用户名: 密码: 验证码:
激光光谱学在环境监测中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自然界中的物质由于其原子或者分子结构的不同,具有不同的特征吸收谱或者荧光谱等。通过对这些谱线的分析,就可以获得待测物质种类及含量等方面的特征信息。自激光问世以来,激光光谱技术被广泛应用于医疗,生物,农业,环境监测等各个不同的领域。本论文的主要工作是利用激光光谱技术开展在环境监测方面的应用研究,主要包括大气气体测量,农业害虫监测以及食品安全监测三个方面的探索性和应用性研究。
     随着中国社会经济的迅速发展,日益恶化的大气环境亟需采用先进的技术来开展大气环境的监测和治理。差分吸收激光雷达技术是利用气体吸收光谱学技术探测大气污染物的一种先进的光学遥感技术。通过探测气体吸收波长以及偏离气体吸收峰的波长的激光脉冲的大气后向散射信号的强度,来获取待测气体的空间浓度分布信息。差分吸收激光雷达技术可以实现对大气污染物的大范围、实时、动态的三维测量。本论文中分别利用染料激光器以及光参量振荡激光器作为光源,开展差分吸收激光雷达技术的研究与应用。研制了能够测量大气汞含量的差分吸收激光雷达系统,并利用紫外波段的氧气吸收信号对雷达系统进行验证,实现了对中国杭州和广州的大气污染物—原子汞和一氧化氮分子—的有效测量,并提出了利用三波长差分吸收激光雷达开展大气中的光化学指示气体—乙二醛的探索性研究工作。
     基于先进的激光遥感技术,本论文将激光诱导荧光雷达技术应用于农业害虫的探索性研究。利用激光诱导荧光雷达技术可以实现对农业害虫的运动及迂徙行为的追踪,还可以实现某些昆虫的种类鉴别等,为激光诱导荧光雷达技术在研究昆虫对信息素的反应等方面指明了方向。
     此外,激光诱导荧光技术还可以应用于食品安全的检测。利用激光诱导荧光技术并结合特征分量分析法开展茶叶种类鉴定以及茶叶品质的评估,成功的实现了对茉莉花茶的品质以及乌龙茶的种类的有效评估。此外,还利用不同波长的发光二极管进一步开展龙井茶茶叶种类及品质的评估的研究工作,研制了基于多个不同波长发光二级管的紧凑的荧光检测系统。通过分析不同波长的发光二极管激发出的荧光光谱可以实现更准确的茶叶品质分析,该技术的进一步发展必将应用在更广泛的食品监测领域。
All natural materials have their special atomic or molecular structures, which can be observed as different kinds of absorption/emission spectra, fluorescence spectra, etc. By analyzing their spectra, one could obtain the components, corresponding contents, and other inherent characteristics of the measured materials. Since the invention of the laser, laser spectroscopy has been widely used in many fields;such as biomedicine, biology, agriculture and environmental monitoring, etc. The main aim of the present thesis work is to utilize laser spectroscopy to develop exploratory and applicable research technique in environmental monitoring, including atmospheric gas monitoring, agricultural pest monitoring and food safety monitoring.
     With the rapid development of Chinese economy and society, the worsening atmospheric environment becomes more and more problematic, which highly demands advanced technologies to monitor and control the atmospheric environment. The differential absorption LIDAR technique is an advanced optical remote sensing method, utilizing gas absorption spectroscopy to detect many kinds of atmospheric pollutants. By detecting the atmospheric backscattering signal of the laser pulses which would be switched alternatively between wavelengths on and slightly off the gas absorption peak, the range-resolved concentration for the gas of interest can be retrieved. This technique can realize large-range, in situ and dynamic3D monitoring of the atompsheric pollutants. In the present work, a dye laser and an optical parametric oscillator are utilized as light sources to develop differential absorption LIDAR systems and explore relevant applications. A first Chinese differential absorption lidar system, which was able to monitor the atmospheric mercury concentration, was developed using a dye laser, and the system performance was well calibrated by the oxygen absorption lines in the ultraviolet region. At the same time, atmospheric atomic mercury and nitric oxide molecules were efficiently monitered, and the exploratory research on an atmospheric photolysis gas indicator-glyoxal-is also performed with a three wavelengths differential absorption LIDAR method.
     The advanced laser-induced fluorescence LIDAR technique, for the first time, is utilized to study agricultural pest. With the help of this technique, one could track the moving or migration behavior of the agricultural pest, and even classify certain types of pests. The new research presented greatly encourages future research and applications of this technique in this field. It is especially useful for tracking the moving behavior of pest/insect around different types of pheromones.
     The laser-induced fluorescence technique, apart from its remote sensing application, can also be used in food safety studies. In the present work, the laser-induced fluorescence technique, combined with principal component analysis, for the first time, was successfully utilized for classification and quality assessment of Chinese jasmine and oolong tea samples. A compact multiple light-emitting diodes based fluorescence system was also developed. By analyzing the fluorescence spectra induced by different wavelengths, one could evaluate the classification and quality of tea samples more accurately, e.g, Longjing tea. The proposed technique could be further developed and applied in many other food safety fields.
引文
[1]http://www.zhb.goy.cn/gkml/hbb/gwy/201212/W020121205566730379412.pdf
    [2]Z. H. Dai, X. B. Feng, J. Sommar, P. Li, and X. W. Fu, Spatial distribution of mercury deposition fluxes in Wanshan Hg mining area, Guizhou province, China, Atmos. Chem. Phys.12,6207(2012).
    [3]X. W. Fu, X. B. Feng, J. Sommar, and S. F. Wang, A review of studies on atmospheric mercury in China, Sci. Total Environ.421,73 (2012).
    [4]H. Edner, P. Ragnarson, S. Spannare, and S. Svanberg, Differential optical-absorption spectroscopy (DOAS) system for urban atmospheric pollution monitoring, Appl. Opt.32, 327(1993).
    [5]A. M. Winer and H. W. Biermann, Long pathlength differential optical-absorption spectroscopy (DOAS) measurements of gaseous HONO, NO2 and HCHO in the California south coast air basin, Res. Chem. Intermediat.20,423 (1994).
    [6]M. Coldewey-Egbers, M. Weber, L. N. Lamsal, R. de Beck, M. Buchwitz, and J. P. Burrows, Total ozone retrieval from GOME UV spectral data using the weighting function DOAS approach, Atmos. Chem. Phys.5,1015 (2005).
    [7]C. Lee, A. Richter, M. Weber, and J. P. Burrows, SO2 retrieval from SCIAMACHY using the Weighting Function DOAS (WFDOAS) technique:comparison with standard DOAS retrieval, Atmos. Chem. Phys.8,6137 (2008).
    [8]Takashi Fujii and Tetsuo Fukuchi, Laser Remote Sensing. (CRC, Boca Raton,2005).
    [9]A. Papayannis, D. Balis, V. Amiridis, G. Chourdakis, G. Tsaknakis, C. Zerefos, A. D. A. Castanho, S. Nickovic, S. Kazadzis, and J. Grabowski, Measurements of Saharan dust aerosols over the Eastern Mediterranean using elastic backscatter-Raman lidar, spectrophotometric and satellite observations in the frame of the EARLINET project, Atmos. Chem. Phys.5,2065 (2005).
    [10]A. Papayannis, V. Amiridis, L. Mona, G. Tsaknakis, D. Balis, J. Bosenberg, A. Chaikovski, F. De Tomasi, I. Grigorov, I. Mattis et al., Systematic lidar observations of Saharan dust over Europe in the frame of EARLINET (2000-2002), J. Geophys. Res. Atmos.113, D10204 (2008).
    [11]P. D. Dao, R. Farley, X. Tao, and C. S. Gardner, Lidar observations of the temperature profile between 25 and 103 km-evidence of strong tidal perturbatio, Geophys. Res. Lett. 22,2825(1995).
    [12]S. P. Namboothiri, N. Sugimoto, H. Nakane, I. Matsui, and Y. Murayama, Rayleigh lidar observations of temperature over Tsukuba:winter thermal structure and comparison studies, Earth Planets Space 51,825 (1999).
    [13]W. N. Chen, C. C. Tsao, and J. B. Nee, Rayleigh lidar temperature measurements in the upper troposphere and lower stratosphere, J. Atmos. Sol.-Terr. Phy.66,39 (2004).
    [14]Z. S. Liu, W. B. Chen, T. L. Zhang, J. W. Hair, and C. Y. She, An incoherent Doppler lidar for ground-based atmospheric wind profiling, Appl. Phys. B 64,561 (1997).
    [15]A. Papayannis, G. Ancellet, J. Pelon, and G. Megie, Multiwavelength lidar for ozone measurements in the troposphere and the lower stratosphere, Appl. Opt.29,467 (1990).
    [16]A. D. Papayannis, The EOLE Project:A multiwaveIength laser remote sensing (LIDAR) system for ozone and aerosol measurements in the troposphere and the lower stratosphere:1. Overview, Int. J. Remote Sens.16,3595 (1995).
    [17]A. Papayannis and G. Chourdakis, The EOLE Project:A multiwavelength laser remote sensing (lidar) system for ozone and aerosol measurements in the troposphere and the lower stratosphere. Part II:Aerosol measurements over Athens, Greece, Int. J. Remote Sens.23,179(2002).
    [18]H. Edner, G. W. Faris, A. Sunesson, and S. Svanberg, Atmospheric atomic mercury monitoring using differential absorption lidar techniques, Appl. Opt.28,921 (1989).
    [19]R. Gronlund, H. Edner, S. Svanberg, J. Kotnik, and M. Horvat, Mercury emissions from the Idrija mercury mine measured by differential absorption lidar techniques and a point monitoring absorption spectrometer, Atmos. Environ.39,4067 (2005).
    [20]V. J. Abreu, J. E. Barnes, and P. B. Hays, Observations of winds with an incoherent lidar detector, Appl. Opt.31.4509 (1992).
    [21]R. M. Huffaker and R. M. Hardesty, Remote sensing of atmospheric wind velocities using solid-state and CO2 coherent laser systems, Proc. IEEE 84,181 (1996).
    [22]C. L. Korb, B. M. Gentry, and S. X. F. Li, Edge technique Doppler lidar wind measurements with high vertical resolution, Appl. Opt.36,5976 (1997).
    [23]G. Cecchi, P. Mazzinghi, L. Pantani, R. Valentini, D. Tirelli, and P. Deangelis, Remote-sensing of chlorophyll-a fluorescence of vegetation canopies:1. near and far-field measurement techniques, Remote Sens. Environ.47,18 (1994).
    [24]R. Valentini, G. Cecchi, P. Mazzinghi, G. S. Mugnozza, G. Agati, M. Bazzani, P. Deangelis, F. Fusi, G. Matteucci, and V. Raimondi, Remote-sensing of chlorophyll-a fluorescence of vegetation canopies:2. physiological significance of fluorescence signal in response to environmental stresses, Remote Sens. Environ.47,29 (1994).
    [25]S. Svanberg, Fluorescence lidar monitoring of vegetation status, Phys. Scripta T58,79 (1995).
    [26]C. Buschmann, G. Langsdorf, and H. K. Lichtenthaler, Imaging of the blue, green, and red fluorescence emission of plants:an overview, Photosynthetica 38,483 (2000).
    [27]J. A. Shaw, N. L. Seldomridge, D. L. Dunkle, P. W. Nugent, L. H. Spangler, J. J. Bromenshenk, C. B. Henderson, J. H. Churnside, and J. J. Wilson, Polarization lidar measurements of honey bees in flight for locating land mines, Opt. Exp.13,5853 (2005).
    [28]M. Brydegaard, Z. G. Guan, M. Wellenreuther, and S. Svanberg, Insect monitoring with fluorescence lidar techniques:feasibility study, Appl. Opt.48,5668 (2009).
    [29]Z. G. Guan, M. Brydegaard, P. Lundin, M. Wellenreuther, A. Runemark, E. I. Svensson, and S. Svanberg, Insect monitoring with fluorescence lidar techniques:field experiments, Appl. Opt.49,5133(2010).
    [30]U. Reiter Domiaty, D. Gruber, and L. Windholz, Analysis of differential absorption techniques for formaldehyde monitoring in the ultraviolet spectral region, Application of Lidar to Current Atmospheric Topics 2833,70 (1996).
    [31]N. S. Prasad and A. R. Geiger, Remote sensing of propane and methane by means of a differential absorption lidar by topographic reflection, Opt. Eng.35,1105 (1996).
    [32]K. Ikuta, N. Yoshikane, N. Vasa, Y. Oki, M. Maeda, M. Uchiumi, Y Tsumura, J. Nakagawa, and N. Kawada, Differential absorption lidar at 1.67 μm for remote sensing of methane leakage, Jpn. J. Appl. Phys.38,110 (1999).
    [33]M. J. T. Milton, P. T. Woods, B. W. Jolliffe, N. R. W. Swann, and T. J. Mcilveen, Measurements of toluene and other aromatic-hydrocarbons by differential absorption lidar in the near-ultraviolet, Appl. Phys. B-Photo.55,41 (1992).
    [34]A. K. Chambers, M. Strosher, T. Wootton, J. Moncrieff, and P. McCready, Direct measurement of fugitive emissions of hydrocarbons from a refinery, J. Air Waste Manage.58 (2008).
    [35]X. Q. Liu, Y. C. Zhang, H. L. Hu, K. Tan, Z. M. Tao, S. S. Shao, K. F. Cao, X. Fang, and S. H. Yu, Mobile lidar for measurements of SO2 and O3 in the low troposphere, Proc. SPIE (2005).
    [36]Shunxing Hu, Huanling Hu, Yinchao Zhang, Jun Zhou, Guming Yue, Kun Tan, Yufeng Ji, and Ben Xu, A new differential absorption lidar for NO2 measurements using Raman-shifted technique, Chinese Optics Letters 1,435 (2003).
    [37]Z. Wang, J. Zhou, H. Hu, and Z. Gong, Evaluation of dual differential absorption lidar based on Raman-shifted Nd:YAG or KrF laser for tropospheric ozone measurements, Appl. Phys. B 62,143(1996).
    [38]Nanxiang Zhao, Qun Zhan, and Yihua Hu, The research of the CO2 differential absorption coherent lidar technology, Proc. SPIE 819222 (2011).
    [39]H. J. Kolsch, P. Rairoux, J. P. Wolf, and L. Woste, Simultaneous NO and NO2 DIAL measurement using BBO crystals, Appl. Opt.28,2052 (1989).
    [40]H. J. Kolsch, P. Rairoux, J. P. Wolf, and L. Woste, Comparative-study of nitric-oxide immission in the cities of Lyon, Geneva, and Stuttgart using a mobile differential absorption lidar system, Appl. Phys. B-Photo.54,89 (1992).
    [41]M. Alden, H. Edner, and S. Svanberg, Laser monitoring of atmospheric NO using ultraviolet differential-absorption techniques, Opt. Lett.7.543 (1982).
    [42]H. Edner, A. Sunesson, and S. Svanberg, NO plume mapping by laser-radar techniques. Opt. Lett.13,704(1988).
    [43]I. Wangberg, H. Edner, R. Ferrara, E. Lanzillotta, J. Munthe, J. Sommar, M. Sjoholm, S. Svanberg, and P. Weibring, Atmospheric mercury near a chlor-alkali plant in Sweden, Sci. Total Environ.304,29 (2003).
    [44]M. Sjoholm, P. Weibring, H. Edner, and S. Svanberg, Atomic mercury flux monitoring using an optical parametric oscillator based lidar system, Opt. Exp.12,551 (2004).
    [45]J. K. S. Ching, S. T. Shipley, and E. V. Browell, Evidence for cloud venting of mixed layer ozone and aerosols, Atmos. Environ.22,225SW (1988).
    [46]E. V. Browell, Differential absorption lidar sensing of ozone, Proc. Proc. IEEE (1989).
    [47]E. V. Browell, S. Ismail, and W. B. Grant, Differential absorption lidar (DIAL) measurements from air and space, Appl. Phys. B 67,399 (1998).
    [48]L. L. Pan, P. Konopka, and E. V. Browell, Observations and model simulations of mixing near the extratropical tropopause, J. Geophys. Res.-Atmos. Ill, D05106 (2006).
    [49]N. A. D. Richards, G. B. Osterman, E. V. Browell, J. W. Hair, M. Avery, and Q. B. Li, Validation of tropospheric emission spectrometer ozone profiles with aircraft observations during the intercontinental chemical transport experiment-B, J. Geophys. Res.-Atmos.113, D16S29 (2008).
    [50]T. Fukuchi, N. Goto, T. Fujii, and K. Nemoto, Error analysis of SO2 measurement by multiwavelength differential absorption lidar, Opt. Eng.38,141 (1999).
    [51]T. Fujii, T. Fukuchi, T. Nayuki, H. Hayami, K. Nemoto, and N. Takeuchi, Profiling of SO2, NO2, and O3 in the lower troposphere by multiwavelength differential absorption lidar, Proc. SPIE 4893 (2003).
    [52]Y. Murakami, S. Onishi, and N. Fujii, Determination of the product yield of SO molecules formed by the reaction of H atom with SO2 at high temperatures, Indian J. Chem.A.46,1101 (2007).
    [53]T. Nayuki, T. Fukuchi, N. Cao, H. Mori, T. Fujii, K. Nemoto, and N. Takeuchi, Sum-frequency-generation system for differential absorption lidar measurement of atmospheric nitrogen dioxide, Appl. Opt.41.3659 (2002).
    [54]N. Cao, T. Fukuchi, T. Fujii, R. L. Collins, S. Li, Z. Wang, and Z. Chen, Error analysis for NO2 DIAL measurement in the troposphere, Appl. Phys. B 82,141 (2006).
    [55]D. Bruneau, P. Quaglia, C. Flamant, M. Meissonnier, and J. Pelon, Airborne lidar LEANDRE Ⅱ for water-vapor profiling in the troposphere. I. System description, Appl. Opt.40 (2001).
    [56]C. Herold, D. Althausen, D. Muller, M. Tesche, P. Seifert, R. Engelmann, C. Flamant, R. Bhawar, and P. Di Girolamo, Comparison of Raman lidar observations of water vapor with COSMO-DE forecasts during COPS 2007, Weather Forecast 26,1056 (2011).
    [57]S. Bielli, M. Grzeschik, E. Richard, C. Flamant, C. Champollion, C. Kiemle, M. Dorninger, and P. Brousseau, Assimilation of water-vapour airborne lidar observations: impact study on the COPS precipitation forecasts, Q. J. Roy. Meteor. Soc.138,1652 (2012).
    [58]C. Kiemle, G. Ehret, and W. Renger, Tropospheric water-vapor profiling using an airborne DIAL system-results from the Efeda 91 experiment, Lidar for Remote Sensing 1714,251 (1992).
    [59]P. Di Girolamo, A. Behrendt, C. Kiemle, V. Wulfmeyer, H. Bauer, D. Summa, A. Doernbrack, and G. Ehret, Simulation of satellite water vapour lidar measurements: Performance assessment under real atmospheric conditions, Remote Sens. Environ.112, 1552(2008).
    [60]C. Kiemle, M. Wirth, A. Fix, G. Ehret, U. Schumann, T. Gardiner, C. Schiller, N. Sitnikov, and G. Stiller, First airborne water vapor lidar measurements in the tropical upper troposphere and mid-latitudes lower stratosphere:accuracy evaluation and intercomparisons with other instruments, Atmos. Chem. Phys.8,5245 (2008).
    [61]M. Wirth, A. Fix. P. Mahnke, H. Schwarzer, F. Schrandt, and G. Ehret, The airborne multi-wavelength water vapor differential absorption lidar WALES:system design and performance, Appl. Phys. B 96,201 (2009).
    [62]G. J. Koch, B. W. Barnes, M. Petros, J. Y. Beyon, F. Amzajerdian, J. R. Yu, R. E. Davis, S. Ismail, S. Vay, M. J. Kavaya et al., Coherent differential absorption lidar measurements of CO2, Appl. Opt.43,5092 (2004).
    [63]G. J. Koch, J. Y. Beyon, F. Gibert, B. W. Barnes, S. Ismail, M. Petros, P. J. Petzar, J. Yu, E. A. Modlin, K. J. Davis et al.. Side-line tunable laser transmitter for differential absorption lidar measurements of CO2:design and application to atmospheric measurements, Appl. Opt.47,944 (2008).
    [64]T. F. Refaat, S. Ismail. G. J. Koch, M. Rubio, T. L. Mack, A. Notari, J. E. Collins, J. Lewis, R. De Young, Y. Choi et al., Backscatter 2μm lidar validation for atmospheric CO2 differential absorption lidar applications, IEEE. T. Geosci. Remote 49,572 (2011).
    [65]E. C. Oerke, H. W. Dehne, F. Schonbeck, and A. Weber, Crop Production and Crop Protection:Estimated Losses in Major Food and Cash Crops. (Elsevier Science Ltd, Amsterdam,1994).
    [66]M. Joron and P. M. Brakefield, Captivity masks inbreeding effects on male mating success in butterflies, Nature 424,191 (2003).
    [67]J. L. Osborne, I. H. Williams, N. L. Carreck, G. M. Poppy, J. R. Riley, A. D. Smith, D. R. Reynolds, and A. S. Edwards, Harmonic radar:A new technique for investigating bumblebee and honeybee foraging flight, Acta Hortic,159 (1997).
    [68]J. W. Chapman, A. D. Smith, I. P. Woiwod, D. R. Reynolds, and J. R. Riley, Development of vertical-looking radar technology for monitoring insect migration, Comput. Electron. Agr.35,95 (2002).
    [69]J. W. Chapman, D. R. Reynolds, and A. D. Smith, Vertical-looking radar:A new tool for monitoring high-altitude insect migration, Bioscience 53,503 (2003).
    [70]P. Karlson and M. Luscher, Pheromones-new term for a class of biologically active substances, Nature 183,55 (1959).
    [71]A. Cork, S. N. Alam, F. M. A. Rouf, and N. S. Talekar, Female sex pheromone of brinjal fruit and shoot borer, Leucinodes orbonalis (Lepidoptera:Pyralidae):trap optimization and application in IPM trials, B. Entomol. Res.93,107 (2003).
    [72]O. B. Kovanci, C. Schal, J. F. Walgenbach, and G. G. Kennedy, Effects of pheromone loading, dispenser age, and trap height on pheromone trap catches of the Oriental fruit moth in apple orchards, Phytoparasitica 34,252 (2006).
    [73]J. R. Riley, P. Valeur, A. D. Smith, D. R. Reynolds, G. M. Poppy, and C. Lofstedt, Harmonic Radar as a means of tracking the pheromone-finding and pheromone-following flight of male moths, Journal of Insect Behavior 11,287 (1998).
    [74]R. D. Brazee, E. S. Miller, M. E. Reding, M. G. Klein, B. Nudd, and H. P. Zhu, A transponder for harmonic radar tracking of the black vine weevil in behavioral research, T.ASAE 48,831 (2005).
    [75]E. T. Cant, A. D. Smith, D. R. Reynolds, and J. L. Osborne, Tracking butterfly flight paths across the landscape with harmonic radar. Proceedings of the Royal Society B-Biological Sciences 272,785 (2005).
    [76]H. Edner, J. Johansson, S. Svanberg, and E. Wallinder, Fluorescence lidar multicolor imaging of vegetation, Appl. Opt.33,2471 (1994).
    [77]A. Samberg, Advanced oil pollution detection using an airborne hyperspectral lidar technology, Proc. SPIE 5791, Laser Radar Technology and Applications (2005).
    [78]K. S. Repasky, J. A. Shaw, R. Scheppele, C. Melton, J. L. Carsten, and L. H. Spangler, Optical detection of honeybees by use of wing-beat modulation of scattered laser light for locating explosives and land mines, Appl. Opt.45,1839 (2006).
    [79]D. S. Hoffman, A. R. Nehrir, K. S. Repasky, J. A. Shaw, and J. L. Carlsten, Range-resolved optical detection of honeybees by use of wing-beat modulation of scattered light for locating land mines, Appl. Opt.46,3007 (2007).
    [80]M. Brydegaard, P. Lundin, Z. G. Guan, A. Runemark, S. Akesson, and S. Svanberg, Feasibility study:fluorescence lidar for remote bird classification, Appl. Opt.49,4531 (2010).
    [81]P. Lundin, P. Samuelsson, S. Svanberg, A. Runemark, S. Akesson, and M. Brydegaard, Remote nocturnal bird classification by spectroscopy in extended wavelength ranges, Appl. Opt.50,3396(2011).
    [82]H. Y. Cen and Y. He, Theory and application of near infrared reflectance spectroscopy in determination of food quality, Trends Food Sci. Tech.18.72 (2007).
    [83]W. Wang and J. Paliwal, Near-infrared spectroscopy and imaging in food quality and safety. Sensing and Instrumentation for Food Quality and Safety 1,193 (2007).
    [84]A. A. Gowen, B. K. Tiwari, P. J. Cullen, K. McDonnell, and C. P. O'Donnell, Applications of thermal imaging in food quality and safety assessment, Trends Food Sci. Tech.21,190(2010).
    [85]Da-Wen Sun, Hyper spectral Imaging for Food Quality Analysis and Control. (Elsevier Inc.,2010).
    [86]L. M. Dale, A. Thewis, C. Boudry, I. Rotar, P. Dardenne, V. Baeten, and J. A. F. Pierna, Hyperspectral imaging applications in agriculture and agro-food product quality and safety control:a review, Appl. Spectrosc. Rev.48,142 (2013).
    [87]M. Lewander. Z. G. Guan, L. Persson, A. Olsson, and S. Svanberg, Food monitoring based on diode laser gas spectroscopy, Appl. Phys. B 93,619 (2008).
    [88]H. Yang and J. Irudayaraj. Rapid detection of foodborne microorganisms on food surface using Fourier transform Raman spectroscopy, J. Mol. Struct.646,35 (2003).
    [89]C. Shende, A. Gift, F. Inscore, P.'Maksymiuk, and S. Farquharson, Inspection of pesticide residues on food by surface-enhanced Raman spectroscopy, Proc. SPIE 5271 (2004).
    [90]M. Lin, L. He, J. Awika. L. Yang, D. R. Ledoux, H. Li, and A. Mustapha, Detection of melamine in gluten, chicken feed, and processed foods using surface enhanced Raman spectroscopy and HPLC, J. Food Sci.73, T129 (2008).
    [91]M. S. Kim, Y. R. Chen, and P. M. Mehl, Hyperspectral reflectance and fluorescence imaging system for food quality and safety, T. ASAE 44,721 (2001).
    [92]A. M. Lefcourt, M. S. Kim, and Y. R. Chen, Automated detection of fecal contamination of apples by multispectral laser-induced fluorescence imaging, Appl. Opt.42,3935 (2003).
    [93]Geoffrey V. Stagg and David J. Millin, The nutritional and therapeutic value of tea-a review, Journal of the Science of Food and Agriculture 26,1439 (1975).
    [94]A. Balentine Douglas, E. Harbowy Matthew, and N.Graham Harold,Tea:the plant and its manufacture; chemistry and consumption of the beverage, in Caffeine, edited by Gene A. Spiller (CRC Press 1998), pp.65-66.
    [95]P. Okinda Owuor and Martin Obanda, The effects of blending clonal leaf on black tea quality, Food Chemistry 66,147 (1998).
    [96]P. Okinda Owuor and Martin Obanda, Comparative responses in plain black tea quality parameters of different tea clones to fermentation temperature and duration, Food Chemistry 72,319 (2001).
    [97]P.O. Owuor, N. W. Francis, and K. N. Wilson, Influence of region of production on relative clonal plain tea quality parameters in Kenya, Food Chemistry 119,1168 (2010).
    [98]X. Li and Y. He, Classification of tea grade by multi-spectral images and combined features, Transactions of the Chinese Society for Agricultural Machinery 40 Supplement, 113(2009).
    [99]R. Dutta, E. L. Hines, J. W. Gardner, K. R. Kashwan, and A. Bhuyan, Tea quality prediction using a tin oxide-based electronic nose:an artificial intelligence approach, Sensor. Actuat. B-Chem.94,228 (2003).
    [100]R. Dutta, K. R. Kashwan, M. Bhuyan, E. L. Hines, and J. W. Gardner, Electronic nose based tea quality standardization, Neural Networks 16,847 (2003).
    [101]H. C. Yu and J. Wang, Discrimination of Long Jing green-tea grade by electronic nose. Sensor. Actuat. B-Chem.122,134 (2007).
    [102]P. Ivarsson, S. Holmin, N. E. Hojer, C. Krantz-Rulcker, and F. Winquist, Discrimination of tea by means of a voltammetric electronic tongue and different applied waveforms, Sensor. Actuat. B-Chem.76,449 (2001).
    [103]Q. S. Cheng, S. Q. Jiang, and X. Y. Wang, Discrimination of tea's quality level based on electronic tongue and pattern recognition, Food and Machinery 24,124 (2008).
    [104]S. H. Yan, Evaluation of the composition and sensory properties of tea using near infrared spectroscopy and principal component analysis, Journal of Near Infrared Spectroscopy 13,313 (2005).
    [105]X. H. Gu, Y. Feng, and J. Tang, Discrimination of tea varieties by mid-infrared spectroscopy combined with PLS. Journal of Analytical Science 24,131 (2008).
    [106]P. Bouguer, Essai d'Optique, sur la gradation de la lumiere, France:Claude Jombert,16 (1729).
    [107]J. H. Lambert, Photometry, or, On the measure and gradations of light, colors, and shade, Germany:Eberhardt Klett,391 (1760).
    [108]A. Beer, Determination of the absorption of red light in colored liquids. Annalen der Physik und Chemie 86,78 (1852).
    [109]R. Cammack, T. Atwood, P. Campbell, H. Parish, A. Smith, F. Vella, and J. Stirling, Oxford Dictionary of Biochemistry and Molecular Biology,2 ed. (Oxford University Press, Oxford).
    [110]W. Demtroder, Laser Spectroscopy Vol.1:Basic Principles. (Springer-Verlag, Berlin, Heidelberg,2007).
    [111]S. S. Penner, Quantitative Molecular Spectroscopy and Gas Emissivities. (Addison-Welsley, Massachusetts,1959).
    [112]T. N. Anderson, R. P. Lucht, R. Barron-Jimenez, S. F. Hanna, J. A. Caton, T. Walther, S. Roy, M. S. Brown, J. R. Gord, I. Critchley et al., Combustion exhaust measurements of nitric oxide with an ultraviolet diode-laser-based absorption sensor, Appl. Opt.44,1491 (2005).
    [113]T. N. Anderson, J. K. Magnuson, and R. P. Lucht, Diode-laser-based sensor for ultraviolet absorption measurements of atomic mercury, Appl. Phys. B 87,341 (2007).
    [114]W. Demtroder, Atoms,Molecules and Photons:An Introduction to Atomic-, Molecular-and Quantum-Physics. (Springer-Verlag Berlin Heidelberg,2010).
    [115]Gordon W. F. Drake, Handbooks of Atomic, Molecular, and Optical Physics. (Springer, 2006).
    [116]褚圣麟,原子物理学.(高等教育出版社,北京,1979).
    [117]F. Bitter, Magnetic resonance in radiating or absorbing atoms, Appl. Opt.1,1 (1962).
    [118]W. G. Schweitzer, Hyperfine structure and isotope shifts in 2537 A line of mercury by a new interferometric method, J. Opt. Soc. Am.53,1055 (1963).
    [119]G. C. King and A. Adams, Accurate determination of lifetime of 63p state in mercury using a new electron-photon delayed coincidence apparatus, J. Phys. B-At. Mol. Opt.7, 1712(1974).
    [120]E. C. Benck, J. E. Lawler, and J. T. Dakin, Lifetimes, branching ratios, and absolute transition-probabilities in Hg-I, J. Opt. Soc. Am. B 6,11 (1989).
    [121]O. Axner, J. Gustafsson, N. Omenetto, and J. D. Winefordner. Line strengths, A-factors and absorption cross-sections for fine structure lines in multiplets and hyperfine structure components in lines in atomic spectrometry-a user's guide, Spectrochim. Acta B 59,1 (2004).
    [122]J. P. Jacobs and R. B. Warrington, Pressure shift and broadening of the 254-nm intercombination line of mercury by N-2, Phys. Rev. A 68,032722 (2003).
    [123]J. Alnis, U. Gustafsson, G. Somesfalean, and S. Svanberg, Sum-frequency generation with a blue diode laser for mercury spectroscopy at 254 nm, Appl. Phys. Lett.76,1234 (2000).
    [124]J. E. Sansonetti and W. C. Martin, in http://www.nist.gov/pml/data/handbook/index.cfm (National Institute of Standards and Technology,2005).
    [125]J. R. Fuhr and W. L. Wiese, NIST Atomic Transition Probability Tables, 77th ed. (CRC Press, Boca Raton,1996).
    [126]Gerhard Herzberg, Molecular Spectra and Molecular Structure I:Spectra of Diatomic Molecules. (Van Nostrand Reinhold Company, New York,1950).
    [127]R.A. Mcclatchey, W.S. Benedict, S.A. Clough, D.E. Burch, R.F. Calfee, K. Fox, L.S. Rothman, and J.S. Garing, AFCRL atmospheric absorption line parameters compilation, Environmental Research Papers 434,1 (1973).
    [128]L. S. Rothman, I. E. Gordon, A. Barbe, D. C. Benner, P. E. Bernath, M. Birk, V. Boudon, L. R. Brown, A. Campargue, J. P. Champion et al., The HITRAN 2008 molecular spectroscopic database, J. Quant. Spectrosc.& Rad. Transf.110,533 (2009).
    [129]D. A. Long, D. K. Havey, M. Okumura, C. E. Miller, and J. T. Hodges, O2 A-band line parameters to support atmospheric remote sensing, J. Quant. Spectrosc.& Rad. Transf. 111,2021 (2010).
    [130]http://www.spectralcalc.com
    [131]Sir J. F. W. Herschel, On a case of superficial colour presented by a homogeneous liquid internally colourless, Phil. Trans. Roy. Soc.135,143 (1845).
    [132]A. Jablonski, Ober den Mechanisms des Photolumineszenz von Farbstoffphosphoren, Z. Phys.94,38(1935).
    [133]J. Widengreny and R. Rigler, Mechanisms of photobleaching investigated by fluorescence correlation spectroscopy, Bioimaging 4,149 (1996).
    [134]T. Zal and N. R. J. Gascoigne, Photobleaching-corrected FRET efficiency imaging of live cells, Biophys. J.86.3923 (2004).
    [135]I. Barman, C. R. Kong, G. P. Singh, and R. R. Dasari, Effect of photobleaching on calibration model development in biological Raman spectroscopy, J. Biomed. Opt.16, 011004(2011).
    [136]C. L. Wey, R. A. Cone, and M. A. Edidin, Lateral diffusion of Rhodopsin in photoreceptor cells measured by fluorescence photobleaching and recovery, Biophys. J. 33,225(1981).
    [137]G. M. Hagen, D'. A. Roess, G. C. de Leon, and B. G. Barisas, High probe intensity photobleaching measurement of lateral diffusion in cell membranes, J. Fluoresc.15,873 (2005).
    [138]E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F.Hess, Imaging intracellular fluorescent proteins at nanometer resolution, Science 313,1642 (2006).
    [139]M. J. Rust, M. Bates, and X. W. Zhuang, Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM), Nat. Methods 3,793 (2006).
    [140]Joseph R. Lakowicz, Principles of Fluorescence Spectroscopy,3 ed. (Springer, Singapore,2006).
    [141]Manfred Gottwald and Heinrich Bovensmann, SCIAMACHY-Exploring the Changing Earth's Atmosphere. (Springer, Netherlands,2011).
    [142]http://en.wikipedia.org/wiki/File:Atmospheric_electromagnetic_opacity.syg
    [143]E. J. McCartney, Optics of the Atmosphere:Scattering by Molecules and Particles. (John Wiley & Sons, New York, London, Sydney, Toronto,1976).
    [144]Lord Rayleigh and J.W. Strutt, On the transmission of light through an atmosphere containing small particles in suspension and on the origin of the blue of the sky, Philos. Mag. ⅩLⅦ,375(1899).
    [145]R. Penndorf. Tables of the refractive index for standard air and the Rayleigh scattering coefficient for the spectral region between 0.2 and 20.0 μm and their application to atmospheric optics, J. Opt. Soc. Am.47,176 (1957).
    [146]E. R. Peck and K. Reeder, Dispersion of air, J. Opt. Soc. Am.62,958 (1972).
    [147]A. Bucholtz, Rayleigh-scattering calculations for the terrestrial atmosphere, Appl. Opt. 34,2765(1995).
    [148]Frank Trager, Handbook of Lasers and Optics. (Springer. New York,2007).
    [149]G. Mie, Beitrage zur Optik truber Medien, speziell kolloidaler Metalllosungen, Ann. Phys.25,377(1908).
    [150]W. J. Wiscombe, Improved Mie scattering algorithms, Appl. Opt.19,1505 (1980).
    [151]Mie Scattering Calculator (2011). http://omlc.ogi.edu/cale/mie_calc.html
    [152]Claus Weitkamp, Lidar:Range-Resolved Optical Remote Sensing of the Atmosphere. (Springer Science+Business Media Inc., Singapore,2005).
    [153]R. L. Sutherland, D. G. McLean, and S. Kirkpatrick, Handbook of Nonlinear Optics. (CRC Press, New York, Basel,2003).
    [154]P. A. Franken, G. Weinreich, C. W. Peters, and A. E. Hill, Generation of optical harmonics, Phys. Rev. Lett.7,118 (1961).
    [155]季家镕,高等光学教程-光学的基本电磁理论.(科学出版社,2009).
    [156]K. Kato,2nd-harmonic generation to 2048 A in β-BaB2O4, IEEE J. Quantum Elect.22, 1013(1986).
    [157]D. X. Zhang, Y. F. Kong, and J. Y. Zhang, Optical parametric properties of 532-nm-pumped beta-barium-borate near the infrared absorption edge, Opt. Commun. 184,485 (2000).
    [158]S. Wu, G. A. Blake, Z. Y. Sun, and J. W. Ling, Simple, high-performance type Ⅱ beta-BaB2O4 optical parametric oscillator, Appl. Opt.36,5898 (1997).
    [159]P. Bourdon, M. Pealat, and V. I. Fabelinsky, Continuous-wave diode-laser injection-seeded Beta-Barium Borate optical parametric oscillator-a reliable source for spectroscopic studies, Opt. Lett.20,474 (1995).
    [160]G. Ehret, A. Fix, V. Weiss, G. Poberaj, and T. Baumert, Diode-laser-seeded optical parametric oscillator for airborne water vapor DIAL application in the upper troposphere and lower stratosphere, Appl. Phys. B 67,427 (1998).
    [161]S. Wu, V. A. Kapinus, and G. A. Blake, A nanosecond optical parametric generator/amplifier seeded by an external cavity diode laser, Opt. Commun.159,74 (1999).
    [162]A. Amediek, A. Fix, M. Wirth, and G. Ehret, Development of an OPO system at 1.57 um for integrated path DIAL measurement of atmospheric carbon dioxide, Appl. Phys. B 92, 295 (2008).
    [163]M. J. T. Milton, T. D. Gardiner, G. Chourdakis, and P. T. Woods, Injection seeding of an infrared optical parametric oscillator with a tunable diode-laser, Opt. Lett.19,281 (1994).
    [164]M. J. T. Milton, T. D. Gardiner, F. Molero, and J. Galech, Injection-seeded optical parametric oscillator for range-resolved DIAL measurements of atmospheric methane, Opt. Commun.142,153 (1997).
    [165]F. P. Schafer, W. Schmidt, and J. Volze, Organic dye solution laser, Appl. Phys. Lett.9, 306(1966).
    [166]P. P. Sorokin and J. R. Lankard, Stimulated emission observed from an organic dye chloro-aluminum phthalocyanine, IBM J. Res. Dev.10,162 (1966).
    [167]Michael Stuke, Dye Lasers:25 Years. (Springer-Verlag,1992).
    [168]M. Maeda, Laser Dyes. (Academic, New York,1984).
    [169]F.J. Duarte and L.W. Hillman, Dye Laser Principles. (Academic, Boston,1996).
    [170]I. P. Kaminow, L. W. Stulz, E. Chandros, and C. A. Pryde, Photobleaching of organic laser dyes in solid matrices, Appl. Opt.11,1563 (1972).
    [171]H. S. Pilloff, Simultaneous two-wavelength selection in the N2 laser-pumped dye laser, Appl. Phys. Lett.21,339 (1972).
    [172]K. A. Fredriksson, DIAL technique for pollution monitoring-improvements and complementary systems, Appl. Opt.24,3297 (1985).
    [173]H. Edner, K. Fredriksson, A. Sunesson, S. Svanberg. L. Uneus, and W. Wendt, Mobile remote-sensing system for atmospheric monitoring, Appl. Opt.26,4330 (1987).
    [174]A. Bendavid. S. L. Emery, S. W. Gotoff, and F. M. Damico, High pulse repetition frequency, multiple wavelength, pulsed CO2 lidar system for atmospheric transmission and target reflectance measurements, Appl. Opt.31,4224 (1992).
    [175]R. Toriumi, H. Tai, and N. Takeuchi, Tunable solid-state blue laser differential absorption lidar system for NO2 monitoring, Opt. Eng.35,2371 (1996).
    [176]M. Dell'Aglio, A. Kholodnykh, R. Lassandro, and O. De Pascale, Development of a Ti Sapphire DIAL system for pollutant monitoring and meteorological applications, Optics and Lasers in Engineering 37,233 (2002).
    [177]D. N. Whiteman, S. H. Melfi, and R. A. Ferrare, Raman lidar system for the measurement of water-vapor and aerosols in the earths atmosphere, Appl. Opt.31,3068 (1992).
    [178]Y. M. Noh. Y. J. Kim, B. C. Choi, and T. Murayama, Aerosol lidar ratio characteristics measured by a multi-wavelength Raman lidar system at Anmyeon Island, Korea, Atmos. Res.86,76 (2007).
    [179]D.V. O'Connor and D. Phillips, Time-correlated single photon counting. (Academic Press, London,1984).
    [180]R. K. Newsom, D. D. Turner, B. Mielke, M. Clayton, R. Ferrare, and C. Sivaraman, Simultaneous analog and photon counting detection for Raman lidar, Appl. Opt.48, 3903 (2009).
    [181]J. E. M. Goldsmith, F. H. Blair, S. E. Bisson, and D. D. Turner, Turn-key Raman lidar for profiling atmospheric water vapor, clouds, and aerosols, Appl. Opt.37,4979 (1998).
    [182]M. McGill, D. Hlavka, W. Hart, V. S. Scott, J. Spinhirne, and B. Schmid, Cloud physics lidar:instrument description and initial measurement results, Appl. Opt.41,3725 (2002).
    [183]U. von Zahn and J. Hoffner, Mesopause temperature profiling by potassium lidar, Geophys. Res. Lett.23,141 (1996).
    [184]A. Behrendt, T. Nakamura, and T. Tsuda, Combined temperature lidar for measurements in the troposphere, stratosphere, and mesosphere, Appl. Opt.43,2930 (2004).
    [185]W. Becker, Advanced Time-Correlated Single Photon Counting Techniques. (Springer, Verlag Berlin Heidelberg,2005).
    [186]A. Liebert, H. Wabnitz, J. Steinbrink, H. Obrig, M. Moller, R. Macdonald, A. Villringer, and H. Rinneberg, Time-resolved multidistance near-infrared spectroscopy of the adult head:intracerebral and extracerebral absorption changes from moments of distribution of times of flight of photons, Appl. Opt.43,3037 (2004).
    [187]M. Wolf, M. Ferrari, and V. Quaresima, Progress of near-infrared spectroscopy and topography for brain and muscle clinical applications, J. Biomed. Opt.12,062104 (2007).
    [188]T. Svensson, E. Alerstam, D. Khoptyar, J. Johansson, S. Folestad, and S. Andersson-Engels, Near-infrared photon time-of-flight spectroscopy of turbid materials up to 1400 nm, Rev. Sci. Instrum.80,063105 (2009).
    [189]L. Mei, P. Lundin, S. Andersson-Engels, S. Svanberg, and G. Somesfalean, Characterization and validation of the frequency-modulated continuous-wave technique for assessment of photon migration in solid scattering media, Appl. Phys. B 109,467 (2012).
    [190]R. J. Allen and W. E. Evans, Laser radar (Lidar) for mapping aerosol structure, Rev. Sci. Instrum.43,1422(1972).
    [191]P. Weibring, H. Edner, and S. Svanberg, Versatile mobile lidar system for environmental monitoring, Appl. Opt.42,3583 (2003).
    [192]G. R. Kirchhoff and R. Bunsen, Chemical analysis by spectrum-observation, Philos. Mag.20,89(1860).
    [193]X. P. Zhu and S. D. Alexandratos, Determination of trace levels of mercury in aqueous solutions by inductively coupled plasma atomic emission spectrometry:Elimination of the'memory effect', Microchem. J.86,37 (2007).
    [194]H. Shoaee, M. Roshdi, N. Khanlarzadeh, and A. Beiraghi, Simultaneous preconcentration of copper and mercury in water samples by cloud point extraction and their determination by inductively coupled plasma atomic emission spectrometry, Spectrochim. Acta A 98,70 (2012).
    [195]S. C. Hight and J. Cheng, Determination of methylmercury and estimation of total mercury in seafood using high performance liquid chromatography (HPLC) and inductively coupled plasma-mass spectrometry (ICP-MS):Method development and validation, Anal. Chim. Acta 567,160 (2006).
    [196]M. H. M. Chan, I. H. S. Chan, A. P. S. Kong, R. Osaki, R. C. K. Cheung, C. S. Ho, G. W. K. Wong, P. C. Y. Tong, J. C. N. Chan, and C. W. K. Lam, Cold-vapour atomic absorption spectrometry underestimates total mercury in blood and urine compared to inductively-coupled plasma mass spectrometry:an important factor for determining mercury reference intervals, Pathology 41,467 (2009).
    [197]A. Walsh. The application of atomic absorption spectra to chemical analysis, Spectrochim. Acta 7,108(1955).
    [198]Jose A. C. Broekaert, Analytical Atomic Spectrometry with Flames and Plasmas. (Wiley-VCH Verlag GmbH & Co. KGaA,2002).
    [199]D. J. David, The application of atomic absorption to chemical analysis-a review, Analyst 85,779(1960).
    [200]R. L. Franklin, J. E. Bevilacqua, and D. I. T. Favaro, Organic and total mercury determination in sediments by cold vapor atomic absorption spectrometry:methodology validation and uncertainty measurements, Quim. Nova 35,45 (2012).
    [201]A. Q. Shah, T. G. Kazi, J. A. Baig, H. I. Afridi, and M. B. Arain, Simultaneously determination of methyl and inorganic mercury in fish species by cold vapour generation atomic absorption spectrometry, Food Chemistry 134,2345 (2012).
    [202]E. H. Collins, The Zeeman effect of the hyperfine structure of optically excited mercury resonance radiation, Phys. Rev.56,48 (1939).
    [203]邓勃,原子吸收老谱分析的原理、技术和应用.(清华大学出版社,北京,2004).
    [204]T. Hadeishi and R. D. Mclaughl, Hyperfine Zeeman effect atomic absorption spectrometer for mercury. Science 174,404 (1971).
    [205]F. J. Fernandez, S. A. Myers, and W. Slavin, Background correction in atomic-absorption utilizing the Zeeman effect, Anal. Chem.52,741 (1980).
    [206]M. J. da Silva, A. P. S. Palm, M. F. Pimentel, M. L. Cervera, and M. de la Guardia, Determination of mercury in rice hy cold vapor atomic fluorescence spectrometry after microwave-assisted digestion, Anal. Chim. Acta 667,43 (2010).
    [207]B. Wang, C. B. Zheng, J. W. Wang, L. Feng, S. B. Li, D. Z. Dan, and G. Leng, Determination of trace amounts of mercury in sediments by sequential injection cold vapor atomic fluorescence spectrometry coupled with microwave-assisted digestion, Spectrosc. Spect. Anal.32,1106 (2012).
    [208]C. M. Banic, S. T. Beauchamp, R. J. Tordon, W. H. Schroeder, A. Steffen, K. A. Anlauf, and H. K. T. Wong, Vertical distribution of gaseous elemental mercury in Canada, J. Geophys. Res.-Atmos.108,4264 (2003).
    [209]F. J. G. Laurier, R. P. Mason, L. Whalin, and S. Kato, Reactive gaseous mercury formation in the North Pacific ocean's marine boundary layer:A potential role of halogen chemistry, Geochim. Cosmochim. Ac.67, A245 (2003).
    [210]G. Berden, R. Peeters, and G. Meijer, Cavity ring-down spectroscopy:experimental schemes and applications, Int. Rev. Phys. Chem.19,565 (2000).
    [211]G. Berden and R. Engeln, Cavity Ring-Down Spectroscopy:Techniques and Applications. (Wiley-Blackwell,2009).
    [212]R. Provencal, M. Gupta, T. G. Owano, D. S. Baer, K. N. Ricci, A. O'Keefe, and J. R. Podolske, Cavity-enhanced quantum-cascade laser-based instrument for carbon monoxide measurements, Appl. Opt.44,6712 (2005).
    [213]J. M. Langridge, T. Laurila, R. S. Watt, R. L. Jones, C. F. Kaminski, and J. Hult, Cavity enhanced absorption spectroscopy of multiple trace gas species using a supercontinuum radiation source, Opt. Exp.16,10178 (2008).
    [214]S. Spuler, M. Linne, A. Sappey, and S. Snyder, Development of a cavity ringdown laser absorption spectrometer for detection of trace levels of mercury, Appl. Opt.39,2480 (2000).
    [215]X. Fain, H. Moosmuller, and D. Obrist, Toward real-time measurement of atmospheric mercury concentrations using cavity ring-down spectroscopy, Atmos. Chem. Phys.10, 2879(2010).
    [216]M. Buchwitz, V. V. Rozanov, and J. P. Burrows, A near-infrared optimized DOAS method for the fast global retrieval of atmospheric CH4, CO, CO2, H2O, and N2O total column amounts from SCIAMACHY ENVISAT-1 nadir radiances, J. Geophys. Res. Atmos.105,15231 (2000).
    [217]F. Wittrock, A. Richter, H. Oetjen, J. P. Burrows, M. Kanakidou, S. Myriokefalitakis, R. Volkamer, S. Beirle, U. Platt, and T. Wagner. Simultaneous global observations of glyoxal and formaldehyde from space, Geophys. Res. Lett.33, L16804 (2006).
    [218]M. Buchwitz,O. Schneising, J. P. Burrows, H. Bovensmann, M. Reuter, and J. Notholt, First direct observation of the atmospheric CO2 year-to-year increase from space, Atmos. Chem. Phys.7,4249 (2007).
    [219]H. Edner, A. Sunesson, S. Svanberg, L. Uneus, and S. Wallin, Differential optical-absorption spectroscopy system used for atmospheric mercury monitoring, Appl. Opt.25,403(1986).
    [220]R. Ebinghaus, H. H. Kock, C. Temme, J. W. Einax, A. G. Lowe, A. Richter, J. P. Burrows, and W. H. Schroeder, Antarctic springtime depletion of atmospheric mercury, Environ. Sci. Technol.36,1238 (2002).
    [221]E. D. Thoma, C. Secrest, E. S. Hall, D. L. Jones, R. C. Shores, M. Modrak, R. Hashmonay, and P. Norwood. Measurement of total site mercury emissions from a chlor-alkali plant using ultraviolet differential optical absorption spectroscopy and cell room roof-vent monitoring, Atmos. Environ.43.753 (2009).
    [222]M. L. Huber, A. Laesecke, and D. G. Friend, Correlation for the vapor pressure of mercury, Ind. Eng. Chem. Res.45,7351 (2006).
    [223]R. Ferrara, B. Maserti, A. Petrosino, and R. Bargagli, Mercury levels in rain and air and the subsequent washout mechanism in a central Italian region, Atmos. Environ.20,125 (1986).
    [224]A. A. Kosterev, A. L. Malinovsky, F. K. Tittel, C. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, and A. Y. Cho, Cavity ringdown spectroscopic detection of nitric oxide with a continuous-wave quantum-cascade laser, Appl. Opt.40,5522 (2001).
    [225]A. Kosterev, G. Wysocki, Y. Bakhirkin, S. So, R. Lewicki, M. Fraser, F. Tittel. and R. F. Curl, Application of quantum cascade lasers to trace gas analysis, Appl. Phys. B 90,165 (2008).
    [226]L. Menzel, A. A. Kosterev, R. F. Curl, F. K. Tittel, C. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, A. Y. Cho et al., Spectroscopic detection of biological NO with a quantum cascade laser, Appl. Phys. B 72,859 (2001).
    [227]D. D. Nelson, J. H. Shorter, J. B. McManus, and M. S. Zahniser, Sub-part-per-billion detection of nitric oxide in air using a thermoelectrically cooled mid-infrared quantum cascade laser spectrometer, Appl. Phys. B 75,343 (2002).
    [228]A. Elia, P. M. Lugara, and C. Giancaspro, Photoacoustic detection of nitric oxide by use of a quantum-cascade laser, Opt. Lett.30,988 (2005).
    [229]A. Elia, C. Di Franco, P. M. Lugara, and G. Scamarcio, Photoacoustic spectroscopy with quantum cascade lasers for trace gas detection, Sensors-Basel 6,1411 (2006).
    [230]D. D. Nelson, M. S. Zahniser, J. B. McManus, C. E. Kolb, and J. L. Jimenez, A tunable diode laser system for the remote sensing of on-road vehicle emissions, Appl. Phys. B 67, 433 (1998).
    [231]G. Dooly, C. Fitzpatrick, P. Chambers, and E. Lewis, Deep UV based differential optical absorption spectroscopy (DOAS) system for the monitoring of nitric oxide, Third European Workshop on Optical Fibre Sensors 6619, J6191 (2007).
    [232]N. Menyuk, D. K. Killinger, and W. E. Defeo, Remote-sensing of NO using a differential absorption lidar, Appl. Opt.19,3282 (1980).
    [233]R. Toriumi, H. Tai, H. Kuze, and N. Takeuchi, Tunable, UV solid-state lidar for measurement of nitric oxide distribution, Jpn. J. Appl. Phys.38,6372 (1999).
    [234]S. Archer, Measurement of nitric-oxide in biological models, FASEB J.7,349 (1993).
    [235]Y. A. Bakhirkin, A. A. Kosterev, C. Roller, R. F. Curl, and F. K. Tittel, Mid-infrared quantum cascade laser based off-axis integrated cavity output spectroscopy for biogenic nitric oxide detection, Appl. Opt.43,2257 (2004).
    [236]M. J. Thorpe, D. Balslev-Clausen, M. S. Kirchner, and J. Ye, Cavity-enhanced optical frequency comb spectroscopy:application to human breath analysis, Opt. Exp.16,2387 (2008).
    [237]M. Vrekoussis, F. Wittrock, A. Richter, and J. P. Burrows, GOME-2 observations of oxygenated VOCs:what can we learn from the ratio glyoxal to formaldehyde on a global scale?, Atmos. Chem. Phys.10 (2010).
    [238]R. Volkamer, I. Barnes, U. Platt, L. T. Molina, and M. J. Molina, Remote sensing of glyoxal by differential optical absorption spectroscopy (DOAS):Advancements in simulation chamber and field experiments, Proceedings of the NATO Advances Research Workshop on Environmental Simulation Chambers:Application to Atmospheric Chemical Processes 62 (2006).
    [239]T. M. Fu, D. J. Jacob, F. Wittrock, J. P. Burrows, M. Vrekoussis, and D. K. Henze, Global budgets of atmospheric glyoxal and methylglyoxal, and implications for formation of secondary organic aerosols, J. Geophys. Res.-Atmos.113 (2008).
    [240]C. Lerot,I. de Smedt, T. Stavrakou, Jean-Francois Muller, and M. van Roozendael, Combined formaldehyde and glyoxal observvations from GOME-2 backscattered light measurements, Proc. European Geosciences Union (2009).
    [241]M. Vrekoussis, F. Wittrock, A. Richter, and J. P. Burrows, Temporal and spatial variability of glyoxal as observed from space, Atmos. Chem. Phys.9,4485 (2009).
    [242]C. Lerot, T. Stavrakou, I. De Smedt, J. F. Muller, and M. Van Roozendael, Glyoxal vertical columns from GOME-2 backscattered light measurements and comparisons with a global model, Atmos. Chem. Phys.10,12059 (2010).
    [243]R. A. Washenfelder, A. O. Langford, H. Fuchs, and S. S. Brown, Measurement of glyoxal using an incoherent broadband cavity enhanced absorption spectrometer, Atmos. Chem. Phys.8,7779 (2008).
    [244]R. Volkamer, P. Spietz, J. Burrows, and U. Platt, High-resolution absorption cross-section of glyoxal in the UV-vis and IR spectral ranges. J. Photoch. Photobio. A 172,35 (2005).
    [245]C. Buschmann and H. K. Lichtenthaler, Principles and characteristics of multi-colour fluorescence imaging of plants, Journal of Plant Physiology 152,297 (1998).
    [246]Z. G. Cerovic, G. Samson, F. Morales, N. Tremblay, and I. Moya, Ultraviolet-induced fluorescence for plant monitoring:present state and prospects, Agronomie 19,543 (1999).
    [247]A. A. Gitelson, C. Buschmann, and H. K. Lichtenthaler, Leaf chlorophyll fluorescence corrected for re-absorption by means of absorption and reflectance measurements, Journal of Plant Physiology 152,283 (1998).
    [248]E. W. Chappelle, F. M. Wood, J. E. Mcmurtrey, and W. W. Newcomb, Laser-induced fluorescence of green plants.1.A technique for the remote detection of plant stress and species differentiation, Appl. Opt.23,134 (1984).
    [249]A. I. Grishin, O. V. Kharchenko, G. G. Matvienko, O. A. Romanovskii, N. A. Vorob'eva, and A. P. Zotikova. The method of laser-induced fluorescence in the problems of investigation of the photosynthesis system of trees, Seventh International Symposium on Atmospheric and Ocean Optics 4341,634 (2000).
    [250]S. Apostol, A. A. Viau, N. Tremblay, J. M. Briantais, S. Prasher, L. E. Parent, and I. Moya, Laser-induced fluorescence signatures as a tool for remote monitoring of water and nitrogen stresses in plants, Can. J. Remote. Sens.29,57 (2003).
    [251]I. I. Tartachnyk, I. Rademacher, and W. Kuhbauch, Distinguishing nitrogen deficiency and fungal infection of winter wheat by laser-induced fluorescence, Precision Agriculture 7,281 (2006).
    [252]A. S. Gouveia-Neto, E. A. Silva, E. B. Costa, L. A. Bueno, L. M. H. Silva, M. M. C. Granja, M. J. L. Medeiros, T. J. R. Camara, and L. G. Willadino, Plant abiotic stress diagnostic by laser induced chlorophyll fluorescence spectral analysis of in vivo leaf tissue of biofuel species, Proc. SPIE 7568 (2010).
    [253]Raymond B. Cattell, The Scree test for the number of factors, Multivariate Behavioral Research 1,245 (1966).
    [254]I. T. Jolliffe, Principal Component Analysis,2 ed. (Springer, New York,2002).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700