用户名: 密码: 验证码:
钍(Ⅳ)离子印迹聚合物的制备及吸附性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钍是一种赋存在自然界中的天然放射性元素,在核能方面具有广阔的应用前景,未来可有效地补充铀资源的不足。但钍像其它重金属一样具有化学毒性,钍及其化合物会造成许多环境问题,因此建立可靠的方法对其在环境和地质样品中进行准确的测定和回收是非常重要的。然而由于钍在实际环境样品含量很低、基体干扰严重,常常导致其检测结果的不准确。对样品进行分离富集,是解决这一问题的关键。固相萃取(SPE)是当今最流行的样品预处理方法,但传统的固相萃取材料对于目标离子的选择性差,最新的离子印迹技术可以实现对目标离子的高选择性萃取。离子印迹材料的显著特点是在高温高压等苛刻环境下性能稳定的同时,表现出对模板的高度选择性和特异识别能力。使用此类材料对痕量目标物进行固相萃取预富集以及从复杂基体和其他共存元素中选择性分离目标物,可以有效净化目标物的存在环境,这是普通固相萃取材料所无法实现的。因此,本论文主要研究是基于离子印迹技术的钍(IV)离子印迹聚合物的制备及其固相萃取性能研究。主要包括以下三个方面的工作:
     1.对钍的概况及其分离富集方法、分子(离子)印迹技术的基本原理、分子(离子)印迹聚合物的制备方法进行了较为全面的综述,概述了IIPs-SPE领域的相关研究进展。
     2.合成了一种新的功能单体,1-苯基-3甲硫基-4腈基-5-丙烯酸酰胺基-吡唑(PMTCAACP),通过氨基和马来酸酐反应将双键引入硅胶表面,制备了表面接枝钍(IV)离子印迹硅胶吸附剂。详细地研究了该吸附剂吸附钍(IV)的各种实验条件、动力学性质、热力学性质和吸附机理。该印迹吸附剂对钍(IV)具有高吸附选择性和亲和力。其最大的静态吸附容量和动态吸附容量分别为64.8 mg/g和37.4 mg/g。Th(IV)/U(VI),Th(IV)/Ce(III),Th(IV)/La(III)和Th(IV)/Zr(IV)的相对选择性系数分别为72.9,89.6,93.8和137.2。建立了用该印迹材料作为固相萃取吸附剂与分光光度法相结合在测定钍(IV)的新方法,该方法的相对标准偏差为2.47%(n=7),富集因子为20.2,检出限为0.43μg/L,并将该方法用于实际样品钍的富集和测定取得了满意的结果。
     3.采用硅胶表面接枝技术,以甲基丙烯酸(MAA)为功能单体,制备了一种新型的钍(IV)离子印迹聚合物。研究了该吸附剂对钍(IV)的分离富集特性。该印迹微粒对钍(IV)有很好的识别性和相对快速的动力学过程。其最大的静态吸附容量和动态吸附容量分别为33.2 mg/g和17.3 mg/g。Th(IV)/U(VI),Th(IV)/Ce(III),Th(IV)/La(III)和Th(IV)/Zr(IV)的相对选择性系数分别为58.8, 107, 106.4和151.7。用该印迹材料作为固相萃取吸附剂与分光光度法相结合在最佳实验条件下测定钍(IV)时,其相对标准偏差为2.1%(n=7),富集因子为14.6,检出限为0.59μg/L,并将该方法用于实际水样品钍的富集和测定取得了满意的结果。
Thorium, which is an important radioactive element widely distributed over the earth's crust, can provide supplement to the insuffieient uranium resources effectively in the future, so it has broad prospects for nuclear power. However, thorium not only has chemical toxicity like other heavy metals do, but aslo is hazardous causing many environmental problems. Therefore, the development of the reliable methods for the determination and recovery of thorium in environmental and geological samples is of a particular significance. Direct determination of thorium is still difficult, owing to thorium's trace concentration in nature and presence of interferential matrix. At present, one of the methods, to solve the problem, is using a sample pretreatment teehnique including separation and preconcentration. Solid-phase extraction(SPE) is today the most popular method of the sample preparation. Unfortunately, the common materials of SPE are usually having poor selectivity for separation of coexistent metal ions, which can be solved by ion-imprinting technique. An especially appealing feature of the imprinted polymers is their potential to have the affinity and selectivity analogous to antibodies, while retaining several benefits including stability in harsh environments such as high temperatures and pressures. A particularly promising application of ion-imprinted polymers is the SPE preconcentration of analytes present in trace amouts and the separation from other coexisting species or complex matrix, which may lead to selective environmental clean up of analytes, not achievable by the conventional methods. Thereby, this work is focused on the preparation of Th(IV) ion imprinted polymers and the research of the properties of SPE. This dissertation consists of three parts, as follows:
     1. A brief overview is given for the profile and the methods of separation and preconcentration of Th(IV), the principle of Molecular(Ion) Imprinting Iechnology, the preparation of Molecular(Ion) Imprinted Polymers, and the studies in the rapidly developing and exciting area of IIPs-SPE.
     2. A new pyrazole derivative 1-phenyl-3-methylthio-4-cyano-5-acrylicacid- carbamoyl-pyrazole(PMTCAACP) was synthesized and chosen as a complexing monomer for the preparation of surface-grafted ion-imprinted polymers for selective solid phase extraction of thorium(IV). Polymerizable double bond was introduced to silica gel surface by amidation reaction between NH2 and maleic anhydride. The experimental conditions, kinetics, thermodynamics, and mechanism for the adsorption of Th(IV) on the imprinted polymers were investigated in detail. The obtained ion-imprinted particles for Th(IV) showed excellent selectivity and high affinity. The maximum static and dynamic adsorption capacity of the ion-imprinted polymers (IIPs) for Th(IV) was 64.8 and 37.4 mg/g, respectively. The relative selectivity coefficient values of the imprinted adsorbent for Th(IV)/U(VI), Th(IV)/Ce(III), Th(IV)/La(III), and Th(IV)/Zr(IV) were 72.9, 89.6, 93.8, and 137.2 times greater than non-imprinted matrix, respectively. The enhancement factor of 20.2, the detection limit of 0.43μg/L, and the precision of 2.47% (n=7) of the method under the optimized conditions were obtained. The prepared IIPs were shown to be promising for solid phase extraction coupled with UV-Vis spectrophotometry for determination of trace Th(IV) in real samples.
     3. A novel ion-imprinted adsorbent for selective preconcentration of thorium(IV) based on a surface of silica gel was prepared by a surface-grafted technique with methacrylic acid(MAA) as a functional monomer. The property of separation and preconcentration for Th(IV) onto the imprinted polymers was investigated. The obtained imprinted particles for Th(IV) exhibited specific recognition and relatively rapid kinetic process. The maximum static and dynamic adsorption capacity of the ion-imprinted polymers (IIPs) for Th(IV) was 33.2 and 17.3 mg/g, respectively. The relative selectivity coefficients of the imprinted polymers for Th(IV)/U(VI), Th(IV)/Ce(III), Th(IV)/La(III), and Th(IV)/Zr(IV) were 58.8, 107, 106.4, and 151.7, respectively. With a series of samples loading flow rate of 3 mL/min for preconcentration, an enrichment factor of 14.6 and the detection limit of 0.59μg/L were obtained. The relative standard deviation of the method under optimum conditions was 2.1% (n=7). The prepared IIPs were shown to be promising for solid phase extraction coupled with UV-Vis spectrophotometry for determination of trace Th(IV) in real water samples.
引文
[1]孙嘉彦,殷有林编.铀钍矿石的化学分析[M].北京:原子能出版社, 1986:83- 111.
    [2]成都地质学院三系著.放射性勘探方法[M].北京:原子能出版社, 1978:71-77.
    [3] Michel L, Otto G. Perspectives of the thorium fuel cycle[J]. Nuclear Engineering and Design, 1998,180(2):133-146.
    [4]伍浩松.译.钍[J].国外核新闻, 2004,3:29-32.
    [5]张书成,刘平,仉宝聚.钍资源及其利用[J].世界核地质科学, 2005,22(3): 98-103.
    [6]张天梅,李宗伟,袁双贵,等.新重丰中子核素237Th的合成与鉴别[J].核化学与放射化学, 1997,19(3):40-43.
    [7] XuY B, Yuan S G, Yang W N, et al. A new heavy neutorn-rich Isotope 238Th[J]. High Energy Physics and Nucelar Physics, 1999,23(1):93-95.
    [8]朱天侠.总Thα活度测量的意义和方法[J].铀矿冶, 1998,17(1):43-47.
    [9]潘自强.我国天然辐射水平和控制中一些问题的讨论[J].辐射防护, 2001,21(5):257-268.
    [10]王耐芬,刘雅琼,王小燕,等. ICP/MS法测定中国参考人组织样品中钍、铀、铯含量的研究[J].现代仪器, 2002,22(1):28–30.
    [11]陈兴安,韩轩茂,程永娥,等.中国矿工吸入钍尘后健康效应的研究[J].中国辐射卫生, 2002,11(1):6-7.
    [12] Lipshutz G S.胶质二氧化钍造影剂诱发肝脏肿瘤(英)[J]. Am Coll Surg., 2002,195(5):713-718.
    [13]郝佐红,李琳.含钍粉尘对铁矿尘肺发病影响的初步分析[J].职业医学, 1994,21(2):26-28.
    [14]陈兴安,高凤鸣,王玉珍,等.呼吸道吸入天然钍(ThO2)和稀土矿尘联合作用的研究[J].辐射防护, 1996,16(5):364-373.
    [15] De A K, Khopkar S M, Chalmers R A. Solvent extraction of metals[M]. London:Van Nostrand, 1970:65-73.
    [16] Warf J C. Extraction of cerium(IV) nitrate by butyl phosphate[J]. J. Am. Chem. Soc., 1949,71(9):3257-3258.
    [17] Mayorov V G, Nikolaev A I, Adkina O P, et al. Extraction of thorium with tributyl phosphate from chloride solutions[J]. Radiochem., 2006,48(6):576-579.
    [18] Mayorov V G, Nikolaev A I, Safonova L A. Investigation of conditions for extraction separation of thorium from calcium and lanthanum[J]. Theoretical Foundations of Chemical Engineering, 2009,43(5):831-833.
    [19] Karve M, Gaur C. Liquid-liquid extraction of Th(IV) with Cyanex302[J]. Journal of Radioanalytical and Nuclear Chemistry, 2006,270(1-2):461-464.
    [20] Torgov V G, Demidova M G, Saprykin A I, et al. Extraction preconcentration of uranium and thorium traces in the analysis of bottom sediments by inductively coupled plasma mass spectrometry[J]. Journal of Analytical Chemistry, 2002,57(4):360-367.
    [21]丁华杰,徐岩冰,杨维凡,等.用二-2-乙基己基磷酸从盐酸溶液中萃取Th(IV)[J].科学技术与工程, 2007,7(22):5752-5754.
    [22]李琼清,李德谦.二(2,4,4-三甲基戊基)膦酸从盐酸介质中萃取钍(IV)的机理[J].应用化学, 1995,12(4):56-61.
    [23]张耀华,陈既明.提高钍萃取率和反萃取率的研究[J].铀矿冶, 1996,15(3): 202-206.
    [24]邬震中,严金英,蔡起秀,等.季铵型萃取剂N263的基本性能[J].化学试剂, 1984,6(1):8-11.
    [25]覃家光,冯兰英,杨刚. N235萃取–分光光度法测定建材中的钍[J].中国辐射卫生, 2006,15(4):504-505.
    [26]陈志东,邓飞,林清,等.分光光度法测定飞来峡水库水中的铀、钍[J].辐射防护通讯, 2001,21(1):28-31.
    [27]牛雁宁,郭治军,徐岩冰,等.三-((2-(N,N-二乙基乙酸胺基)氧基)乙基)胺萃取Th的研究[J].科学技术与工程, 2004,4(7):529-533.
    [28] Sharma J N, Ruhela R, Harindaran K N, et al. Separation studies of uranium and thorium using tetra(2-ethylhexyl) diglycolamide(TEHDGA) as an extractant[J]. Journal of Radioanalytical and Nuclear Chemistry, 2008,278(1):173-177.
    [29] Cui Y, Zhang Z W, Jiang R T. Structural effect of N,N-dialkylamide on the extraction of thorium(IV) ion from nitric acid solution[J]. Journal of Radioanalytical and Nuclear Chemistry, 2003,258(1):171-173.
    [30]王友绍,包伯荣,徐坤,等. N,N,N',N'–四丁基己二酰胺在硝酸介质中萃取铀、钍及硝酸研究[J].核技术, 1998,21(12):709-713.
    [31] Bose R, Murty D S R, Chakrapani G. Extraction of thorium(IV) as perchlorate and chloroacetate complexes with1-phenyl-2,3-dimethyl-5-pyrazolone (antipyrine)[J]. Journal of Radioanalytical and Nuclear Chemistry, 2005,265(1): 459-464.
    [32]谢新辉,张天发,张红,等. 1-苯基-3-甲基-4-(α-呋喃甲酰基)-5-吡唑酮与中性磷萃取剂对钍(IV)的协同萃取[J].化工冶金, 1998,19(1):6-10.
    [33] Singh D K, Singh H, Gupta C K. Extraction of thorium with 2-ethyl hexyl phosphonic acid mono-2-ethyl hexyl ester (PC-88A)[J]. Journal of Radioanalytical and Nuclear Chemistry, 2001,250(1):123-128.
    [34] Du H S, Wood D J, Elshani S, et al. Separation of thorium from lanthanides by solvent extraction with ionizable crown ethers[J]. Talanta, 1993,40(2):73-77.
    [35] Shrivastav P, Menon S K, Agrawal Y K. Selective extraction and inductively coupled plasma atomic emission spectrophotometric determition of thorium using a chromogenic ether[J]. Journal of Radioanalytical and Nuclear Chemistry, 2001,250: 459-464.
    [36] Banerjee S, Basu S. Synergistic extraction of Th(IV) by 2-hydroxy-1- naphthaldehyde thiosemicarbazone and neutral donors[J]. Radiochim. Acta, 2003,91(2):97-104.
    [37] J?nsson J A, Mathiasson L. Liquid membrane extractionin analytical sample preparation: I. Principles[J]. TrAC Trends in Anal. Chem., 1999,18(5):318-325.
    [38] Carolina M, Carlos M, Manuel G V. Determination of copper in seawater based on a liquidmembrane preconcentration system[J]. Anal. Chim. Acta, 2002,460 (l-2):35-40.
    [39]莫启武.液膜法在贵金属分离富集中的应用[J].贵金属, 1996,17(2):46-49.
    [40] Yaftian M R, Zamani A A, Rostamnia S. Thorium (IV) ion-selective transportthrough a bulk liquid membrane containing 2-thenoyltrifluoroacetone as extractant-carrier[J]. Separation and Purification Technology, 2006,49(1):71-75.
    [41]车丽萍,余永富,袁继祖,等. P205为载体乳状液膜法从稀土浸出液中提取钍的实验研究[J].中国稀土学报, 2005,23:84-88.
    [42]车丽萍,余永富,袁继祖,等.混合载体乳状液膜技术处理含钍工业废水的试验研究[J].铀矿冶, 2005,24(2):82-85.
    [43]李玉萍,李莉芬,王献科.液膜分离富集、测定水中痕量钍[J].工业水处理, 2000,20(11):28-35.
    [44]王玉洁,张淑敏,李德谦.中空纤维膜萃取分离混合稀土中的钍[J].中国稀土学报, 1998,16(3):193-197.
    [45] Helfferich F. Ion Exchange[M]. New York:Mc Graw-Hill Book Co.,1962.
    [46] Alhassanieh O, Abdul-Hadi A, Ghafar M, et al. Separation of Th, U, Pa, Ra and Ac from natural uranium and thorium series[J]. Applied Radiation and Isotopes, 1999,51(5):493-498.
    [47] Koulouris G, Slowikowski B, Pilvio R, et al. Preconcentration of actinoids from waters: A comparison of various sorbents[J]. Applied Radiation and Isotopes, 2000,53(1-2):279-287.
    [48] Lee S-H, Rosa J L, Gastaud J, et al. The development of sequential separation methods for the analysis of actinides in sediments and biological materials using anion-exchange resins and extraction chromatography[J]. Journal of Analytical Chemistry, 2005,263(2):419-425.
    [49]白乌云,赛音,李胜.离子交换分离5′-硝基水杨基荧光酮––CTMAB分光光度法测定稀土矿中的微量钍[J].稀土, 2003,24(3):56-58.
    [50]赛音,张静.离子交换分离3,5-二溴水杨基荧光酮-EDTA-CTMAB分光光度法测定微量钍[J].光谱学与光谱分析, 2001,21(6):843-845.
    [51]侯列奇,李洁,罗淑华,等.阴离子交换分离-电感耦合等离子体原子发射光谱法测定可燃毒物(Gd,U)O2芯块中微量钍[J].理化检验, 2007,43(12): 1053-1055.
    [52]侯列奇,王树安,李洁,等.化学光谱法测定三氧化二钆中微量钍[J].光谱实验室, 2005,22(5):958-961.
    [53]李洪桂.稀有金属冶金原理及工艺[M].北京:冶金工业出版社, 1981: 293-294
    [54] Pin C, Zalduegui J S. Sequential separation of light rare-earth elements, thorium and uranium by miniaturized extraction chromatography: Application to isotopic analyses of silicate rocks[J]. Anal. Chim. Acta, 1997,339(1-2):79-89.
    [55] Moody C A, Glove S E, Stuit D B, et al. Pre-concentration and separation of thorium, uranium, plutonium and americium in human soft tissues by extraction chromatography[J]. Journal of Analytical Chemistry, 1998,234(1-2):183-189.
    [56] Hao F P, Paull B, Haddad P R. Determination of thorium and uranyl in nitrophosphate solution by on-line matrix-elimination reversed-phase chromatography[J]. Chromatographia, 1996,42(1-2):690-696.
    [57] Tolmachyov S Y, Kuwabara J, Noguchi H. Flow injection extraction chromatography with ICP-MS for thorium and uranium determination in human body fluids[J]. Journal of Radioanalytical and Nuclear Chemistry, 2004,261(1): 125-131.
    [58] Someda H H, Sheha R R. Solid phase extractive preconcentration of some actinide elements using impregnated carbon[J]. Radiochem., 2008,50(1):56-63.
    [59]李永忠,陈泽堂,周之荣,等. 5-(对羧基苯偶氮)-8-羟基喹啉与钍的显色反应及应用[J].南昌大学学报, 2004,28(1):92-95.
    [60]周京霞,游建南. CL–TBP萃淋树脂分离分光光度法连续测定微量铀和钍[J].湿法冶金, 2001,20(4):204-212.
    [61]许菱,许孙曲.用萃取色谱法测定地质样品中的铀和钍[J].国外铀金地质, 2001,18(3):176-179.
    [62]唐文浩,饶义平. TBP-泡塑填料柱萃取回收铁钍渣浸出液中钍的研究[J].环境工程, 1999,17(1):52-55.
    [63]宋金如,龚治湘,祝旭初. CL-5209萃淋树脂吸附钍的性能和机理研究[J].华东地质学院学报, 2000,23(4):271-276.
    [64] Poole C F. New trends in solid-phase extraction[J]. TrAC Trends in Analytical Chemistry, 2003,22(6):362-373.
    [65] Birlik E, Ers?z A, Denizli A, et al. Preconcentration of copper using double- imprinted polymer via solid phase extraction[J]. Anal. Chim. Acta, 2006,565 (2):145-151.
    [66] Demirel N, Merdivan M, Pirinccioglu N, et al. Thorium(IV)and uranium(VI) sorption studies on octacarboxymethyl-C-methl-calix[4] resorcinarene impregnated on a polymeric support[J]. Anal. Chim. Acta, 2003,485(2):213-219.
    [67] Metilda P, Gladis J M, Rao T P. Quinoline-8-ol modified cellulose as solid phase extractant(SPE) for preconcentrative separation and determination of thorium(IV) [J]. Radiochim. Acta, 2003,91(12):737-741.
    [68] Metilda P, Gladis J M, Rao T P. Synthesis of malonic acid-functionalized Amberlite XAD-4 and its use in solid phase extraction/preconcentrative separation of thorium(IV)[J]. Radiochim. Acta, 2004,92(12):931-937.
    [69] Preetha C R, Gladis J M, Rao T P. Solid phase extractive preconcentration of thorium onto 5,7-dichloroquinoline-8-ol modified benzophenone[J]. Talanta, 2002,58 (4):701-709.
    [70] Jain V K, Hand A A, Sait S S, et al. Pre-concentration, separation and trace determination of lanthanum(III), cerium(III), thorium(IV) and uranium(VI) on polymer supported o-vanillin semicarbazone[J]. Anal. Chim. Acta, 2001,429(2): 237-246.
    [71] Prabhakaran D, Subramanian M S. Selective extraction of U(VI),Th(IV)and La(III) from acidic matrix solutions and environmental samples using chemically modified Amberlite XAD-16 resin[J]. Anal. Bioanal. Chem., 2004,379(3):519- 525.
    [72] Aydin F A, Soylak M. Solid phase extraction and preconcentration of uranium(VI) and thorium(IV) on Duolite XAD761 prior to their inductively coupled plasma mass spectrometric determination[J]. Talanta, 2007,72(1): 187-192.
    [73] Seyhan S, Merdivan M, Merdivan M. Use of o-phenylene dioxydiacetic acid impregnated in Amberlite XAD resin for separation and preconcentration of uranium(VI) and thorium(IV)[J]. Journal of Hazardous Materials, 2008,152(1):79-84.
    [74] Yousefi S R, Ahmadi S J, Shemirani F, et al. Simultaneous extraction and preconcentration of uranium and thorium in aqueous samples by new modified mesoporous silica prior to inductively coupled plasma optical emission spectrometry determination[J]. Talanta, 2009,80(1):212-217.
    [75] Daneshvar G, Jabbari A, Yamini Y, et al. Determination of uranium and thorium in natural waters by ICP-OES after on-line solid phase extraction and preconcentration in the presence of 2,3-dihydro-9,10-dihydroxy-1,4- antracenedion[J]. Journal of Analytical Chemistry, 2009,64(6):602-608.
    [76] Maheswari M A, Subramanian M S. AXAD-16-3,4-dihydroxy benzoyl methyl phosphonic acid: a selective preconcentrator for U and Th from acidic waste streams and environmental samples[J]. Reactive & Functional Polymers, 2005, 62(1):105-114.
    [77] Guerra D L, Carvalho M A, Leidens V L, et al. Immobilization of 5-amino- 1,3,4-thiadiazole-thiol onto kanemite for thorium(IV) removal: Thermodynamics and equilibrium study[J]. Journal of Colloid and Interface Science, 2009,338 (1):30-39.
    [78] Bursali E A, Merdivan M. Preconcentration of uranium(VI) and thorium(IV) from aqueous solutions using low-cost abundantly available sorbent[J]. J Radioanal Nucl. Chem., 2010,283(2):471-476.
    [79] Marie-Claire H. Solid-phase extraction: method development, sorbents, and coupling with liquid chromatography[J]. Journal of Chromatography A, 1999, 856(1-2):3-54.
    [80] Walsh D J, Crosby P, Dalton R F. Metal specific hydroxyoxime ion–exchange resins[J]. Polymer, 1983,24(4):423-427.
    [81] Pualing L. A theory of the structure and process of formation of antibodies[J]. J. Am. Chem. Soc., 1940,62(3):2643-2657.
    [82] Wulff G, Sarhan A. Use of polymers with enzyme-analogous structures for the resolution of racemates[J]. Angew. Chem. Int. Ed. Engl., 1972,84(11):341-344.
    [83] Vlatakis G, Andersson L, Muller R, et al. Drug assay using antibody mimicsmade by molecular imprinting[J]. Nature, 1993,361(3):645-647.
    [84] Kato M, Nishide H, Tsuchida E. Complexation of metal ion with poly (1-vinylimidazole) resin prepared by radiation-induced polymerization with template metal ion [J]. Polym. Sci., 2003,19(7):1803-1809.
    [85] Nishide H, Deguchi J, Tsuchida E. Adsorption of metal ions on crosslinked poly (4-vinylpyridine) resins prepared with a metal ion as template[J]. Polym. Sci., 2003,15(12):3023-3029.
    [86] Michael J, Whitcome M, Rodriguez E, et al. A new method for the introduction of recognition site functionality into polymers prepared by molecular imprinting: synthesis and characterization of polymeric receptors for cholesterol[J]. J. Am. Chem. Soc., 1995,117(27):7105-7111.
    [87] Liu Y W, Chang X J, Yang D, et al. Highly selective determination of inorganic mercury(II) after preconcentration with Hg(II)-imprinted diazoamino benzene- vinylpyridine copolymers[J]. Anal. Chim. Acta, 2005,538(l-2):85-91.
    [88]尹俊发,杨更亮,张轶华,等.原位聚合那格列奈分子印迹手性固定相的分子识别特性研究[J].化学学报, 2004,62(19):1922-1926.
    [89] Huang X D, Zou H F, Chen X M. Molecularly imprinted monolithic stationary phases for liquid chromatographic separation of enantiomers and diastereomers [J]. J. Chromatogr. A, 2003,984(2):273-282.
    [90] Lin L Q, Li Y C, Fu Q, et al. Preparation of molecularly imprinted polymer for sinomenine and study on its molecular recognition mechanism[J]. Polymer, 2006,47(11):3792-3798.
    [91] Uezu K, Nakamura H, Goto M, et al. Novel metal ion-imprinted resins prepared by surface template polymerization with W/O emulsion[J]. J. Chem. Eng. Jap., 1994,27(3):436-438.
    [92] Ye L, Comraek P A G, Mobsahch K. Moleuclar imprinting on miocrgel spheres [J]. Anal. Chim. Acta, 200l,435(1):187-196.
    [93] Dhal P K, Vidyasankar S, Amold F H. Surface grafting of function polymers to macroporous poly(trimethylopropane trimethacrylate)[J]. Chemical Material, 1995,7(2):154-162.
    [94] Fang G Z, Tan J, Yan X P. An ion-imprinted functionalized silica gel sorbent prepared by a surface imprinting technique combined with a sol-gel process for selective solid-phase extraction of cadmium(II)[J]. Anal. Chem., 2005,77 (6):1734-1739.
    [95] Bi X Y, Lau R J, Yang K L. Preparation of ion-imprinted silica gels functionalized with glycine, diglycine, and triglycine and their adsorption properties for copper ions[J]. Langmuir, 2007,23(15):8079-8086.
    [96] Mathew K J, Shea K J. Imprinted polymer membranes for the selective transport of targeted neutral molecules[J]. J. Am. Chem. Soc., 1996,118(34):5154-5155.
    [97] Yoshlkawa M, Fujisawa T, Lzumi J I. Molecularly imprinted polymeric membranes involving tetrapeptide EQKL derivatives as chiral-recognition sites toward aminoacids[J]. Anal. Chim. Acta, 1998,365(l-3):59-67.
    [98]吴朝阳,张晓蕾,杨云慧,等.尼古丁分子印迹聚邻氨基酚敏感膜传感器[J]湖南大学学报(自然科学版), 2005,32(3):10-14.
    [99] Rao T P, Metilda P, Gladis J M. Preconcentration techniques for uranium(VI) and thorium(IV) prior to analytical determination–an overview[J]. Talanta, 2006,68 (1):1047-1064.
    [100] Chang X J, Jiang N, Zheng H, et al. Solid-phase extraction of iron(III) with an ion-imprinted functionalized silica gel sorbent prepared by a surface imprinting technique[J]. Talanta, 2007,71(1):38-43.
    [101] Ers?z A, Say R, Denizli A. Ni(II) ion-imprinted solid-phase extraction and preconcentration in aqueous solutions by packed-bed columns[J]. Anal. Chim. Acta, 2004,502(1):91-97.
    [102] Otero-RomaníJ, Moreda-Pineiro A, Bermejo-Barrera P, et al. Inductively coupled plasma-optical emission spectrometry/mass spectrometry for the determination of Cu, Ni, Pb and Zn in seawater after ionic imprinted polymer based solid phase extraction[J]. Talanta, 2009,79(3):723-729.
    [103] Zhao J C, Han B, Zhang Y F, et al. Synthesis of Zn(II) ion-imprinted solid- phase extraction material and its analytical application[J] Anal. Chim. Acta, 2007,603(1):87-92.
    [104] Singh D K, Mishra S. Synthesis of a new Cu(II)-ion imprinted polymer for solid phase extraction and preconcentration of Cu(II)[J]. J. Chromatogr. A, 2009,70(3):1539-1545.
    [105] Daniel S, Praveen R S, Rao T P. Ternary ion-association complex based ion imprinted polymers(IIPs) for trace determination of palladium(II) in environmental samples[J]. Anal. Chim. Acta, 2006,570(1):79-87.
    [106] Singh D K, Mishra S. Synthesis, characterization and removal of Cd(II) using Cd(II)-ion imprinted polymer[J]. Journal of Hazardous Materials, 2009,164(2): 1547-1551.
    [107] Zhu X B, CuiY M, Chang X J, et al. Selective solid-phase extraction of Pb(II) from biological and natural water samples using surface-grafted Pb(II)- imprinted polymers[J]. Microchim. Acta, 2009,162(1-2):125-132.
    [108] He Q, Chang X J, Zheng H, et al. Determination of chromium(III) and total chromium in natural waters using a surface ion-imprinted silica gel as selective adsorbent[J]. International Journal of Environmental Analytical Chemistry, 2008,88(6):373-384.
    [109] Dakova I, Karadjova I, Georgieva V, et al. Ion-imprinted polymethacrylic microbeads as new sorbent for preconcentration and speciation of mercury[J]. Talanta, 2009,78(2):523-529.
    [110] Biju V M, Gladis J M, Rao T P. Ion imprinted polymer particles: synthesis, characterization and dysprosium ion uptake properties suitable for analytical applications [J]. Anal. Chim. Acta, 2003,478(1):43-51.
    [111] Vigneau O, Pinel C, Lemaire M. Ionic imprinted resins based on EDTA and DTPA derivatives for lanthanides(III) separation[J]. Anal. Chim. Acta, 2001, 435(1):75-82.
    [112] Gladis J M, Rao T P. Synthesis and analytical applications of uranyl ion imprinted polymer[J]. Anal. Lett., 2003,36:2107-2121.
    [113] Sadeghi S, Mofrad A A. Synthesis of a new ion imprinted polymer material for separation and preconcentration of traces of uranyl ions[J]. Reactive & Functional Polymers, 2007,67(10):966-976.
    [114] Singh D K, Mishra S. Synthesis and characterization of UO22+-ion imprinted polymer for selective extraction of UO22+[J]. Anal. Chim. Acta, 2009,644(1): 42-47.
    [115] Birlik E, Büyüktiryaki S, Say R, et al. Selective separation of thorim using ion imprinted chitosan-phthalate partice via solid phase extraction[J]. Separation Science and Technology, 2006,41(14):3109-3121.
    [116] Büyüktiryaki S, Say R, Birlik E, et al. Selective preconcentration of thrioum in the presence of UO22+,Ce3+ and La3+ using Th(IV)-imprinted polymer[J]. Talanta, 2005,67(3):640-645.
    [117] He Q, Chang X J, Qiong W, et al. Synthesis and applications of surface-grafted Th(IV)-imprinted polymers for selective solid-phase extraction of thorium(IV) [J]. Anal. Chim. Acta., 2007,605(2):192-197.
    [118] Seel C, V?gtle F. Templates,“Wheeled Reagents”, and a new route to rotaxanes by anion complexation: The trapping Method[J]. Chemristry-A European Journal. 1999,6(1):21-24.
    [119] Yélamos C, Heeg M J, Winter C H. Synthesis, structure, and reactivity of potassium pyrazolato complexes: the first structurally documentedη2-pyrazolato coordination by a main group metal[J]. Inorg. Chem., 1998,37 (15):3892-3894.
    [120] Pan L, Huang X Y, Li J, et al. Novel Single and double-layer and three-dimensional structures of rare-earth metal coordination polymers: the effect of lanthanide contraction and acidity control in crystal structure formation[J]. Angew. Chem. Int. Ed., 2000,39(3):527-530.
    [121] Pan L, Frydel T, Sander M B, et al. The effect of pH on the dimensionality of coordination polymers[J]. Inorg. Chem., 2001,40(6):1271-1283.
    [122] Ziegelgruber K L, Knope K E, Frisch M, et al. Hydrothermal chemistry of Th(IV) with aromatic dicarboxylates: New framework compounds and in situ ligand syntheses[J]. Journal of Solid State Chemistry, 2008,181(2):373-381.
    [123]李锦州,李刚,于文锦.呋喃甲酰基吡唑啉酮双席夫碱与铀(VI)、钍(IV)配合物的合成、表征及生物活性[J].核化学与放射化学, 2000,22(1):19-23.
    [124] Yu S N, Yang Y Z, Bao B R. Extraction of Th(IV) from nitric with (4-benzoyl- 2,4-dihydro-5-methyl-2-phenyl-3H-pyrazol-3-thione[J]. Nuclear Science and Techniques, 1998,10(2):118-120.
    [125] Aydin F A, Soylak M. A novel multi-element coprecipitation technique for separation and enrichment of metal ions in environmental samples[J]. Talanta, 2007,73(1):134-141.
    [126]赵卫光,李正名,王文艳,等.二硫缩醛合成方法的改进[J].化学试剂, 2000,22(6):376-377.
    [127]王宏青,刘惠,刘钊杰. 1-2[2-(4,2二氯苯氧)乙酰基]-5-氨基-1H-吡唑衍生物的合成与生物活性[J].有机化学, 2004,24(7):797-801.
    [128] Meyer T, Spange S, Hesse S, et al. Radical grafting polymerization of Vinylform-amide with Functionalized Silica Particles[J]. Macromol. Chem. Phys., 2003,204(4):725-732.
    [129] An Y, Chen M, Xue Q, et al. Preparation and self-assembly of carboxylic acid-functionalized silica[J]. J. Colloid Interface Sci., 2007,311(2):507-513.
    [130] Zhu X B, Chang X J, Cui Y M, et al. Solid-phase extraction of trace Cu(II) Fe(III) and Zn(II) with silica gel modified with curcumin from biological and natural water samples by ICP-OES[J]. Microchemical Journal, 2007,86(2): 189-194.
    [131]李锦州,安郁美,于文锦.吡唑啉酮双席夫碱La(III)、Ce(III)、Sm(III)配合物的合成与性质研究[J].哈尔滨师范大学自然科学学报, 1998,14 (1):47-50.
    [132] Ueno K, Martell A E. Infrared study of metal chelates of bisacetyl acetoneethylenediimine and related compounds[J]. J. Phys. Chem., 1955,59 (10):998-1004.
    [133] Singh D B, Prasad G, Rupainwar D C, et al. As(III) removal from aqueous solution by adsorption[J]. Water, Air, & Soil Pollution, 1998,42(3-4):373-386.
    [134] Say R, Ers?z A, Denizli A. Selective separation of uranium containing glutamic acid molecular-imprinted polymeric microbeads[J]. Separation Science and Technology, 2003,38(14):3431-3447.
    [135]杨冬花.金属离子铸型高分子微球的合成及吸附性能[J].太原理工大学学报, 1999,30(5):502-504.
    [136] Wall G. Drug assay using antilbody mimies made by molecular imprinting[J]. Angew. Chem. Int. Ed. Engl., 1995,34(6):1812-1823.
    [137] Kazuhiko T, Kai Y Y, Mizuo M, et al. Metal ion-selective adsorbent prepared by surface-imprinting polymerization[J]. Bull. Chem. Soc. Jpn., 1993,66(1):14- 20.
    [138]苏现伐,石慧丽,朱桂芬,等.铅离子印迹聚合物的制备及特异吸附性能研究[J].冶金分析, 2009,29(8):16-20
    [139] Hirose K, Tanoue E. Strong ligands for thorium complexation in marine bacteria[J]. Marine environmental research, 2001,51(1):95-112
    [140] Liu Q Y, Li W Y, He X W, et al. Study of recognition property of molecularly imprinted bovine hemoglobin on surface-modified silica gel[J]. Acta Chim. Sinica, 2008,66(1):56-62.
    [141] El-Dessouky S I, Borai E H. Extraction chromatography of thorium ion by solid phase impregnated resins containing bi-functional organic extractants[J]. Journal of Radioanalytical and Nuclear Chemistry, 2006,268(2):247-254.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700