyelination and remyelination in the central nervous system. Brain Pathol, 2001. 11(1): p. 107-16.
    17. Xu, H., et al., Behavioral and neurobiological changes in C57BL/6 mice exposed to cuprizone. Behav Neurosci, 2009. 123(2): p. 418-29.
    18. Niu J, Mei F, Li N, Wang H, Li X, Kong J, Xiao L. Haloperidol promotes proliferation but inhibits differentiation in rat oligodendrocyte progenitor cell cultures. Biochemistry and cell biology. 2010.(in press)
    19. Skripuletz, T., et al., Cortical demyelination is prominent in the murine cuprizone model and is strain-dependent. Am J Pathol, 2008. 172(4): p. 1053-61.
    20. Koutsoudaki, P.N., et al., Demyelination of the hippocampus is prominent in the cuprizone model. Neurosci Lett, 2009. 451(1): p. 83-8.
    21. Norkute, A., et al., Cuprizone treatment induces demyelination and astrocytosis in the mouse hippocampus. J Neurosci Res, 2009. 87(6): p. 1343-55.
    22. Armstrong, R.C., Growth factor regulation of remyelination: behind the growing interest in endogenous cell repair of the CNS. Future Neurol, 2007. 2(6): p. 689-697.
    23. Harsan, L.A., et al., Recovery from chronic demyelination by thyroid hormone therapy: myelinogenesis induction and assessment by diffusion tensor magnetic resonance imaging. J Neurosci, 2008. 28(52): p. 14189-201.
    24. Vana, A.C., et al., Platelet-derived growth factor promotes repair of chronically demyelinated white matter. J Neuropathol Exp Neurol, 2007. 66(11): p. 975-88.
    25. Prut, L. and C. Belzung, The open field as a paradigm to measure the effects of drugs on anxiety-like behaviors: a review. Eur J Pharmacol, 2003. 463(1-3): p. 3-33.
    26. Miu, A.C., et al., Behavioral effects of corpus callosum transection and environmental enrichment in adult rats. Behav Brain Res, 2006. 172(1): p. 135-44.
    27. Silveri, M.M., et al., Sex differences in the relationship between white mattermicrostructure and impulsivity in adolescents. Magn Reson Imaging, 2006. 24(7): p. 833-41.
    28. Murphy, B.P., et al., Pharmacological treatment of primary negative symptoms in schizophrenia: a systematic review. Schizophr Res, 2006. 88(1-3): p. 5-25.
    29. Sirota, P., et al., Quetiapine versus olanzapine for the treatment of negative symptoms in patients with schizophrenia. Hum Psychopharmacol, 2006. 21(4): p. 227-34.
    30. Sigmundsson, T., et al., Structural abnormalities in frontal, temporal, and limbic regions and interconnecting white matter tracts in schizophrenic patients with prominent negative symptoms. Am J Psychiatry, 2001. 158(2): p. 234-43.
    31. Zetzsche, T., et al., White matter alterations in schizophrenic patients with pronounced negative symptomatology and with positive family history for schizophrenia. Eur Arch Psychiatry Clin Neurosci, 2008. 258(5): p. 278-84.
    32. Bongarzone, E.R., et al., Identification of the dopamine D3 receptor in oligodendrocyte precursors: potential role in regulating differentiation and myelin formation. J Neurosci, 1998. 18(14): p. 5344-53.
    33. Missale, C., et al., Dopamine receptors: from structure to function. Physiol Rev, 1998. 78(1): p. 189-225.
    34. El-Gaaly, S., et al., Atypical neuroleptic malignant syndrome with quetiapine: a case report and review of the literature. J Clin Psychopharmacol, 2009. 29(5): p. 497-9.
    35. Armstrong, R.C., et al., Endogenous cell repair of chronic demyelination. J Neuropathol Exp Neurol, 2006. 65(3): p. 245-56.
    36. Rosin, C., et al., Dopamine D2 and D3 receptor agonists limit oligodendrocyte injury caused by glutamate oxidative stress and oxygen/glucose deprivation. Glia, 2005. 52(4): p. 336-43.
    37. Bian, Q., et al., The effect of atypical antipsychotics, perospirone, ziprasidone and quetiapine on microglial activation induced by interferon-gamma. Prog Neuropsychopharmacol Biol Psychiatry, 2008. 32(1): p. 42-8.
    1. Lawson, L.J., et al., Heterogeneity in the distribution and morphology of microglia in the normal adult mouse brain. Neuroscience, 1990. 39(1): p. 151-70.
    2. Gonzalez-Scarano, F. and G. Baltuch, Microglia as mediators of inflammatory and degenerative diseases. Annu Rev Neurosci, 1999. 22: p. 219-40.
    3. Stoll, G. and S. Jander, The role of microglia and macrophages in the pathophysiology of the CNS. Prog Neurobiol, 1999. 58(3): p. 233-47.
    4. Lee, Y.B., A. Nagai, and S.U. Kim, Cytokines, chemokines, and cytokine receptors in human microglia. J Neurosci Res, 2002. 69(1): p. 94-103.
    5. Boyle, E.A. and P.L. McGeer, Cellular immune response in multiple sclerosis plaques. Am J Pathol, 1990. 137(3): p. 575-84.
    6. Kaul, M., G.A. Garden, and S.A. Lipton, Pathways to neuronal injury and apoptosis in HIV-associated dementia. Nature, 2001. 410(6831): p. 988-94.
    7. Munn, N.A., Microglia dysfunction in schizophrenia: an integrative theory. Med Hypotheses, 2000. 54(2): p. 198-202.
    8. van Berckel, B.N., et al., Microglia activation in recent-onset schizophrenia: a quantitative (R)-[11C]PK11195 positron emission tomography study. Biol Psychiatry, 2008. 64(9): p. 820-2.
    9. Miuller, N. and M.J. Schwarz, The immunological basis of glutamatergic disturbance in schizophrenia: towards an integrated view. J Neural Transm Suppl, 2007(72): p. 269-80.
    10. Kato, T., et al., Risperidone significantly inhibits interferon-gamma-induced microglial activation in vitro. Schizophr Res, 2007. 92(1-3): p. 108-15.
    11. Bian, Q., et al., The effect of atypical antipsychotics, perospirone, ziprasidone and quetiapine on microglial activation induced by interferon-gamma. Prog Neuropsychopharmacol Biol Psychiatry, 2008. 32(1): p. 42-8.
    12. Hiremath, M.M., et al., Microglial/macrophage accumulation during cuprizone-induced demyelination in C57BL/6 mice. J Neuroimmunol, 1998. 92(1-2): p. 38-49.
    13. Pasquini, L.A., et al., The neurotoxic effect of cuprizone on oligodendrocytes dependson the presence of pro-inflammatory cytokines secreted by microglia. Neurochem Res, 2007. 32(2): p. 279-92.
    14. Zhang, Y., et al., Quetiapine alleviates the cuprizone-induced white matter pathology in the brain of C57BL/6 mouse. Schizophr Res, 2008. 106(2-3): p. 182-91.
    15. Jung, H.W., et al., Hexane fraction of Zingiberis Rhizoma Crudus extract inhibits the production of nitric oxide and proinflammatory cytokines in LPS-stimulated BV2 microglial cells via the NF-kappaB pathway. Food Chem Toxicol, 2009. 47(6): p. 1190-7.
    16. Bi, X., et al., Quetiapine regulates neurogenesis in ischemic mice by inhibiting NF-kappaB p65/p50 expression. Neurol Res, 2009. 31(2): p. 159-66.
    17. Stence, N., M. Waite, and M.E. Dailey, Dynamics of microglial activation: a confocal time-lapse analysis in hippocampal slices. Glia, 2001. 33(3): p. 256-66.
    18. Li, W.W., et al., Minocycline-mediated inhibition of microglia activation impairs oligodendrocyte progenitor cell responses and remyelination in a non-immune model of demyelination. J Neuroimmunol, 2005. 158(1-2): p. 58-66.
    19. Stolzing, A., A. Wengner, and T. Grune, Degradation of oxidized extracellular proteins by microglia. Arch Biochem Biophys, 2002. 400(2): p. 171-9.
    20. Gibson, C.L., T.C. Coughlan, and S.P. Murphy, Glial nitric oxide and ischemia. Glia, 2005. 50(4): p. 417-26.
    21. Badan, I., et al., Accelerated glial reactivity to stroke in aged rats correlates with reduced functional recovery. J Cereb Blood Flow Metab, 2003. 23(7): p. 845-54.
    22. Roy, A., et al., Up-regulation of microglial CD11b expression by nitric oxide. J Biol Chem, 2006. 281(21): p. 14971-80.
    23. Aktan, F., et al., Gingerol metabolite and a synthetic analogue Capsarol inhibit macrophage NF-kappaB-mediated iNOS gene expression and enzyme activity. Planta Med, 2006. 72(8): p. 727-34.
    24. Salminen, A., et al., Activation of innate immunity system during aging: NF-kB signaling is the molecular culprit of inflamm-aging. Ageing Res Rev, 2008. 7(2): p. 83-105.
    25. Price, G., et al., A volumetric MRI and magnetization transfer imaging follow-up study of patients with first-episode schizophrenia. Schizophr Res, 2006. 87(1-3): p. 100-8.
    26. Uranova, N.A., et al., Oligodendroglial density in the prefrontal cortex in schizophrenia and mood disorders: a study from the Stanley Neuropathology Consortium. Schizophr Res, 2004. 67(2-3): p. 269-75.
    27. McCullumsmith, R.E., et al., Expression of transcripts for myelination-related genes in the anterior cingulate cortex in schizophrenia. Schizophr Res, 2007. 90(1-3): p. 15-27.
    28. Li, J., et al., Peroxynitrite generated by inducible nitric oxide synthase and NADPH oxidase mediates microglial toxicity to oligodendrocytes. Proc Natl Acad Sci U S A, 2005. 102(28): p. 9936-41.
    [1] Nicolay DJ, Doucette JR, Nazarali AJ. Transcriptional control of oligodendrogenesis. Glia, 2007, 55(13):1287~99.
    [2] Stangel M, Hartung HP. Remyelinating strategies for the treatment of multiple sclerosis. Prog Neurobiol. 2002 Dec;68(5):361-76.
    [3] Kondo T, Raff M. 2000a. Basic helix-loop-helix proteins and the timing of oligodendrocyte differentiation. Development 127:2989–2998.
    [4] Fu H, Qi Y, Tan M,et al. Dual origin of spinal oligodendrocyte progenitors and evidence for the cooperative role of Olig2 and Nkx2.2 in the control of oligodendrocyte differentiation. 2002, Development 129:681~693.
    [5] Meyer NP, Roelink H. The amino-terminal region of Gli3 antagonizes the Shh response and acts in dorsoventral fate specification in the developing spinal cord. Dev Biol. 2003, 257:343~355.
    [6] Samanta J, Kessler JA. 2004. Interactions between ID, OLIG proteins mediate the inhibitory effects of BMP4 on oligodendroglial differentiation. Development 131:4131–4142.
    [7] Beatus P, Lundkvist J,€Oberg C, Lendahl U. 1999. The Notch 3 intracellular domain represses Notch 1-mediated activation through Hairy/Enhancer of split (HES) promoters. Development 126:3925–3935.
    [8] Lu QR, Yuk D, Alberta JA, Zhu Z, Pawlitzky I, Chan J, McMahon AP, Stiles CD, Rowitch DH. 2000. Sonic hedgehog-regulated oligodendrocyte lineage genes encoding bHLH proteins in the mammalian central nervous system. Neuron 25:317–329.
    [9] Lu QR, Sun T, Zhu Z, Ma N, Garcia M, Stiles CD, Rowitch DH. 2002. Common developmental requirement for Olig function indicates a motor neuron/ oligodendrocyte connection. Cell 109:75–86.
    [10] Liu R, Cai J, Hu X, Tan M, Qi Y, German M, Rubenstein J, Sander M, Qiu M. 2003. Region-specific and stage-dependent regulation of Olig gene expression and oligodendrogenesis by Nkx6.1 homeodomain transcription factor. Development 130:6221–6231.
    [11] Zhou Q, Anderson DJ. The bHLH transcription factors OLIG2 and OLIG1 couple neuronal and gial subtype specification. Cell 2002, 109:61~73.
    [12] Stolt CC, Lommes P, Friedrich RP, Wegner M. 2004. Transcription factors Sox8 and Sox10 perform non-equivalent roles during oligodendrocyte development despite functional redundancy. Development 131:2349–2358.
    [13] Stolt CC, Lommes P, Sock E, Chaboissier MC, Schedl A, Wegner M.2003. The Sox9 transcription factor determines glial fate choice in the developing spinal cord. Genes Dev 17:1677–1689.
    [14] Stolt CC, Schlierf A, Lommes P, Hillg artner, Werner T, Kosian T, Sock E, Kessaris N, Richardson WD, Lefebvre V, Wegner M. 2006. SoxD proteins influence multiple stages of oligodendrocyte developmentand modulate SoxE protein function. Dev Cell 11:697–709.
    [15] Fu H, Qi Y, Tan M, Cai J, Takebayashi H, Nakafuku M, Richardson W, Qiu M. 2002. Dual origin of spinal oligodendrocyte progenitors and evidence for the cooperative role of Olig2 and Nkx2.2 in the control of oligodendrocyte differentiation. Development 129:681–693.
    [16] Briscoe J, Pierani A, Jessell TM, Ericson J. 2000. A homeodomain protein code specifies progenitor cell identity and neuronal fate in the ventral neural tube. Cell 101:435–445.
    [17] Zhou Q, Choi G, Anderson DJ. 2001. The bHLH transcription factor Olig2 promotes oligodendrocyte differentiation in collaboration with Nkx2.2. Neuron 31:791–807.
    [18] Novitch BG, Chen AI, Jessell TM. 2001. Coordinate regulation of motor neuron subtype identity and pan-neuronal properties by the bHLH repressor Olig2. Neuron 31:773–789.
    [19] Zhou Q, Anderson DJ. The bHLH transcription factors OLIG2and OLIG1 couple neuronal and glial subtype specification. 2002. Cell 109:61~73.
    [20] Vallstedt A, Klos JM, Ericson J. 2005. Multiple dorsoventral origins of oligodendrocyte generation in the spinal cord and hindbrain. Neuron 45:55–67.
    [21] Meyer NP, Roelink H. 2003. The amino-terminal region of Gli3 antagonizes the Shh response and acts in dorsoventral fate specification in the developing spinal cord. Dev Biol 257:343–355.
    [22] Xin M, Yue T, Ma Z, et al. Myelinogenesis and axonal recognition by oligodendrocytes in brain are uncoupled in Olig-1-null mice. J Neurosci, 2005, 25:1354~1365.
    [23] Wang S-Z, Dulin J, Wu H, et al. An oligodendrocyte-specific zinc-finger transcription regulator cooperates with Olig2 to promote oligodendrocyte differentiation. Development, 2006, 133:3389~3398.
    [24] Dugas JC, Tai YC, Speed TP, Ngai J, Barres BA. 2006. Functional genomic analysis of oligodendrocyte differentiation. J Neurosci 26: 10967–10983.
    [25] Liu Z, Hu X, Cai J, Liu B, Peng X, Wegner M, Qiu M. 2007. Induction of oligodendrocyte differentiation by Olig2 and Sox10: Evidence for reciprocal interactions and dosage-dependent mechanisms. Dev Biol 302:683–693.
    [26] Li H, Lu Y, Simth HK, et al. Olig1 and Sox10 interact synergistically to drive myelin basic protein transcription in oligodendrocytes. J Neurosci 2007, 27(52):14375-82.
    [27] Yamaguchi H, Zhou C, Lin S-C, Durand B, Tsai SY, Tsai M-J. 2004. The nuclear orphan receptor COUP-TFI is important for differentiation of oligodendrocytes. Dev Biol 266:238–251.
    [28] Menichella DM, Goodenough DA, Sirkowski E, Scherer SS, Paul DL. 2003. Connexins are critical for normal myelination in the CNS. J Neurosci 23:5963–5973.
    [29] Gokhan S, Marin-Husstege M, Yung SY, Fontanez D, Casaccia-Bonnefil P, Mehler MF. 2005. Combinatorial profiles of oligodendrocyte-selective classes of transcriptional regulators differentially modulate myelin basic protein gene expression. J Neurosci 25:8311–8321.
    [30] Schlierf B, Werner T, Glaser G, Wegner M. 2006. Expression of connexin47 in oligodendrocytes is regulated by the Sox10 transcription factor. J Mol Biol 361:11–21.
    [31] Wei Q, Miskimins WK, Miskimins R. 2005. Stage-specific expression of myelin basic protein in oligodendrocytes involves Nkx2.2-mediated repression that is relieved by the Sp1 transcription factor. J Biol Chem 280:16284–16294.
    [32] Gokhan S, Marin-Husstege M, Yung SY, et al. 2005. Combinatorial profiles of oligodendrocyte-selective classes of transcriptional regulators differentially modulate myelin basic protein gene expression. J Neurosci, 2005, 25:8311~8321.
    [33] Wei Q, Miskimins WK, Miskimins R. 2004. Sox10 acts as a tissuespecific transcription factor enhancing activation of the myelin basic protein gene promoter by p27Kip1 and Sp1. J Neurosci Res 78:796–802.
    [34] Liu A, Li J, Marin-Husstege M, Kageyama R, Fan Y, Gelinas C, Casaccia-Bonnefil P. 2006. A molecular insight of Hes5-dependent inhibition of myelin gene expression: Old partners and new players. EMBO J 25:4833–4842.
    [35] Sussel L, Marin O, Kimura S, Rubenstein JLR. 1999. Loss of Nkx2.1 homeobox gene function results in a ventral to dorsal molecular respecification within the basal telencephalon: Evidence for a transformation of the pallidum into the striatum. Development 126:3359–3370.
    [36] Southwood C, He C, Garbern J, Kamholz J, Arroyo E, Gow A. 2004. CNS myelin paranodes require Nkx6-2 homeoprotein transcriptional activity for normal structure. J Neurosci 24:11215–11225.
    [37] Nielsen JA, Berndt J, Hudson LD, Armstrong RC. 2004. Myelin transcription factor 1 (Myt1) modulates the proliferation and differentiation of oligodendrocyte lineage cells. Mol Cell Neurosci 25:111123.
    [38] Kellerer S, Schreiner S, Stolt CC, Scholz S, B€osl MR, Wegner M. 2006. Replacement of the Sox10 transcription factor by Sox8 reveals incomplete functional equivalence. Development 133:2875–2886.
    [39] Sohn J, Natale J, Chew L-J, Belachew S, Cheng Y, Aguirre A, Lytle J, Nait-Oumesmar B, Kerninon C, Kanai-Azuma M, Kanai Y, Gullo V. 2006. Identification of Sox17 as a transcription factor that regulates oligodendrocyte development. J Neurosci 26:9722–9735.
    [40] Wolf LV, Yeung JM, Doucette JR, Nazarali AJ. 2001. Coordinated expression of Hoxa2, Hoxd1 and Pax6 in the developing diencephalon. Neuroreport 12:329–333.
    [41] Nicolay DJ, Doucette JR, Nazarali AJ. 2004. Hoxb4 in oligodendrogenesis.Cell Mol Neurobiol 24:357–366.
    [42] Bartova, E., et al., Nuclear levels and patterns of histone H3 modification and HP1 proteins after inhibition of histone deacetylases. J Cell Sci, 2005. 118(Pt 21): p. 5035-46
    [43] Nielsen JA, Hudson LD, Armstrong RC. 2002. Nuclear organization in differentiatingoligodendrocytes. J Cell Sci 115:4071–4079.
    [44] Hsieh J, Nakashima K, Kuwabara T, Mejia E, Gage FH. 2004. Histone deacetylase inhibition-mediated neuronal differentiation of multipotent adult neural progenitor cells. Proc Natl Acad Sci USA 101:16659–16664.
    [45] Shen S, Casaccia-Bonnefil P. 2008. Post-translational modifications of nucleosomal histones in ligodendrocyte lineage cells in development and disease. J Mol Neurosci 35:13–22.
    [46] Lyssiotis CA, Walker J, Wu C, Kondo T, Schultz PG, Wu X. 2007. Inhibition of histone deacetylase activity induces developmental plasticity in oligodendrocyte precursor cells. Proc Natl Acad Sci USA 104:14982–14987.
    [47] He Y, Sandoval J, Casaccia-Bonnefil P. 2007. Events at the transition between cell cycle exit and oligodendrocyte progenitor differentiation: The role of HDAC and YY1. Neuron Glia Biol 3:221–231.
    [48] Ye F,Chen Y,Hoang T,et al. 2009. HDAC1 and HDAC2 regulate oligodendrocyte differentiation by disrupting theβ-catenin-TCF interaction. Nat Neurosci 12: 829 - 838.
    [49] Sher F, Balasubramaniyan V, Boddeke E, Copray S. 2008a. Oligodendrocyte differentiation and implantation: New insights for remyelinating cell therapy. Curr Opin Neurol 21:607–614.
    [50] Shilatifard A. 2006. Chromatin modifications by methylation and ubiquitination: Implications in the regulation of gene expression. Annu Rev Biochem 75:243–269.
    [51] Mastronardi FG, Noor A, Wood DD, Paton T, Moscarello MA. 2007.Peptidyl argininedeiminase 2 CpG island in multiple sclerosis white matter is hypomethylated. J Neurosci Res 85:2006–2016
    [52] Musse AA, Boggs JM, Harauz G. 2006. Deimination of membranebound myelin basic protein in multiple sclerosis exposes an immunodominant epitope. Proc Natl Acad Sci USA 103:4422–4427

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700