用户名: 密码: 验证码:
长江源区植被净初生产力及水分利用效率的估算研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
长江源区是我国高寒生态系统典型区域,独特而脆弱的生态系统和特殊的水文特征,在寒区生态环境、水文循环及气候变化中起着极其重要的作用。生态系统植被净初生产力(NPP)和水分利用效率(WUE)是联系植被生态系统中水分循环和碳循环的重要变量,具有重要的水文学和生态学意义。论文以光能利用率模型为基础,结合MODIS高时间分辨率影像与地面气象资料,应用CASA模型估算长江源区植被净初生产力,根据植被净初生产力和潜在蒸散发,估算长江源区植被水分利用效率。从2000-2005年以时间和空间序列来分析长江源区植被水分利用效率、植被净初生产力,不同植被类型下的植被水分利用效率和植被净初生产力的分布情况,长江源区典型植被年际年内分布特征以及植被水分利用效率和净初生产力的影响因子分析。
     1、作为计算WUE的重要组成部分,在对长江源区潜在蒸散发模型的选择时,论文利用FAO Penman-Monteith、Priestley-Taylor、Hargreaves和FAO-Radiation模型进行拟合,得出FAO Penman-Monteith>Hargreaves>Priestley-Taylor>FAO-Radiation,FAO Penman-Monteith模型对区域潜在蒸散发拟合效果最好,因此,选取FAO Penman-Monteith模型计算潜在蒸散发并进行了有效检验。
     2、论文分析了长江源区的生态系统植被净初生产力,研究结果表明:
     从2000-2005年,年NPP平均值在627.39-713.05 gC/m~2·a,NPP总量总体上分布8.77×10~(13)-9.96×10~(13)gC/a。2005年最小,2003年最大,长江源区植被净初生产力变化趋势为2000-2002年和2003-2005两个阶段减少趋势。2002-2003年间年际变化最大,年NPP变化为41.42 gC/m~2·a。NPP的年内分配,文中按照春季融化阶段、水分充分阶段、植被枯萎阶段和冬季冬季四阶段进行分析。空间分布上,长江源区通天河下游直门达水文站以上河沿(玉树县、称多县)、叶曲、莫曲、北麓河下游和沱沱河下游属于NPP高值区。NPP高值范围达到700gC/m~2·a;NPP次高值出现在色吾曲流域、楚玛尔河下游流域及以东、沱沱河、通天河以南的大部分低海拔区域,NPP值在500-700gC/m~2·a;NPP值最低值广泛分布在长江源区的高海拔地区和山脉地区:唐古拉山脉、祖尔肯乌拉山脉、乌兰乌拉山、可可西里山、各布里山、昆仑山、白日咀扎解依山和坑巴饿任山山区和楚玛尔河上游。这些地区NPP值很小,高海拔地区接近0值。长江源区陆地年均NPP的空间分布格局与植被类型和植被群落关系密切,以高寒草甸植被为主的当曲流域、以高寒草原为主的沱沱河、通天河流域和亚高山阔叶落叶灌丛的德曲流域是NPP值分布的高值区,在高海拔地区的无植被地段属于NPP值分布低值区。不同的植被类型的NPP值,以高寒草甸最高,其NPP值年均在682.36gC/m~2·a左右;其次为高寒草原,为679.31 gC/m~2·a;亚高山常绿阔叶灌丛,为606.79gC/m~2·a;依次为亚热带山地针叶林,为601.13gC/m~2·a;亚高山落叶阔叶灌丛,为597.78 gC/m~2·a;高寒稀疏植被,为577.77 gC/m~2·a;高寒垫状植被,为561.98 gC/m~2·a;在影响因子方面,NPP值与NDVI、太阳辐射、温度、降雨和地温关系明显。
     3.分析了长江源区的植被水分利用效率,研究结果表明:
     2000-2005年长江源区的年WUE的平均值在0.83-1.00gC/mm.m~2,2000年最小,2001年最大。2000-2005年6年间年WUE增加了0.10gC/mm.m~2,总体变化趋势为小幅度波动增加的态势。2002-2003年间年际变化最大,年WUE变化为0.1gC/mm.m~2,在2003-2005年WUE呈下降趋势,年WUE变化率均为-0.04gC/mm.m~2。空间分布来看,WUE值分布与NPP值分布相似,只是高值区和低值区更明显分布。通天河下游直门达水文站以上河沿(玉树县、称多县)、叶曲、属于WUE高值区。WUE高值范围大于1gC/mm·m~2;WUE次高值分布色吾曲、楚玛尔河下游、北麓河、沱沱河下游、沱沱河、通天河以南的大部分低海拔地区。WUE值在0.7-1.0gC/mm·m~2;在沱沱河、通天河河沿以北,色吾河以西地区WUE值小于0.7gC/mm·m~2;WUE最低值广泛分布在长江源区的高海拔地区和山脉:唐古拉山脉、祖尔肯乌拉山、可可西里山、昆仑山、坑巴饿任山山区和楚玛尔河上游。WUE接近0值。不同的植被类型的WUE来看,以高寒草甸最高,其WUE值年均在0.95 gC/mm.m~2左右,其次为亚高山常绿阔叶灌丛,为0.91 gC/mm.m~2;依次为高寒稀疏植被,为0.88gC/mm.m~2;亚热带山地针叶林,为0.86 gC/mm.m~2;高寒草原为0.86 gC/mm.m~2;亚高山落叶阔叶灌丛,为0.85 gC/mm.m~2;高寒垫状植被,为0.76 gC/mm.m~2。
The Yangtze River Source Region is the type region of the high-cold ecosystem in China.Where have Unique and fragile ecosystem and especial hydrological characteristics.So,those characters have play important roll in cold' entironment, water cycle and climate system.The vegetation water use efficiency(WUE)and Net Primary Productivity(NPP)are important variables linking to the water cycle of ecosystem and carbon cycle.whose variables are important provided with signification in hydrology and ecology.The thesis is about retrieving WUE and NPP using CASA (Carnegie Ames Stanford Approach)and multi-spectral radiometric data(MODIS).To obtain temporal and spatial distribution of NPP and WUE in the Yangtze River Source Region during 200-2005 and the relation factors.The main reseach results are as follow:
     Fristly,Potential evapotranspiration is a component of water use efficiency.Four models were tried to calculate potential evapotranspirtion for comparison purpose,i.e. FAO Penman-Monteith、Priestley-Taylor、Hargreaves and FAO-Radiation. FAO Penman-Monteith model was chosen over others.
     Secondly,in thesis,analyse the temporal and spatial distribution of NPP.The rusults as follow:
     During 2000-2005,the annual mean NPP value between 627.39 and 713.05 gC/m~2.a, the total annual mean NPP value between 8.77×10~(13)gC/a and 9.96×10~(13)gC/a in the Yangtze River Source;from 2000 to 2003,the NPP was incresed and from 2003 to 2005,the tendency was opposite;for the change of during years.The change maximum is 41.42 gC/m~2·a(2002-2003).For the spatial distribution,the high NPP value were main focus on the down stream of the Yangtze River Source Region,i.e. the area along river over Zhimenda station and the water net of Yequ,Moqu and Danqu,the value is above 700 gC/m~2·a;the second-high NPP value were main focus on the southern region along Tuotuoriver and Tongtian river,the value is between 500 and 700 gC/m~2·a;the low NPP value were main located in the regions of high-altitude and cordillera such as Tanggula mountain,Zuerkenwula mountain,Kekexili mountain and Kunlun mountain,the value is near zero.The sptial pattern of NPP distribution were relation with vegetation type,vegetaion community,altitude,climate and latitude,in Yangtze River Source Region,in the regions of high-cold meadow and high-cold grassland,the NPP value are more high than sub-alp broad-leaf and deciduous shurb and sub-tropic mountain conifruticeta.The low value'vegetaion type are focus on high-cold cushion vegetation,aparsity vegetation and non-vegetaion. About NPP value in vegetation type,the high-value type is high-cold meadow,the annual number is 682.36gC/m~2·a,the second one is high-cold grassland,the value is 679.31 gC/m~2·a,the value in sub-alp evergreen broad shrub is 606.79gC/m~2·a,value in sub-tropic mountain conifruticeta is 601.13gC/m~2·a,sub-alp broad-leaf and deciduous shurb is 597.78 gC/m~2·a,high-cold aparsity vegetation is 577.77 gC/m~2·a, high-cold cushion vegetation is 561.98 gC/m~2·a.
     Thirdly,In this thesis,analyse the temporal and spatial distribution of WUE.The rusults as follow:
     During2000-2005,the annual mean WUE value between 0.83 and 1.00 gC/mm.m2, the minimum value is 0.83 gC/mm.m2(2000),the maxmum is 1.00 gC/mm.m2(2005), from 2000 to 2005,the tendency is incresingand the incresed value is 0.10gC/mm.m~2. For the spatial distribution,the high WUE value were main focus on the down stream of the Yangtze River Source Region,i.e.the area along river over Zhimenda station and the water net of Yequ,Moqu and Danqu,the value above 1gC/mm.m~2;the second-high NPP value were main focus on the southem region along Tuotuoriver and Tongtian rever,the value between0.7and 1.0 gC/mm.m~2;for the northern of river,the value below 0,7gC/mm.m~2;the low WUE value were main located in regions of high-altitude and cordillera such as Tanggula mountain,Zuerkenwula mountain, Kekexili mountain and Kunlun mountain,the value is near zero.About WUE value in vegetation type,the high-value type is high-cold meadow,the annual number is 0.95 gC/mm.m~2,the second one is sub-alp evergreen broad shrub,the value is 0.91 gC/mm.m~2,high-cold aparsity vegetation is 0.88gC/mm.m~2,sub-tropic mountain conifruticeta is 0.86 gC/mm.m~2,high-cold grassland is 0.86 gC/mm.m~2,sub-alp broad-leaf and deciduous shurb is 0.85 gC/mm.m~2,high-cold cushion vegetation is 0.76 gC/mm.m~2.
引文
[1]Allen R.G, Pereira L.S., Raes D., and Smith M. 1998. Crop evapotranspiration—Guidelines for computing Agriculture crop water requirements. FAO Irrigation and drainage paper 56. FAO-Food and Organization of the United Nations, Rome, pp: 38-56,13-25.
    [2]BaldocchiD. Measuring and modeling carbon dioxide and water vapour exchange over a temperate broad-leaved forest during the 1995 summer drought[J]. Plant Cell and Environment, 1997, 20(9):1108-1122.
    [3]Baldocchi D.A comparative study of mass and energy exchange over a closed(wheat) and an open( corn) canopy:II.Canopy CO2 exchange and water use efficiency[J].Agricultural and Forest Meteorology,1994,67:291-322.
    [4]Baunhard R L.Mldel infiltration into sealing soil[M].Water Resources Res. 1990, 26(1): 2497-2505.
    [5]Boon P J,Calow P,Petts G E. 1992.River Conservation and Man-agement. John Wiley&Sons, 2-18.
    [6]Canadell J.G., Dickson R., Hibbard K., Raupach M., Young O., Global Carbon Project Science framework and Implementation. Earth System Science Partnership (IGBP, IHDP, WCRP, DIVERSITAS) Report No. 1, 2003, Canberra..
    [7]Canadell J.G., Mooney H.A., Baldocchi D.D., et al., Carbon metabolism of the terrestrial biosphere: a multi-technique approach for improved understanding. Ecosysterrcs, 2000, 3:115-130.
    [8]Cramer W. and the participants. Net primary productivity of the Potsdam '95 NPP Model Inter-comparison Workshop. 1999. model intercomparison activity (NPP). D. Sahagian (Editor) [R]..IGBP/GAIM Report Series, Report #5.
    [9]Field, B.C., J.T. Randerson, and CM. Malmstorm. 1995. Global net primary combining ecology and remote sensing. Remote Sensing of Environment, 51:74-88.
    [10]Gangopadhyaya etal.Measurement and estimation of evapotranspiration. 1966, Tech. Note. 83, World meterological Organization (WMO), Geneva, Switzerland.
    [11]Goetz S J , Prince S D , Goward S N , et al. Small J . Satellite remote sensing of primary production : an improved production efficiency modeling approach [J ]. Ecological Modelling ,1999 ,122 : 239 - 255.
    [12]Fischer R A, Turner N C. Plant production in t he arid and semiarid zones[J ]. Ann. Rev. Plant Physiology, 1978 , 29 :277 - 317.
    [13]HuntJ E ,etal. Evaporation and carbon dioxide exchange between the atmosphere and a tussock grassland during asummer drought[J].Agricultural and Forest Meteorology,2002,111:6 5-82.
    [14]Kang Ersi. 2000. Review and prospect of hydrological studies in cold and arid regions of china. Journal of Glaciology and Geocrylogy, 22(2):178-188.
    [15]Liu j,Chen J M, Chen W. Net Primary Productivity distribution in the BOREAS region from a process model using satellite and surface data. Journal of Geophysical Research,1999,104(D22),27735-27754.
    [16]Monteith J.L., Climate and the efficiency of crop Transactions of the Royal Society of London. Series B, production in Britain. Philosophical 1977. 281: 277-294
    [17]Monteith J.L., Solar Radiation and productivity in Tropical Ecology, Journal of Applied ecosystems. 1972, 9: 747-766
    [18]Moor B, Braswell Jr B H., Planetary metabolism: understanding the carbon cycle. AMBIO, 1994,13(1): 4-12.
    [19]Potter C.S., Brooks-Genovese V, Klooster S.A., Bobo M, Torregrosa A., Biomass burning losses of carbon estimated from ecosystem modeling and satellite data analysis for the Brazilian Amazon region. Atmospheric Environment, 2001,35(10): 1773-1781
    [20]Potter C.S., Klooster S., Brooks V, Interannual Variability in Terrestrial Net Primary Production: Exploration of Trends and Controls on Regional to Global Scales. Ecosystems,1999, 2: 36-48
    [21]Potter C.S., Klooster S., Myneni R., Genovese V , Tan P, Kumar V , Continental scale comparisons of terrestrial carbon sinks estimated from satellite data and ecosystem modeling 1982-1998. Global Planet Change, 2003,39:201-13.
    
    [22]Potter C.S., Klooster S., Tan P, Steinbach M., Kumar V, Genovese V., Variability in terrestrial carbon sinks over two decades: Part 2-Eurasia. Global and Planetary Change, 2005,49: 177-186.
    
    [23]Potter C.S., Klooster S.A., Global model estimates of carbon and nitrogen storage in litter and soil pools: response to changes in vegetation quality and biomass allocation. Tellus, 1997,49B:1-17
    [24]Potter C.S., Predicting climate change effects on vegetation, soil thermal dynamics, and carbon cycling in ecosystem of interior Alaska. Ecological Modelling, 2004,175:1-24.
    [25]Potter C.S., Randerson J.T., Field C.B., Matson PA., Vitousek PM., Mooney H.A., Klooster S.A, Terrestrial ecosystem production: a process model based on global satellite and suiface data. Global Biogeochemical Cycles, 1993, 7: 811-841.
    
    [26]Prince S D, Goward S N. Global primary production : A remote sensing approach [ J ]. Journal of Biogeography , 1995 ,22 : 815 - 835.
    [27]Rosenberg N J . Microclimate : The Biological Environment [M]. New York : John Wiley & Sons Press, 1974.
    [28]Ruimy A., vegetation, Dedieu G., Saugier B., TURC-Tenestrial Uptake and Release of Carbon by a diagnostic model of continental gross productivity. Global Biogeocherrcical Cycle, primary productivity and net primary 1996,10:269-285.
    [29]Running S.W., J.C.Coughland., A General Model of Forest Ecosystem Processes for Regional Applications. I. Hydrologic Balance, Canopy Gas Exchange and primary Productivity Processes.Ecological Modeling,1988,42:125-154.
    [30]Saxton K.E.,W.J.Rawls,1.S.Romberger.,Estimating generalized soil-water characteristics from texture.Soil Science Society American Journal,1986,50:1031-1036.
    [31]ScanlonT M,AlbertsonJ D.Canopys cale measurements of CO_2 and water vapor exchange along a precipitation gradient in southern Africa[J].Global Change Biology,2004,10:329-341.
    [32]Veroust raete F,Sabbe H,Eerman E.Estimation of carbon mass fluxes over Europe using the C-FIX model and Euroflux data[J].Remote Sensing of Environment,2002,83:376-399.
    [33]Walker B,Steffen W.,A synthesis of GCTE and related research.In:IGBP Science No 1.Stockholm:IGBP Secretariat.1997.23
    [34]Wu Oingbai,Zhu Yuanlin,Liu Yongzhi.2002a.Evaluating model of frozen soil environment change under engineering actions.Science in China Series D-Earth Sciences.45(10):893-902.
    [35]Wu qingbai,Zhu Yuanlin,Liu Yonzhi.Evaluation model of permafrost thermal stability and thawing sensibility under human activity[J].Cold Regions Science and Technology,2002b,34:19-30
    [36]Zheng D.,Zhang O.and Wu S.eds.Mountain Geo-ecology and Sustainable Development of the Tibetan Plateau,Kluwer Academic Publishers,the Netherlands,113-137
    [37]陈正华.基于CASA和多光谱遥感数据的黑河NPP研究[博士论文].兰州大学,2005.
    [38]程国栋.承载力概念的演变及西北水资源承载力的应用框架[J].冰川冻土,2002,24(4):361-367.
    [39]程根伟,余新晓,赵玉涛,等.山地森林生态系统水文循环与数学模拟[M].北京:科学出版社,2004,193-227.
    [40]丁永建,杨建平,刘时银等.长江黄河源区生态环境范围的探讨[J].地理学报,2003,(4):519-526.
    [41]丁永建,叶佰生,刘时银等.青藏高原大尺度冻土水文监测研究[J].科学通报,2000,(2):208-214.
    [42]董锁成,周长进,王海英.“三江原”地区主要生态环境问题与对策[J].自然资源学报,2002,(6):713-720.
    [43]方精云,朴世龙,赵淑清.CO_2失汇与北半球中高纬度陆地生态系统的碳汇[J].植物生态学报,2001,25(5):594-602.
    [44]冯金朝,刘新明.干旱环境与植物的水分关系[M].北京:中国环境科学出版社,1998.郭晓寅.2005.黑河流域蒸散发分布的遥感研究.自然科学进展[J],15(10):1266-1270.
    [45]何勇,董文杰,秦大河.6KaBP中国陆地生态系统净初生产力的模拟[J].气候变化研究进展,2005,2:69-72.
    [46]黄奕龙,傅伯杰,陈利顶.生态水文过程研究进展[J].生态学报,2003,(3):580-587.
    [47]李伏生,康绍忠,张富仓.CO_2浓度、氮利水分对春小麦光合、蒸散及水分利用效率的影响[J].应用生态学报,2003,14(3):387-393.
    [48]李贵才.基MODIS数据和光能利用率模型的中国陆地净初级生产力估算研究[博士论文].中国科学院遥感应用研究所,2004.
    [49]卢玲,李新,等.中国西部地区植被净初级生产力的时空格局[J].生态学报,2005,25(5):1029-1033.
    [50]卢玲,李新,Frank Veroustraete.黑河流域植被净初级生产力的遥感估算[J].中国沙漠,2005,25(6):823-830.
    [51]卢玲,李新,等.SPOT4-VEGETATION中国西北地区土地覆盖制图与验证[J].遥感学报,2003,7(5):214-220
    [52]卢玲,中国西部地区净初级生产力及碳循环研究.中国科学院研究生院博士学位论文,2003.
    [53]莫兴国,刘苏峡,林忠辉.基于SVAT模型的冬小麦光合作用和蒸散过程研究[J].应用生态学报,2002,13(11):1394-1398.
    [54]牛云,张宏斌,刘贤德等.祁连山主要植被下土壤水的时空动态变化特征[J].山地学报,2002,20(6):723-726.
    [55]朴世龙,方精云.1982-1999年青藏高原植被净初级生产力及其时空变化[J].自然资源学报,2002,17(5):373-380.
    [56]朴世龙,方精云,郭庆华.1982-1999年我国植被净初级生产力及其时空变化[J].北京大学学报(自然科学版)2001,37(4))563-569.
    [57]朴世龙,方精云,郭庆华.利用CASA模型估算我国植被净初级生产力[J].植物生态学报,2001,25(5):603-608.
    [58]邱国庆,黄以职.中国天山地区冻土的基本特征.见:第二届全国冻土学术会议论文选集兰州:甘肃人民出版社.1983.
    [59]邱国庆,周幼吾,郭东信等.中国冻土区划及类型图见:周幼吾,郭东信,邱国庆等著.中国冻土,科学出版社,2000,(pp)157-365.
    [60]宋克超,康尔泗,金博文等.2004.黑河流域山区植被带草地蒸散发试验研究[J].冰川冻土,26(3):349-356.
    [61]苏培玺,赵爱芬,张立新,等.荒漠植物梭梭和沙拐枣光合作用,蒸散作用及水分利用效率特征[J].西北植物学报,2003,23(1):11-17.
    [62]苏培玺,陈怀顺,李启森.河西走廊中部沙漠植被d13C值的特征及其对水分利用效率的指示[J].冰川冻土,2003,25(5):597-602.
    [63]孙睿,朱启疆.陆地植被净初级生产力的研究[J].应用生态学报,1999,10(6):757-760.
    [64]孙睿,朱启疆.植被净初级生产力及中国净初级生产力的分析[J].北京师范大学学报(自然科学版),1998,34:132-137.
    [65]孙睿,朱启疆.中国陆地植被净初级生产力及季节变化研究[J].地理学报,2000,55(1):36-45.
    [66]孙睿,朱启疆.气候变化对中国陆地植被净初级生产力影响的初步研究[J].遥感学报,2001,5(1):58-61.
    [67]陶波.中国陆地生态系统净初生产力与净生态系统生产力模拟研究[博士论文].中国科学院地理科学与资源研究所.2003.
    [68]谢昌卫,丁永建,韩海东等.2006.黄河源区径流波动变化对气候要素的响应特征[J].干旱区资源与环境,(4):7-11.
    [69]谢昌卫,丁永建,刘时银,等.长江-黄河源寒区径流时空变化特征对比[J].冰川冻土,2003,25(4):414-422.
    [70]谢昌卫,丁永建,刘时银.近50年来长江-黄河源区气候及水文环境变化趋势分析[J].生态环境,2004,(4):520-523.
    [71]辛晓洲,田国良,柳钦火.地表蒸散定量遥感的研究进展[J].遥感学报,2003,7(3):233-240.
    [72]王根绪,刘桂民,常娟.流域尺度生态水文研究评述[J]:生态学报,2005,4:892-903.
    [73]王根绪,沈永平,钱鞠等.高寒草地植被覆盖变化对土壤水分循环影响研究[J].冰川冻土,2003,(6):653-659.
    [74]王根绪,程国栋,沈永平,等.江河源区的生态环境变化及其综合保护研究[M].兰州:兰州大学出版社,2001,1-117.
    [75]王根绪,程国栋,沈永平等.江河源区的生态环境变化及其综合保护研究[M].兰州:兰州大学出版社,2001b.21-46.
    [76]王根绪,程国栋,沈永平等.土地覆盖变化对高山草甸土壤特性的影响[J].科学通报,2002,47(23):1771-1777.
    [77]王根绪,程国栋.江河源区草地资源特征与草地生态变化[J].中国沙漠,2001,21(2):101-107.
    [78]王根绪,丁永建,王建等.近15年来长江黄河源区的土地覆被变化[J].地理学报,2004,(2):163-173.
    [79]王根绪,郭晓寅,程国栋.黄河源区景观格局与生态功能的动态变化[J].生态学报,2002,(10):1587-1598.
    [80]王根绪,李琪,程国栋等.40a来江河源区的气候变化特征及其生态环境效应[J].冰川冻土,2001a,(4):346-352.
    [81]王根绪,李元寿,王一博,沈永平,长江源区高寒生态与气候变化对河流径流过程影响的初步分析[J].冰川冻土,2007,29(2):159-167.
    [82]王根绪,李元寿,吴青柏等.青藏高原冻土区冻土与植被的关系及其对高寒生态系统的影响[J].中国科学D辑,2006,(8):743-754.
    [83]王根绪,刘桂民,常娟..流域尺度生态水文研究评述[J].生态学报,2005a,(4):892-903.
    [84]王根绪,钱鞠,程国栋.生态水文科学研究的现状与展望[J].地球科学进展,2001c,16(3):314-323.
    [85]王根绪,沈永平,刘时银.黄河源区降水与径流过程对ENSO事件的响应特征[J].冰川冻土,2001,23(1):17-21.
    [86]王根绪,沈永平,钱鞠等.高寒草地植被覆盖变化对土壤水分循环影响研究[J].冰川冻土,2003,(6):653-659.
    [87]王根绪,吴青柏,王一博等.青藏铁路工程对高寒草地生态系统的影响[J].科技导报(青藏铁路建设和生态环境保护专题):8-13.
    [88]王金叶,田大伦,王彦辉等.祁连山林草复合流域土壤水分状况研究[J].中南林学院学报.2006,26(1):1-5.
    [89]王绍令,边纯玉,王健.青藏高原多年冻土区水文地质特征[J].青海地质,1994,(1):40-47
    [90]王绍令.多年冻土退化与沙漠化及甲烷释放.见姚檀栋等著,青藏高原中部冰冻圈动态特征.北京,地质出版社 2002,pp.234-255.
    [91]王书功,康尔泗,金博文等.黑河山区草地蒸散发量估算方法研究[J].冰川冻土,2003,25(5):558-563.
    [92]王树森,朱治林,孙晓敏.拉萨地区农田能量物质交换特征[J].中国科学D辑,1996,26(4).359-364.
    [93]王一博,王根绪,程玉菲等.青藏高原典型寒冻土壤对高寒生态系统变化的响应[J].冰川冻土.2006,28(5):633-641.
    [94]杨晓光,沈彦俊,于沪宁.夏玉米群体水分利用效率影响因素分析[J].西北植物学报,1999,19(6):148-153.
    [95]杨针娘,曾群柱.冰川水文学.第一版,青岛:青岛出版社.1999.
    [96]杨针娘,胡鸣高,刘新仁等.高山冻土区水量平衡及地表径流特征[J].中国科学D辑,1996,(6):567-573.
    [97]杨针娘,刘新仁,曾群柱等.中国寒区水文.北京:科学出版社.2000.
    [98]张海龙.近五年来中国陆地植被净初级生产力时空变化特征分析.南京师范大学,2006.
    [99]张士锋,贾绍凤,刘昌明等.黄河源区水循环变化规律及其影响[J].中国科学E辑技术科学,2004,34(pp):117-125
    [100]张士锋,刘昌明,夏军,等.降水径流过程驱动因子的室内模拟试验研究[J].中国科学D辑,2004,34(3):280-289.
    [101]张宪洲.我国自然植被净初级生产力的估算与分布[J].自然资源.1993(1):15-21.
    [102]张新时.研究全球变化的植被一气候分类系统[J].第四纪研究,1993(5):157-169.
    [103]张新时.植被的PE(可能蒸散)指标与植被-气候分类(一)-几种主要方法与PEP程序介绍[J].植物生态学与地植物学学报,1989,13(1):1-9.
    [104]张新时.植被的PE(可能蒸散)指标与植被-气候分类(二)-几种主要方法与PEP程序介绍 [J].植物生态学与地植物学学报,1989,13(3):197-207.
    [105]张新时.植被的PE(可能蒸散)指标与植被-气候分类(三)-几种主要方法与PEP程序介绍[J].植物生态学与地植物学学报,1993,17(2):97-109.
    [106]张岁岐,山仑.植物水分利用效率及其研究进展[J].干旱地区农业研究,2002,20(4):1-5.
    [107]张学龙,车克钧,王金叶等.祁连山寺大隆林区土壤水分动态研究[J].西北林学院学报.1998,13(1):1-9.
    [108]张寅生,蒲建辰,太田岳史.1994.青藏高原中部地面蒸发量观测计算与特征分析[J].冰川冻土,16(2):166-172.
    [109]张寅生,蒲健辰.青藏高原中部唐古拉山口邻近地区气候特征[J].冰川冻土,1994,(1):41-48.
    [110]张寅生,姚檀栋,蒲建辰等.青藏高原唐古拉山冬克玛底河流域水文过程特征分析[J].冰川冻土,1997,(3):214-222.
    [111]周才平,等.青藏高原主要生态系统净初生产力的估算[J].地理学报,2004,59(1):74-79.
    [112]周广胜,张新时.自然植被初级生产力模型初探[J].植物生态学报,1995,19(3):193-200.
    [113]周广胜,张新时.全球气候变化的中国自然植被的净初级生产力研究[J].植物生态学报,1996,20(1):11-19.
    [114]周广胜,郑元润,陈四清.自然植被净初级生产力模型及其应用[J].林业科学,1998,34(5):2-11.
    [115]周国逸,潘淮侍.林地土壤的降雨入渗规律[J].水土保持学报,1990,4(2):35-38.
    [116]周幼吾,郭东信,丘国庆等.中国冻土.北京.科学出版社.2000.
    [117]周幼吾,郭东信.我国多年冻土的主要特征[J].冰川冻土,1982.4(1):1-7.
    [118]朱文泉,潘耀忠,龙中华等.基于GIS和RS的区域陆地植被NPP估算-以中国内蒙古为例[J].遥感学报,2005,9(3):300-307.
    [119]朱志辉.自然植被净初级生产力估计模型[J].科学通报,1993,38(15):1422-1426.
    [120]朱治林,孙晓敏,等.内蒙古半干旱草原能量物质交换的微气象方法估算[J].气候与环境研究,2002,7(3):351-358.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700