用户名: 密码: 验证码:
倒置A~2/O工艺处理河道水脱氮除磷效果研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
布吉河为深圳河的上游支流,深圳河为深圳河香港两地的分界河,对两个城市的生活、经济有重要影响。城市河流在城市的功能中具有重要作用,河流污染会造成城市环境恶化、生态环境失衡,进而影响两岸居民的正常生活,甚至制约城市经济的发展。由于经济的发展,布吉河受到了严重的污染,而深圳河50%的污染来自于布吉河,因此布吉河污染的治理具有非常重要的意义。
     试验采用倒置A~2/O(Anoxic/Anaerobic/Oxic)工艺反应器对布吉河道水进行处理。倒置A2/O工艺将缺氧段置于反应器前端,优先满足系统的反硝化,强化了对氮的去除效果,对磷的去除效果也有所增强,适于处理碳氮比低的南方河道水。反应系统的水力停留时间(HRT)为11h,污泥龄(SRT)为22d,内回流比为200%,外回流比为75%。
     反应器的运行试验结果表明,倒置A2/O工艺反应器对布吉河有很好的处理效果,反应器出水COD总体水平能达到《城镇污水处理厂污染物排放标准》GB18918—2002中的国家二级标准(100 mg/L),多数情况下能达到国家一级B标准(60 mg/L),去除率平均为70.6%;出水BOD5达到国家一级B标准(20 mg/L),平均去除率为91%;出水TN整体水平达到国家一级B标准(20 mg/L),平均去除率为44%;出水TP达到国家二级标准(3 mg/L),平均去除率为46.6%。
     试验考察了Ni、Cu、Zn、Pb、Cr和Cd 6种重金属冲击对反应器处理效果的影响。结果表明,重金属种类不同,其对反应器的影响也不尽相同,6种重金属中,氯化铬对反应器出水COD有很大影响,硫酸铜对反应器出水氨氮浓度有一定影响,乙酸铅和氯化铬对反应器出水TP有很大影响,氯化镉和硫酸铜对反应器出水的浊度有很大影响。结果表明,无论哪种金属对反应器的冲击,24h后反应器均能恢复正常,说明反应器有较强的抗重金属冲击的能力。
Urban rivers play an important role in urban living and city economy. When rivers are polluted, it will cause the deterioration of city environment and ecological imbalance; hence limit the development of city economy. Shenzhen River is a boundary river between Hong Kong and Shenzhen, and is of great significance to both cities. Buji River is the upstream branch of Shenzhen River which is heavily polluted due to the area’s economy development. 50% pollution of Shenzhen River comes from Buji River. As a result, the treatment of Buji River becomes extremely urgent.
     This experiment adopted inverted A2/O(Anoxic/Anaerobic/Oxic)process reactor to carry out the treatment of polluted Buji River. Inverted A2/O process is a pre-denitrification technology; it strengthens the ability of nitrogen removal. Inverted A2/O process reactor is suitable for the treatment of southern river water with lower ratio of carbon to nitrogen. The operation parameters of the reactor are: hydraulic retention time (HRT) is 11h, sludge retention time (SRT) is 22d, inner recycling ratio is 200%, sludge return ratio is 75%.
     Results of the reactor running experiment show that: Effluent COD concentration is below national wastewater discharge gradeⅡstandard(100 mg/L) according to discharge standard of pollutants for municipal wastewater treatment plant GB18918—2002, and under most conditions, it is below national gradeⅠB standard (60 mg/L). The average removal rate of COD is 70.6%; Effluent BOD5 concentration is below national wastewater discharge gradeⅠB standard (20 mg/L), and the average removal rate of BOD5 is 91%; Effluent TN concentration is below national wastewater discharge gradeⅠB standard(20 mg/L), and the average removal rate of TN is 44%; Effluent TP concentration is below national wastewater discharge gradeⅡs tandard (3 mg/L), and the average removal rate of TP is 46.6%. In a word, the inverted A2/O process reactor performs well in treating the polluted Buji river water.
     An experiment was carried out on six heavy metals, Ni、Cu、Zn、Pb、Cr and Cd. Each heavy metal has a different effect on the reactor. The results indicate that: chromium chloride affects effluent COD concentration a lot; copper sulfate has certain influence on effluent ammonia nitrogen concentration; lead acetate and chromium chloride have a great impact on effluent TP concentration; cadmium chloride and copper sulfate affect effluent turbidity greatly. The result shows that, the reactor will turn to normal no matter which heavy metal affects.
引文
鲍艳卫,张雁秋.2008.城市污水除磷工艺及其原理[J].电力环境保护.24(5)
    毕学军,赵桂芹,毕海峰.2006.污水生物除磷原理及其生化反应机制研究进展[J].青岛理工大学学报.27(2):9-13
    陈灿,周芸,胡翔等.2008.啤酒酵母对水中Cu2+的生物吸附特性[J].清华大学学报(自然科学版).48(12):2093-2095
    陈清后.2007.影响生物脱氮除磷的因素[J].污染防治技术.20(1):41-43
    崔有为,彭永臻,李晶.2009.盐度抑制下的MUCT处理效能及其微生物种群变化[J].环境科学.30(2):488-492
    邓荣森.2006.氧化沟污水处理理论与技术[M].化学工业出版社
    邓香平.2008.序批式生物膜反应器脱氮除磷试验研究[D].南昌大学硕士学位论文
    冯生华,胡大卫.2000.昆明市第二污水处理厂设计[J].中国给水排水.16(4):39-41
    高艳玲,马达.2006.污水生物处理新技术[M].中国建材工业出版社
    国家环境保护总局,水和废水监测分析方法编委会.2002.《水和废水监测分析方法》(第四版).中国环境科学出版社
    国家环境保护总局科技标准司.2001.城市污水处理及污染防治技术指南.中国环境科学出版社
    韩静.2009.采用SBR工艺处理钢圈加工生产废水[J].环境科学导刊.28(5):55-56
    何岩,赵由才,周恭明.2008.高浓度氨氮废水脱氮技术研究进展[J].工业水处理.28(1):1-4
    胡海祥.2008.重金属废水治理技术概况及发展方向[J].中国资源综合利用.26(2):22-25
    环境状况公报.2000-2008.中华人民共和国环境保护部
    金端瑶.1991.广州大坦沙污水处理厂设计简述[J].中国土木工程学会给水排水学会排水委员会第二届第一次年会论文集
    金杭,王淑梅.2006.生物脱氮除磷技术及其发展趋势[J].广州环境科学.21(2):9-13
    李昌科.2009.分段进水两级A/O工艺脱氮除磷试验研究[D].长安大学硕士学位论文
    李剑锋.2008.一体式A/O膜生物反应器研究及应用[D].大连理工大学硕士论文
    李礼,杨平.2007.废水生物脱氮的研究进展.四川化工.10(4):43-48
    李璐,温东辉,张辉等.2008.分段进水生物接触氧化工艺处理河道水的试验研究[J].环境科学.29(8):2227-2234
    李璐,张辉,谢曙光等.2008.生物接触氧化工艺处理河道水的试验研究[J].中国给水排水.24(7):25-28
    李楠,王秀衡,任南琪等.2008.我国城镇污水处理厂脱氮除磷工艺的应用现状[J].给水排水.34 (3):39-42
    梁莎,冯宁川,郭学益.2009.生物吸附法处理重金属废水研究进展[J].水处理技术.35(3):13-17
    刘鹏霄,张捍民,王晓琳等.2009.MUCT-MBR工艺反硝化除磷脱氮研究[J].环境科学.30(7):1995-2000
    刘晓亮,李亚新.2006.生物除磷机理与新工艺[J].山西建筑.32(1):191-192
    刘玉年,印华斌,赵丽.2008.重金属离子对污水生物处理影响的研究进展及展望[J].安徽农业科学.36(18):7893-7895
    马春华.2008.并联式A2/O工艺和常规A2/O工艺脱氮除磷功能的对比研究[D].同济大学
    毛玉红,高军锋.2008.生物脱氮机理及应用[J].中国资源综合利用. 26:21-23
    彭勃,李绍秀.城市污水同步生物脱氮除磷工艺特点及选择[J].公用工程设计.68-73
    全国环境统计公报.2000-2008.中华人民共和国环境保护部
    沈连峰,刘文霞,胡宗泰等.2009.马头岗污水处理厂UCT工艺的设计与运行[J].中国给水排水.25(4):44-48
    沈耀良,王宝贞.2006.废水生物处理新技术理论与应用(第二版)[M].中国环境科学出版社深圳市环境状况公报.2008
    石爱华,高峰,颜文斌.2007.重金属工业废水处理工艺的研究[J].湖南有色金属.23(6):41-43
    宋世炜,黄韵,冯本秀.2006.微生物吸附废水中金属的研究进展[J].化学工业与工程技术.27(1):53-55
    孙培德,郭茂新,楼菊青等.2009.废水生物处理理论及新技术[M].中国农业科学技术出版社
    唐志坚,徐智,朱步洲等.2009.污水除磷脱氮与磷回收技术[J].化学工程.(6):47-50
    王鲁民.2007.微生物法处理重金属污水的研究[D].昆明理工大学硕士学位论文
    王荣斌,李军,张宁等.2007.污水生物除磷技术研究进展[J].环境工程.25(1):84-88
    王晓林.2008.MUCT-MBR工艺脱氮除磷性能分析[D].大连理工大学硕士学位论文
    王晓玲,尹军,吴磊等.2007.污水同步脱氮除磷技术及运行控制要点[J].环境科学与技术. 30(1):113-116
    王学江,夏四清,陈玲等.2006.DO对MBBR同步硝化反硝化生物脱氮影响研究[J].同济大学学报(自然科学版).34(4):514-517
    王佑荣,蔡文举,徐玉福等.2009.含锡、镍、铜、锌离子废水的处理[J].安徽化工.35(5):54-57
    谢冰.2002.分子生物学技术研究铜锌重金属离子对活性污泥微生物的影响[D].东华大学博士学位论文
    谢冰,徐亚同.2007.废水生物处理原理和方法[M].中国轻工业出版社
    谢景龙.2008.钒业废水的6价铬治理[J].环境工程.26(3):54-55
    姚敏杰,连宾.2009.微生物絮凝剂对高浓度重金属离子废水絮凝作用研究[J].环境科学与技术.32(11):1-4
    杨焱明,刘树元,郑显鹏等.2008.污水除磷技术现状及发展趋势[J].济南大学学报(自然科学版).22(2):166-170
    易灵,赵仕林,李京等.2005.生活污水的生物除磷工艺综述[J].广州环境科学.20(1):12-14
    游映玖,邵林广,江小林等.2002.桂林第四污水处理厂A-A/O工艺生物除磷试验研究[J].武汉科技大学学报(自然科学版).25(2):129-131
    翟英华,王令,姚毅等.2010.倒置A2/O工艺处理城镇河道水的效果研究[J].中国给水排水.26(7):16-19
    张冰,周雪飞,任南琪.2008.新型城市污水脱氮处理工艺的试验研究与优化设计[J].环境科学.29(6):1518-1525
    张杰,李小明,杨麒等.2007.反硝化除磷技术及其实现新途径[J].工业用水与废水.38(3):1-4
    张林生.2009.水的深度处理与回用技术(第二版)[M].化学工业出版社
    张晓丹.2007.高效脱氮除磷工艺(NPR)中试实验研究[D].中国环境科学研究院
    张耀斌,吴广华,邢亚彬等.2008.COD进水浓度对SBMBBR脱氮除磷效果影响[J].大连理工大学学报.48(3):329-333
    张志超,黄霞,肖康等.2008.脱氮除磷膜-生物反应器的除磷效果及特性[J].清华大学学报(自然科学版).48(9):92-94
    郑兴灿,李激,孙永利等.2009.无锡芦村污水处理厂一级A达标难度分析与对策措施探讨[J].给水排水.35(6):24-28
    钟常明,方夕辉,许振良.2008.膜技术及其组合工艺在重金属废水中的应用[J].环境科学与技术.31(8):44-47
    钟四姣.2007.同步生物脱氮除磷工艺的研究进展[J].广东化工.34(171):99-102
    周建华.2008.对几种常用先进污水处理技术的探讨[J].民营科技.(6):143-145
    周小红.2007.MBBR及组合工艺氮磷的去除规律和污泥性能研究[D].同济大学工学硕士学位论文
    周芸.2008.啤酒酵母对水中重金属的吸附研究[D].北京化工大学硕士研究生学位论文
    周正立,张悦.2006.污水生物处理应用技术及工程实例.化学工业出版社
    朱雁伯.2002.我国污水处理事业现状及今后发展的趋势[J].中国土木工程学会水工业分会第四届理事会第一次会议论文集.317-325
    布吉河http://baike.baidu.com/view/1794598.htm,2008-08-14
    布吉污水处理厂http://www.sz160.com/news/2007411/21402.shtm
    财经网http://www.caijing.com.cn/2009-06-23/110188457.html
    上海市市政工程管理处http://www.smead.sh.cn/
    深圳河http://baike.baidu.com/view/499131.htm,2008-08-29
    水业读者http://hi.baidu.com/waterreader
    中国投资咨询网http://www.ocn.com.cn/
    Aline da Silva Oliveira,Ana Bocio,Tania M. Beltramini Trevilato,et al. 2007.Heavy metals in untreated/treated urban effluent and sludge from a biological wastewater treatment plant [J]. Env. Sci. Pollut Res.. 14(7):483-489
    Almudena Hospido , M Teresa Moreira , Mercedes Fernandez-Couto , et al. 2004. Environmental performance of a municipal wastewater treatment plant [J]. Int J LCA. 9(4):261-271
    Anna Llop,Eva Pocurull,Francesc Borrull. 2009. Evaluation of the removal of pollutants from petrochemical wastewater using a membrane bioreactor treatment plant [J]. Water Air SoilPollut. 197:349-359
    Barnard J L. 1982. The Influence of Nitrogen on Phosphorus Removal in Activated Sludge Plants. Water Science Technology. 14:31-45
    C. P. L. Grady JR.,C. D. M. Filipe. 2000. Ecological engineering of bioreactors for wastewater treatment [M]. Water Air Soil Pollut. 123:117-132
    Dong-Seog Kim,No-Sung Jung,Young-seek Park. 2008. Characteristics of nitrogen and phosphorus removal in SBR and SBBR with different ammonium loading rates [J]. Korean J. Chem. Eng.. 25(4):793-800
    Duncan Mara. 2004.Domestic wastewater treatment in developing countries[M]. Earthscan. Udo Wiesmann,In Su Choi,Eva-Maria Dombrowski. 2007. Fundamentals of biological wastewater treatment [M]. Wiley-VCH Verlag GmbH & Co. kGaA
    E.Maranon,I.Vazquez,J.Rodriguez,et al. 2008,Coke Wastewater Treatment by a Three-Step Activated Sludge System [J]. Water Air Soil Pollut. 192:155-164
    Eugenio Foresti,Marcelo Zaiat,Marcus Vallero. 2006. Anartobic processes as the core technology for sustainable domestic wastewater treatment: Consolidated applications,new trends,perspectives,and challenges[J]. Erviews in environmental science and bio-technology. 5:3-19
    Fayza A. Nasr,Hala S. Doma,Hisham S. Abdel-Halim,et al. 2007. Chemical industry wastewater treatment[J]. Environmentalist. 27:275-286
    Fayza A. Nasr,Hala S. Doma,Hossaam F. Nassar. 2008. Treatment of domestic wastewater using an anaerobic baffled reactor followed by a duckweed pond for agricultural puiposes[J]. Environmentalist
    G. Andreottola,P. Foladori,G. Gatti,et al. 2003.Upgrading of a small overloaded activated sludge plant using a MBBR system[J]. Journal of environmental science and health(part A). A38(10):2317-2328
    Ho Nam Chang,Ra Kyung Moon,Byung Geon Park,et al. 2000. Simulation of sequential batch reactor(SBR) operation for simultaneous removal of nitrogen and phosphorus[J]. Bioprocess engineering. 23:513-521
    Jerry Coleman,Keith Hench,Keith Garbutt,et al. 2001. Treatment of domestic wastewater by three plant species in constructed wetlands[M]. Water,Air,and Soil Pollution. 128:283-295
    Jun Li,Yongjiong Ni,Yongzhen Peng,et al. 2008. On-line controlling system for nitrogen and phosphorus removal of municipal wastewater in a sequencing batch reactor (SBR) [J]. Frong. Environ. Sci. Engin. China 2(1):99-102
    Kripa Shankar Singh,T. Viraraghavan. 2002. Effect of temperature on bio-kinetic coefficients in UASB treatment of municipal wastewater[M]. Water Air Soil Pollut. 136:243-254
    Kuba T,wachtmeister A,van Loosdrecht M C M. et al. 1994. Effect of nitrate on phosphorus release in biological phosphorus removal system. Water Science Technology. 30,263-269
    Kyung-Guen Song,Jinwoo Cho,Kyu-Hong Ahn. 2008. Effects of internal recycling time mode and hydraulic retention time on biological nitrogen and phosphorus removal in a sequencinganoxic/anaerobic membrane bioreactor process[J]. Bioprocess Biosyst. Eng
    Lourdes Podriguez Mayor,Jose Villasenor Camacho,Francisco J. Fernandez Morales. 2004. Operational of pilot scale biological nutrient removal at the ciudad real(Spain) domestic wastewater treatment plant[J]. Water,Air,and Soil Pollution. 152:279-296
    Micheal Wagner,Alexander Loy,Regina Nogueira,et al. 2002. Microbial community composition and function in wastewater treatment plants[J]. Antonie van Leeuwenhoek. 81:665-680
    M. Rodgers , X.-M. Zhan. 2003. Moving-medium biofilm reactors[J]. Reviews in environmental science and bio-technology. 2:213-224
    Nicholas.P.Cheremisinoff. 1996.Biotechnology for waste and wastewater treatment[M]. Noyes publications
    Romain Lemaire,Zhiguo Yuan,Nicolas Bernet,et al. 2008.A sequencing batch reactor system for high-level biological nitrogen and phosphorus removal from abattoir wastewater[J]. Biodegradation
    Santiago Villaverde. 2004. Recent developments on biological nutrient removal processes for wastewater treatment [J]. Reviews in environmental science and bio-technology. 3:171-183
    Sari Luostarinen,Sami Luste,Lara Valentin,et al. 2006.Nitrogen removal from on-site treated anaerobic effluents using intermittently aerated moving bed biofilm reactors at low temperatures[J]. Water research. 40:1607-1615
    T.Matsuo,K.Hanaki,S.Takizawa,et al. 2001.Advances in water and wastewater treatment technology [M].Elsevier
    Van Kempen R,Mulder JW,Uijterlinde CA and van loosdrecht MCM. 2001. Overview: full scale experience of the SHARON process for treatment of rejection water of digested sludge dewatering [J]. Water Science and Technology. 44(1):145-152
    Wang Xiaolian,Peng Yongzhen,Wang Shuying,et al. 2006. Influence of wastewater composition on nitrogen and phosphorus removal and process control in A2/O process [J].Bioprocess Biosyst Eng. 28:397-404
    Z. Liao,V. Rasmussen,H. ?degaard. 2003. A high-rate secondary treatment based on a moving bed bioreactor and multimedia filters for small wastewater treatment plants [J]. Journal of environmental science and health (part A). A38(10):2349-2358

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700