用户名: 密码: 验证码:
微波加热合成特殊形貌微纳米材料研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米材料是材料学与纳米科技的交叉学科,也是纳米科技中最基础、最富有活力的组成部分,对未来经济和社会发展有着重要影响。纳米材料是三维空间中至少有一维处于纳米尺度范围或者由该尺度范围的物质为基本结构单元所构成的超精细颗粒材料的总称。纳米材料属于微观粒子和宏观物体交界的过渡区域,具有一系列奇特的效应,这些效应的存在使纳米材料呈现出许多奇异的物理、化学性质,因而使纳米材料具有非常广阔的应用前景。
     随着人们对纳米材料所具有的特殊性质的逐步认识和对纳米材料应用方面研究的开展,纳米材料制备研究也日趋深入。目前广泛采用的制备纳米材料有很多种,如,气相沉积法、溶剂热反应、模板法、溶胶-凝胶法、热分解法和超声法等。但是这些方法存在诸如污染环境、成本高、反应条件苛刻或昂贵设备等缺点,不利于大批量制备。为了克服这些缺点,我们在对环境友好的微波化学方法,制备了一系列特殊形貌的微纳米材料。
     首先,我们通过微波加热制备了CdS纳米颗粒,用XRD检测其物相组成,表明产物为六方相的硫化镉,并计算出了其晶格常数;用FESEM对其形貌进行了表征,CdS尺寸大约为50 nm,产物十分均一;就表面活性剂的浓度、反应温度等对CdS形貌的影响进行了研究,并通过实验结果的分析提出了其可能的反应机理。
     其次,我们采用微波加热制备了陀螺形状ZnO微纳米结构,用XRD检测其物相组成,结构表明产物为六方相的ZnO,并计算出了其晶格常数;用FESEM对其形貌进行了表征,ZnO粒径为1μm左右;对溶液中TEA的含量、加热方式及磁子搅拌等对ZnO微纳米结构形貌的影响进行了研究,通过对比不同反应条件所得产物的形貌提出了可能的生长机理。
     再次,我们采用微波加热制备了花状ZnO微纳米结构,用XRD检测其物相组成,结构表明产物为六方相的ZnO,并计算出了其晶格常数;用FESEM对其形貌进行了表征;对溶液中TEA的含量、氨水加入量、反应温度等对ZnO微纳米结构形貌的影响进行了研究,通过对比不同反应条件所得产物的形貌提出了可能的生长机理。
     最后,我们采用微波加热,快速(5 min)制备出Te纳米线,用XRD检测其物相组成,结构表明产物为六方相;用HRTEM及FESEM对其形貌进行了表征,Te纳米线直径大约为5 nm;然后我们采用制备的Te纳米线为模板制备出一维的CdTe、PbTe和Au纳米线;提出了一维纳米线的可能生长机理。
     综上所述,本论文对利用微波化学法制备微纳米材料进行了系统的研究,并在微波加热条件下制备了一系列形貌均一和结晶性完好的微纳米材料。
As the interdisciplinary of material science and nanotechnology, nanomaterials are also the most basic and active area of nanotechnology and have intense influence on the development of economy and society. In general, nanomaterials is at least one dimension in nanometer-scale range or by the scale as the basic structural unit composed of ultra-fine grain materials. As the particle size approaches nanometer scale, their peculiar physical and chemical properties become quite different with broad application potentials and have great potential applications in many fields.
     The fabrication of nanomaterials goes deeper with the understanding of their unique properties and the study on nanomaterials' application. Recently, there are many widely used methods to be utilized to synthesize nanomaterials, such as, vapor deposition method, solvothermal reaction, template method, sol-gel method, thermal decomposition method and the ultrasonic method, etc. But these methods have many drawbacks, for instance, environmental pollution, high energy consumption, high cost and rigorous conditions like high temperature and high pressure or usage of expensive equipment. To overcome these shortcomings, we employ environmentally friendly microwave chemistry to synthesis a series of micro-nano materials.
     Firstly, CdS nanoparticles with average particle size of 50 nm was prepared with microwave method. XRD results indicate that the products are hexagonal crystal structure. The concentration of surfactants and reacting temperature all play important roles in the final morphologies of CdS nanoparticle. The reacting process was studied and mechanism governing the growth of CdS nanoparticle was discussed.
     Secondly, typical spinning top shape ZnO with average particle size of 1.0μm was prepared with microwave method. XRD results indicate that the products are hexagonal crystal structure. The concentration of surfactants, reacting temperature and blending of magneton all play important roles in the final morphologies of ZnO micro-nano structure. The reacting process was studied and mechanism governing the growth of micro-nano structure was discussed.
     Thirdly, unusual flower-like ZnO micro-structure was prepared with microwave method. XRD results indicate that the products are hexagonal crystal structure. The concentration of reactants (TEA and ammonia) and reacting temperature all play important roles in the final morphologies of ZnO micro-nano structure. The reacting process was studied and mechanism governing the growth of micro-nano structure was discussed.
     Finally, super thin Te nanowire was fast prepared with microwave method in 5 min. XRD results indicate that the products are hexagonal crystal structure. HRTEM and FESEM show that Te nanowire is about 5 nm in diameter. Then we use Te nanowire as sacrificial template to fabricate CdTe, PbTe and Au nanowire. The reacting process was studied and mechanism governing the growth of nanowire was discussed.
     In summary, a systematic investigation has been conducted on the microwave chemistry assisted preparation of micro-nano materials. And we synthesized a series of uniform and good crystallinity of micro-nano crystal.
引文
[1]Whitesides, G.; Mathias, J.; Seto, C. Molecular self-assembly and nanochemistry: a chemical strategy for the synthesis of nanostructures, Science; 1991; 254(5036):1312-1319.
    [2]陈敬中;刘剑洪.纳米材料科学导论,北京:高等教育出版社,2006:1-45.
    [3]Louie, S. G. Nanoparticles behaving oddly, Nature; 1996; 384(6610):612-613.
    [4]Walt, D. R. Nanomaterials: Top-to-bottom functional design, Nat Mater; 2002; 1(1):17-18.
    [5]Bethell, D.; Schiffrin, D.D.J. Nanotechnology and Nucleotides, Nature; 1996; 382(6592): 581-581.
    [6]刘奎立,李建.纳米材料及其应用,周口师范学院学报;2005;2(2):28-35.
    [7]Henglein, A. Small-particle research: physicochemical properties of extremely small colloidal metal and semiconductor particles, Chemical Reviews; 1989; 89 (8):1861-1873.
    [8]Shi, J.; Gider, S.; Babcock, K.; Awschalom, D. D. Magnetic clusters in molecular beams, metals, and semiconductors, Science; 1996; 271 (5251):937-941.
    [9]Coe, S.; Woo, W.-K.; Bawendi, M.; Bulovic, V. Electroluminescence from single monolayers of nanocrystals in molecular organic devices, Nature; 2002; 420(6917):800-803.
    [10]倪星元,姚兰芳,沈军,周斌.纳米材料制备技术,北京:化学工业出版社,2008:1-56.
    [11]陈敬中,刘剑洪.纳米材料科学导论,北京:高等教育出版社,2006:1-45.
    [12]Ball, P.; Garwin, L. Science at the atomic scale, Nature; 1992; 355(6363):761-766.
    [13]Kanemitsu, Y.; Uto, H.; Masumoto, Y.; Maeda, Y. On the origin of visible photoluminescence in nanometer-size Ge crystallites, Applied Physics Letters; 1992; 61(18):2187-2189.
    [14]Cavjcchi, R. E,; Silsbee, R. H. Coulomb Suppression of tunneling rate from small metal particles, Phys.Rev.Left.; 1984; 52:1453-1456.
    [15]周瑞发,韩雅芳,陈祥宝.纳米材料技术,北京:国防工业出版社,2003:5-6.
    [16]Kubo, R. Statistical-mechanical theory of irreversible processes. Ⅰ. General theory and simple applications to magnetic and conduction problems, Journal of the Physical Society of Japan; 1957; 12(6):570-586.
    [17]Kubo, R. Electronic properties of metallic fine particles, Journal of the Physical Society of Japan; 1962; 17(6):975-986.
    [18]Kubo, R.; Kawabata, A.; Kobayashi, S. Electronic properties of small particles, Annual review of materials science,1984; 14(416):49-66.
    [19]Geerligs, L. J.; Averin, D. V.; Mooij, J. E. Observation of macroscopic quantum tunneling through the coulomb energy barrier, Physical Review Letters; 1990; 65(24):3037-3040.
    [20]刘吉平,廖莉玲.无机纳米材料,北京:科学出版社,2003:29-30.
    [21]张立德,牟季美.纳米材料和纳米结构,北京:科学出版社,2001:65-66.
    [22]Fulton, T. A.; Dolan, G. J. Observation of single-electron charging effects in small tunnel junctions, Physical Review Letters; 1987; 59(1):109.
    [23]徐国财.纳米科技导论,北京:高等教育出版社,2005:43-46.
    [24]Wang, Y.; Meng, G.; Zhang, L.; Liang, C.; Zhang, J. Catalytic growth of large-scale single-crystal CdS nanowires by physical evaporation and their photoluminescence, Chemistry of Materials; 2002; 14(4):1773-1777.
    [25]Ye, C.; Meng, G.; Wang, Y.; Jiang, Z.; Zhang, L. On the growth of CdS nanowires by the evaporation of CdS nanopowders, J. Phys. Chem. B; 2002; 106 (40):10338-10341.
    [26]Wang, X. D.; Summers, C. J.; Wang, Z. L. Mesoporous single-crystal ZnO nanowires epitaxially sheathed with Zn_2SiO_4, Advanced Materia; 2004; 16(14),1215-1218.
    [27]Abdi, A.; Titova, L. V.; Smith, L. M.; Jackson, H. E.; Yarrison-Rice, J. M.; Lensch, J. L.; Lauhon, L. J. Resonant Raman scattering from CdS nanowires, Applied Physics Letters; 2006; 88 (4): 043118-1-043318-3.
    [28]Baxter, J.B.; Aydil, E. S. Epitaxial growth of ZnO nanowires on a-and c-plane sapphire, Journal of Crystal Growth; 2005; 274 (3-4):407-411.
    [29]施尔畏,夏长泰,王步国等.水热法的应用与发展,无机材料学报;1996;11:193-206.
    [30]Zhang, X.; Zhao, Q.; Tian, Y.; Xie, Y. Fabrication of CdS micropatterns:Effects of intermolecular hydrogen bonding and decreasing capping ligand, Crystal Growth & Design; 2003,; 4 (2):355-359.
    [31]Gao, F.; Lu, Q.; Meng, X.; Komarneni, S. CdS Nanorod-Based Structures:From Two-and Three-Dimensional Leaves to Flowers, J. Phys. Chem. C; 2008; 112 (35):13359-13365.
    [32]Zhang, H.; Yang, D.; Ji, Y.; Ma, X.; Xu, J.; Que, D. Low Temperature Synthesis of Flowerlike ZnO Nanostructures by Cetyltrimethylammonium Bromide-Assisted Hydrothermal Process, The J. Phys. Chem. B; 2004,108 (13):3955-3958.
    [33]Liu, B.; Zeng, H. C. Hydrothermal Synthesis of ZnO Nanorods in the Diameter Regime of 50 nm. Journal of the American Chemical Society; 2003; 125 (15):4430-4431.
    [34]Sun, Y.; George Ndifor-Angwafor, N.; Jason Riley, D.; Ashfold, M. N. R. Synthesis and photoluminescence of ultra-thin ZnO nanowire/nanotube arrays formed by hydrothermal growth, Chemical Physics Letters; 2006; 431 (4-6):352-357.
    [35]Xu, D.; Liu, Z.; Liang, J.; Qian, Y. Solvothermal synthesis of CdS nanowires in a mixed solvent of ethylenediamine and dodecanethiol, J. Phys. Chem. B; 2005; 109(30):14344-14349.
    [36]Martin, C. R. Nanomaterials:A membrane-based synthetic approach, Science; 1994; 266 (5193): 1961-1966.
    [37]Cai, Z.; Martin, C. R. Electronically conductive polymer fibers with mesoscopic diameters show enhanced electronic conductivities, Journal of the American Chemical Society; 1989; 111 (11): 4138-4139.
    [38]Fu, M. X.; Zhu, Y. F.; Tan, R. Q.; Shi, G. Q. Aligned polythiophene micro-and nanotubules, Advanced Materials; 2001; 13 (24):1874-1875.
    [39]Braun, E.; Eichen, Y.; Sivan, U.; Ben-Yoseph, G DNA-templated assembly and electrode attachment of a conducting silver wire, Nature; 1998; 391(6669):775-778.
    [40]Meldrum, F. C.; Wade, V. J.; Nimmo, D. L.; Heywood, B. R.; Mann, S. Synthesis of inorganic nanophase materials in supramolecular protein cages, Nature; 1991; 349(6311):684-687.
    [41]Murphy, C. J.; Jana, N. R. Controlling the aspect ratio of inorganic nanorods and nanowires, Advanced Materials; 2002; 14 (1):80-82.
    [42]Li, Y.; Wan, J. H.; Gu, Z. N. Templated synthesis of CdS nanowires in hexagonal liquid crystal systems, Acta Physico-Chimica Sinica; 1999; 15 (1):1-4.
    [43]Pal, B.; Sharon, M. Enhanced photocatalytic activity of highly porous ZnO thin films prepared by sol-gel process, Materials Chemistry and Physics; 2002; 76 (1):82-87.
    [44]曹建明.溶胶-凝胶法制备ZnO微粉工艺研究,化学工程师;2005;11(5):4-6.
    [45]Murra, C. B.; Norris, D. J.; Bawendi; M. G. Synthesis and characterization of nearly monodisperse CdE (E=sulfur, selenium, tellurium) semiconductor nanocrystallites, Journal of the American Chemical Society; 1993; 115(19):8706-8715.
    [46]Monge, M.; Kahn, M. L.; Maisonnat, A.; Chaudret, B. Room-temperature organometallic synthesis of soluble and crystalline ZnO nanoparticles of controlled size and shape, Angewandte Chemie-International Edition; 2003; 42 (43):5321-5324.
    [47]Yang, Y; Chen, H. L.; Zhao, B. Size control ZnO nanoparticles via thermal decomposition of zinc acetate coated on organic additives; Journal of Crystal Growth; 2004; 263:447-453.
    [48]Yin, M.; Gu, Y; Kuskovsky, I. L.; Andelman, T.; Zhu, Y; Neumark, G. F.; O'Brien, S. Zinc Oxide Quantum Rods, Journal of the American Chemical Society; 2004; 126 (20):6206-6207.
    [49]Cintas, P.; Luche, J. L. The sonochemical approach, Green Chemistry; 1999; 1 (3):115-125.
    [50]Suslick, K. S. Sonochemistry, Science; 1990; 247 (4949):1439-1445.
    [51]Oshima, R.; Yamamoto, T. A.; Mizukoshi, Y.; Nagata, Y.; Maeda, Y Electron microscopy of noble metal alloy nanoparticles prepared by sonochemical methods, Nanostructured Materials; 1999; 12(1-4):111-114.
    [52]Dhas, N. A.; Zaban, A.; Gedanken, A. Surface Synthesis of Zinc Sulfide Nanoparticles on Silica Microspheres:Sonochemical Preparation, Characterization, and Optical Properties, Chemistry of Materials; 1999; 11 (3):806-813.
    [53]Gates, B.; Mayers, B.; Grossman, A.; Xia, Y. A Sonochemical Approach to the Synthesis of Crystalline Selenium Nanowires in Solutions and on Solid Supports, Advanced Materials; 2002; 14 (23):1749-1752.
    [54]Zhang, J.; Du, J.; Han, B.; Liu, Z.; Jiang, T.; Zhang, Z. Sonochemical Formation of Single-Crystalline Gold Nanobelts, Angewandte Chemie International Edition; 2006; 45 (7): 1116-1119.
    [55]Hou, X. M.; Zhou, F.; Sun, Y. B.; Liu, W. M. Ultrasound-assisted synthesis of dentritic ZnO nanostructure in ionic liquid, Materials Letters; 2007,61 (8-9):1789-1792.
    [56]Li, H.; Ni, Y. H.; Hong, J. M. Ultrasound-assisted preparation, characterization and properties of flower-like ZnO microstructures, Scripta Materialia; 2009,60 (7):524-527.
    [57]朱友益,韩冬,沈平平.表面活性剂结构与性能的关系,石油工业出版社;2003;1-42.
    [58]Tondre, C.; Hebrant, M. Micellar and microemulsion systems to perform heterogeneous reactions, biphasic extraction and solute transport, Journal of Molecular Liquids; 1997; 72 (1-3): 279-294.
    [59]Candau, F.; Zekhnini, Z.; Durand, J.-P. Copolymerization of water-soluble monomers in nonionic bicontinuous microemulsions, Journal of Colloid and Interface Science; 1986; 114 (2): 398-408.
    [60]Zulauf, M.; Eicke, H. F. Inverted micelles and microemulsions in the ternary system water/aerosol-OT/isooctane as studied by photon correlation spectroscopy, The Journal of Physical Chemistry; 1979; 83 (4):480-486.
    [61]Berhault, G.; Bausach, M.; Bisson, L.; Becerra, L.; Thomazeau, C.; Uzio, D. Seed-Mediated Synthesis of Pd Nanocrystals:Factors Influencing a Kinetic-or Thermodynamic-Controlled Growth Regime, J. Phys. Chem. C; 2007; 111 (16):5915-5925.
    [62]Vriezema, D. M.; Aragones, M. C.; Elemans, J.; Cornelissen, J.; Rowan, A. E.; Nolte, R. J. M. Self-assembled nanoreactors, Chemical Reviews; 2005; 105 (4):1445-1489.
    [63]Zou, B. S.; Little, R. B.; Wang, J. P.; El-Sayed, M. A. Effect of different capping environments on the optical properties of CdS nanoparticles in reverse micelles, International Journal of Quantum Chemistry; 1999; 72 (4):439-450.
    [64]Burda, C.; Chen, X.; Narayanan, R.; El-Sayed, M. A. Chemistry and Properties of Nanocrystals of Different Shapes, Chemical Reviews; 2005; 105 (4):1025-1102.
    [65]Cozzoli, P. D.; Pellegrino, T.; Manna, L. Synthesis, properties and perspectives of hybrid nanocrystal structures. Chem. Soc. Rev; 2006; 35:1195-1208.
    [66]Sui, Z. M.; Chen, X.; Wang, L. Y.; Xu, L. M.; Zhuang, W. C.; Chai, Y. C.; Yang, C. J. Capping effect of CTAB on positively charged Ag nanoparticles, Physica E-Low-Dimensional Systems & Nanostructures; 2006; 33 (2):308-314.
    [67]Bucher, S.; Homes, J.; Modrow, H. Interaction between core and protection shell of N(butyl)4CI-and N(octyl)4Cl-stabilized Pd; colloid Surface Sci.; 2002; 497:321-332.
    [68]姚松年,钟桂荣.卵磷脂有序体中碳酸钙超微颗粒的研究,物理化学学报;1994;10(10):950-953.
    [69]Ober, R.; Taupin, C. Interactions and aggregation in microemulsions. A small-angle neutron scattering study, J. Phys. Chem.; 1980; 84 (19):2418-2422.
    [70]邵庆辉,古国榜,章莉娟.微乳化技术在纳米材料制备中的应用研究,化工新型材料;2001;(7):9-12.
    [71]潘庆谊,陆晴.W/O微乳体系稳定条件的研究,化学研究与应用;2001;133:284-286.
    [72]Rybinski, W.; Guckenbiehl, B.; Tesmann, H. Influence of co-surfactants on microemulsions with alkyl polyglycosides, Colloids and Surfaces A-Physicochemical and Engineering Aspects; 1998; 142 (2-3):333-342.
    [73]Boutonnet, M.; Kizling, J.; Stenius, P.; Maire, G. The preparation of monodisperse colloidal metal particles from microemulsions, Colloids and Surfaces A; 1982; 5 (3):209-225.
    [74]Gan, L. M.; Liu, B.; Chew, C. H.; Xu, S. J.; Chua, S. J.; Loy, G. L.; Xu, G. Q. Enhanced Photoluminescence and Characterization of Mn-Doped ZnS Nanocrystallites Synthesized in Microemulsion, Langmuir; 1997; 13 (24):6427-6431.
    [75]Holmqvist, P.; Alexandridis, P.; Lindman, B. Modification of the microstructure in block copolymer-water-"oil" systems by varying the copolymer composition and the "oil" type: Small-angle X-ray scattering and deuterium-NMR investigation, J. Phys. Chem. B; 1998; 102 (7): 1149-1158.
    [76]Alexandridis, P.; Olsson, U..; Lindman, B. A record nine different phases (four cubic, two hexagonal, and one lamellar lyotropic liquid crystalline and two micellar solutions) in a ternary isothermal system of an amphiphilic block copolymer and selective solvents (water and oil), Langmuir;1998; 14 (10):2627-2638.
    [77]Kresge, C. T.; Leonowicz, M. E.; Roth, W. J.; Vartuli, J. C.; BeclO, S. Ordered Mesoporous Molecular Sieves Synthesized by a Liquid Cyrstal Template Mechanism, Nature; 1992; 359: 710-712.
    [78]Holland, B. T.; Isbester, P. K.; Blanford, C. F.; Munson, E. J.; Stein, A. Synthesis of Ordered Aluminophosphate and Galloaluminophosphate Mesoporous Materials with Anion-Exchange Properties Utilizing Polyoxometalate Cluster/Surfactant Salts as Precursors, Journal of the American Chemical Society; 1997; 119 (29):6796-6803.
    [79]Coleman, N. R. B.; Attard, G. S. Ordered mesoporous silicas prepared from both micellar solutions and liquid crystal phases, Microporous and Mesoporous Materials; 2001; 44:73-80.
    [80]麻孝勇,莫羡忠.微波在合成纳米材料中的应用,化工技术与开发;2007;36(2):38241.
    [81]黄卡玛,刘永清,唐敬贤.电磁波对化学反应非制热作用的实验研究,高等学校化学学报;1996;17(12):764-768.
    [82]谢筱娟,杨高林,程林等.微波辐射下的相转移催化法合成二(苯并三唑基)烷烃,化学试剂,2000;22:32-33.
    [83]杨霞,王胜平,马新宾.微波技术在催化剂制备中的应用,化学通报;2004;9:641-647.
    [84]蔡汉成,方云,夏咏梅等.一种新的催化方法:微波辐射-酶耦合催化有机合成,有机化学;2003;23(3):298-304.
    [85]刘韩星,欧阳世翕.无机材料微波固相合成方法与原理,北京:科学出版社;2006;11-18.
    [86]金钦汉.微波化学,北京:科学出版社,1999:147-160.
    [87]沈玉龙.绿色化学,北京:中国环境科学出版社,2004,1-29.
    [88]王鹏环.境微波化学技术,北京:化学工业出版社,2003,1-36.
    [89]Abramovitch, R. A.; Abramovitch, D. A.; Iyanar, K.; Tamareselvy, K. Application of microwave energy to organic synthesis:improved technology,Tetrahedron Letters;1991;32 (39):5251-5254.
    [90]Gedye, R.; Smith, F.; Westaway, K.; Ali, H.; Baldisera, L.; Laberge, L.; Rousell, J. The use of microwave-ovens for rapid organic-synthesis, Tetrahedron Letters; 1986; 27 (3):279-282.
    [91]Baghurst, D. R.; Chippindale, A. M.; Mingos, D. M. P. Microwave synthesis for superconducting ceramics, Nature; 1988; 332 (6162):311-315.
    [92]Wong, W. L. E.; Gupta, M. Improving overall mechanical performance of magnesium using nano-alumina reinforcement and energy efficient microwave assisted processing route, Advanced Engineering Materials; 2007; 9 (10):902-909.
    [93]Roberts, B. A.; Strauss, C. R. Toward rapid, "green", predictable microwave-assisted synthesis, Accounts of Chemical Research; 2005; 38 (8):653-661.
    [94]Wang, Y.; Iqbal, Z.; Mitra, S. Rapid, low temperature microwave synthesis of novel carbon nano tube-silicon carbide composite, Carbon; 2006; 44 (13):2804-2808.
    [95]Shao, M. W.; Li, Q.; Xie, B.; Wu, J.; Qian, Y. T. The synthesis of CdS/ZnO and CdS/Pb_3O_4 composite materials via microwave irradiation, Materials Chemistry and Physics; 2003; 78 (1): 288-291.
    [96]He, Y.; Lu, H. T.; Sai, L. M.; Lai, W. Y.; Fan, Q. L.; Wang, L. H.; Huang, W. Microwave-assisted growth and characterization of water-dispersed CdTe/CdS core-shell nanocrystals with high photoluminescence, Journal of Physical Chemistry B; 2006; 110 (27): 13370-13374.
    [97]He, R.; Qian, X. F.; Yin, J.; Xi, H. A.; Bian, L. J.; Zhu, Z. K., Formation of monodispersed PVP-capped ZnS and CdS nanocrystals under microwave irradiation, Colloids and Surfaces a-Physicochemical and Engineering Aspects; 2003; 220 (1-3):151-157.
    [98]Arora, S.; Manoharan, S. S. Size-dependent photoluminescent properties of uncapped CdS particles prepared by acoustic wave and microwave method, Journal of Physics and Chemistry of Solids; 2007; 68 (10):1897-1901.
    [99]Wang, L.; Huang, Y D.; Jiang, R. R.; Jia, D. Z. Preparation and characterization of nano-sized LiFePO_4 by low heating solid-state coordination method and microwave heating, Electrochimica Acta; 2007; 52 (24):6778-6783.
    [100]Mangalaraja, R. V.; Mouzon, J.; Hedstrom, P.; Camurri, C. P.; Ananthakumar, S.; Oden, M. Microwave assisted combustion synthesis of nanocrystalline yttria and its powder characteristics, Powder Technology; 2009; 191 (3):309-314.
    [101]Mohebbi, H.; Ebadzadeh, T.; Hesari, F. A. Synthesis of nano-crystalline NiO-YSZ by microwave-assisted combustion synthesis, Powder Technology; 2009; 188 (3):183-186.
    [102]Zhang, X.; Cheng, X.; Yin, H.; Yuan, J.; Xu, C. Preparation of needle shaped nano-copper by microwave-assisted water system and study on its application of enhanced epoxy resin coating electrical conductivity, Applied Surface Science; 2008; 254 (18):5757-5759.
    [103]Cheng, H.; Cheng, J.; Zhang, Y.; Wang, Q.-M. Large-scale fabrication of ZnO micro-and nano-structures by microwave thermal evaporation deposition, Journal of Crystal Growth; 2007; 299 (1):34-40.
    [1]Chen, M. Y.; Xie, J. Synthesis of rod-, twiurod-, and tetrapod-shaped CdS nanocrystals using a highly oriented solvothermal recrystallization technique, J. Mater. Chem.; 2002; 12:748-753.
    [2]Pan, D. C.; Jinag, S. C.; An, L. J. Controllable synthesis of Highly Luminescent and Monodisperse CdS Nanocrystals by a Two-Phase Approach under Mild Conditions, Adv. Mater; 2004; 16:982-985.
    [3]Zhan, J. H.; Yang, X. G.; Li, S. D. A chemical solution transport mechanism for one-dimensional growth of CdS nanowires, J. Cryst. Growth; 2000; 220(3):231-234.
    [4]Xiong, S.L.; Xi, B.J.; Wang, C.M. Shape-controlled synthesis of 3D and 1D structures of CdS in a binary solution with L-cysteine'S assistance, Chem. Eur. J; 2007; 13(11):3076-3081.
    [5]Adam, Z.; Peng, X. G. Formation of High-Quality CdTe, CdSe, and CdS Nanocrystals Using CdO as Precursor, J. Am. Chem. Soc.; 2001; 123:183-184.
    [6]Cao, J.; Sun, J.Z.; Hong. J. Carbon nanotube/CdS core-shell nanowires prepared by a simple room-temperature chemical reduction method, Adv.Mater; 2004; 16(1):84-87.
    [7]Manna, L.; Milliron, D. J., Meisel, A.; Scher, E. C.; Alivisatos, A. P. Controlled growth of tetrapod-branched inorganic nanocrystals, Nature Materials; 2003; 2(6):382-385.
    [8]Yin, Y. D.; Alivisatos, A. P. Colloidal nanocrystal synthesis and the organic-inorganic interface, Nature; 2005; 437(29):664-670.
    [9]Milliron, D. J.; Hughes, S. M.; Cui. Y.; Manna. L.; Li, J. B.; Wang, L. W.; Alivisatos, A. P. Colloidal nanocrystal heterostructures with linear and branched topology, Nature; 2004; 430(8): 190-195.
    [10]Kaschak, D. M.; Lean, J. T.; Waraksa, C. C.; Saupe, G. B.; Usami, H.; Mallouk, T. E. J. Am. Chem. Soc.; 1999; 121:3435.
    [11]van Hest, J. C. M.; Delnoye, D. A. P.; Baars, M. W. P. L.; van Genderen, M. H. P.; Meijer, E. W, Polystyrene-dendrimer amphiphilic block copolymers with a generation-dependent aggregation, Science; 1995; 268 (5217):1592-1595.
    [12]Ding, J.; Liu, G. Water-soluble hollow nanospheres as potential drug carriers, The Journal of Physical Chemistry B; 1998; 102 (31):6107-6113.
    [13]Discher, B. M.; Bernydez, H.; Hammer, D. A.; Discher, D. E.; Won, Y Y.; Bates, F. S. Cross-linked polymersome membranes: Vesicles with broadly adjustable properties, J. Phys. Chem. B,2002,106:2848.
    [14]余娜,孙丹,韩兆让,刘春丽.CTAB/SDBS囊泡的自发形成与聚合,化学学报;2008;66-3.
    [15]朱友益,韩冬,沈平平.表面活性剂结构与性能的关系,石油工业出版社;2003;1-42.
    [1]Pearton, S. J.; Norton, D. P. Recent progress in processing and properties of ZnO, Superlattices and Microstructures; 2005; 50:293-340.
    [2]Service, R. F. Materials Science: Will UV lasers beat the blues, Science; 1997; 276:895-897.
    [3]Cao, H.; Wu, J. Y.; Ong, H. C. Random laser action in semiconductor power, Phys. Rev. Left.;1999; 82(11):2278-2281.
    [4]Cao, H.; Xu, J.Y.; Zhang, D. Z. Spatial Confinement of Laser Light in Active Random Media, Phys. Rev. Lett.; 2000; 84:5584-5587.
    [5]Guo, H. H.; Lin, Z. H.; Feng, Z. F.; Lin. L. L.; Zhou, J. Z. White-Light-Emitting Diode Based on ZnO Nanotubes, J. Phys. Chem. C.; 2009; 113:12546-12550.
    [6]Lucas, M.; Mai, W. J.; Yang, R.; Wang, Z. L.; Riedo, E. Aspect Ratio Dependence of the Elastic Properties of ZnO Nanobelts, Nano Letters; 2007; 7(5):1314-1317.
    [7]Chang, J. F.; Wang, H. L.; Hon, M. H. Studying of transparent conductive ZnO:Al thin films by RF reactive magnetron sputtering, Journal of Crystal Growth; 2000; 211(1-4):93-97.
    [8]Hartanto, A. B.; Ning, X.; Nakata, Y.; Okada, T. Growth mechanism of ZnO nanorods from nanoparticles formed in a laser ablation plume, Applied Physics A:Materials Science & Processing; 2004; 78 (3):299-301.
    [9]Zhang, H.; Yang, D.; Ji, Y.; Ma, X.; Xu, J.; Que, D. Low Temperature Synthesis of Flowerlike ZnO Nanostructures by Cetyltrimethylammonium Bromide-Assisted Hydrothermal Process, J. Phys. Chem. B; 2004; 108 (13):3955-3958.
    [10]Jung, S. H.; Oh, E.; Lee, K. H.; Yang, Y.; Park, C. G.; Park, W. J.; Jeong, S. H. Sonochemical preparation of shape-selective ZnO nanostructures. Crystal Growth & Design,2008; 8(1): 265-269.
    [11]Tak, Y.; Yong, K. J. Controlled Growth of Well-Aligned ZnO Nanorod Array Using a Novel Solution Method,J. Phys. Chem. B; 2005; 109:19263-19269.
    [12]Zhang, H.; Yang, D.R.; Li, D.S.; Ma, X. Y.; Li, S. Z. Controllable Growth of ZnO Microcrystals by a Capping-Molecule-Assisted Hydrothermal Process, Cryst Growth Des; 2005; 5:547-550.
    [13]Liu, J. P.; Huang, X. T.; Sulieman, K.M.; Sun, F. L.; He, X. Solution-Based Growth and Optical Properties of Self-Assembled Monocrystalline ZnO Ellipsoids, J. Phys. Chem. B; 2006; 110: 10612-10618.
    [14]Ashfold, M. N. R.; Doherty, R. P.; Ndifor-Angwafor, N. G.; Riley,D. J.; Sun, Y. The kinetics of the hydrothermal growth of ZnO nanostructures, Thin Solid Films; 2007; 515:8679-8683.
    [15]Zhang, J.; Sun, L.; Yin, J.; Su, H.; Liao, C.; Yan, C. Control of ZnO Morphology via a Sample Solution Route, Chem. Mater.; 2002; 14:4172-4176.
    [16]Fang, Y.; Pang, Q.; Wen, X.; Wang, J.; Yang, S. Synthesis of ultrathin ZnO nanofibers aligned on a zinc substrate, Small; 2006; 2:612-615.
    [17]Kong, X. Y.; Ding, Y.; Yang, R.; Wang, Z. L. Single-crystal nanorings formed by epitaxial self-coiling of polar-nanobelts, Science; 2004; 303:1348-1351.
    [18]Wang, Z. L.; Kong, X. Y.; Zuo, J. M. Induced Growth of Asymmetric Nanocantilever Arrays on Polar Surfaces, Phys. Rev. Lett.; 2003; 91:185502-1-185502-4.
    [19]Wang, J.; Cao, J. M.; Fang, B.Q.; Lu, P.; Deng, S. G. Synthesis and characterization of multipod, flower-like, and shuttle-like ZnO frameworks in ionic liquids, Materials Letters; 2005; 59: 1405-1408.
    [20]Vayssieres, L.; Keis, K.; Hagfeldt, A.; Lindquist, S. E. Three-Dimensional Array of Highly Oriented Crystalline ZnO Microtubes, Chem. Mater.; 2001; 13:4395-4398.
    [1]Iijima, S. Helical microtubules of graphitic carbon, Nature; 1991; 354 (6348):56-58.
    [2]Kong, J.; Franklin, N. R.; Zhou, C.; Chapline, M. G.; Peng, S.; Cho, K.; Dai, H. Nanotube Molecular Wires as Chemical Sensors, Science; 2000; 287 (5453):622-625.
    [3]Collins, P. G.; Bradley, K.; Ishigami, M.; Zettl, A. Extreme Oxygen Sensitivity of Electronic Properties of Carbon Nanotubes, Science; 2000; 287 (5459):1801-1804.
    [4]Wagner, H. D.; Lourie, O.; Feldman, Y.; Tenne, R. Stress-induced fragmentation of multiwall carbon nanotubes in a polymer matrix, Applied Physics Letters; 1998; 72 (2):188-190.
    [5]Britto, P. J.; Santhanam, K. S. V.; Rubio, A.; Alonso, J. A.; Ajayan, P. M. Improved charge transfer at carbon nanotube electrodes, Advanced Materials; 1999; 11 (2):154-157.
    [6]Huynh, W. U.; Dittmer, J. J.; Alivisatos, A. P. Hybrid Nanorod-Polymer Solar Cells, Science; 2002; 295 (5564):2425-2427.
    [7]Kind, H.; Yan, H. Q.; Messer, B.; Law, M.; Yang, P. D. Nanowire ultraviolet photodetectors and optical switches, Advanced Materials; 2002; 14 (2):158-160.
    [8]Rinzler, A. G.; Hafner, J. H.; Nikolaev, P.; Nordlander, P.; Colbert, D. T.; Smalley, R. E.; Lou, L.; Kim, S. G.; Tomanek, D. Unraveling Nanotubes: Field Emission from an Atomic Wire, Science; 1995; 269 (5230):1550-1553.
    [9]Gautam, U. K.; Rao, C. N. R. Controlled synthesis of crystalline tellurium nanorods, nanowires, nanobelts and related structures by a self-seeding solution process, Journal of Materials Chemistry; 2004; 14 (16):2530-2535.
    [10]Xi, G.; Liu, Y.; Wang, X.; Liu, X.; Peng, Y.; Qian, Y. Large-Scale Synthesis, Growth Mechanism, and Photoluminescence of Ultrathin Te Nanowires, Crystal Growth & Design; 2006; 6 (11): 2567-2570.
    [11]Liang, H.W.; Liu, S.; Wu, Q.-S.; Yu, S.-H. An Efficient Templating Approach for Synthesis of Highly Uniform CdTe and PbTe Nanowires, Inorganic Chemistry; 2009; 48 (11):4927-4933.
    [12]Huber, C. A.; Huber, T. E.; Sadoqi, M.; Lubin, J. A.; Manalis, S.; Prater, C. B. Nanowire Array Composites, Science; 1994; 263 (5148):800-802.
    [13]Zhao, A. W.; Ye, C. H.; Meng, G W.; Zhang, L. D.; Ajayan, P. M. Tellurium nanowire arrays synthesized by electrochemical and electrophoretic deposition, Journal of Materials Research; 2003; 18 (10):2318-2322.
    [14]Wang, Z. L. Transmission Electron Microscopy of Shape-Controlled Nanocrystals and Their Assemblies,J. Phys. Chem. B; 2000; 104 (6):1153-1175.
    [15]Sun, Y.; Yin, Y.; Mayers, B. T.; Herricks, T.; Xia, Y. Uniform Silver Nanowires Synthesis by Reducing AgNO3 with Ethylene Glycol in the Presence of Seeds and Poly(Vinyl Pyrrolidone). Chemistry of Materials; 2002; 14(11):4736-4745.
    [16]Zhu, Y J.; Wang, W. W.; Qi, R. J.; Hu, X. L. Microwave-Assisted Synthesis of Single-Crystalline Tellurium Nanorods and Nanowires in Ionic Liquids, Angew. Chem. Int. Ed.; 2004; 43:1410-1414.
    [17]Liu, Z. P.; Li, S.; Yang, Y.; Hu, Z. K.; Peng, S.; Liang, J. B.; Qian,Y. T. Shape-controlled synthesis and growth mechanism of one-dimensional nanostructures of trigonal tellurium, New J. Chem.; 2003; 27:1748-1752.
    [18]Lin, Z. H.; Lin, Y. W.; Lee, K. H.; Chang, H. T. Selective growth of gold nanoparticles onto tellurium nanowires via a green chemical route, Journal of Materials Chemistry; 2008; 18 (22): 2569-2572.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700