用户名: 密码: 验证码:
氧化铝中空纤维载体上NaA分子筛膜的制备与分离性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
NaA分子筛膜,由于其具备极强的亲水性和0.42nm的孔径,适用于渗透汽化实现有机物的脱水。目前,NaA分子筛膜已由日本三井造船公司实现工业化,但膜的性能还有待于进一步提高,膜成本可进一步降低,成膜机理需进一步完善。陶瓷中空纤维耐高温耐腐蚀,且具备比表面积大、壁厚薄和表面平整的优势,适于用作分子筛膜的载体,近年吸引了广泛的研究兴趣。本文致力于在氧化铝中空纤维载体表面制备NaA分子筛膜的研究,阐述了二次生长过程中晶种的诱导成膜作用,提出了载体预置硅源的改良原位水热合成法,评价了载体层产生的透过阻力,并针对性地改善了中空纤维载体的结构和性能,制备了具备高渗透汽化分离性能的NaA分子筛膜。
     (1)晶种诱导成膜过程的探究
     采用浸涂法在氧化铝中空纤维外表面涂敷晶种,通过二次生长法制备NaA分子筛膜。通过比较纳米级与微米级晶种诱导成膜形貌和性能的差异性,阐述了水热合成阶段NaA分子筛晶体生长与成膜过程。对纳米级晶种而言,源自合成液的初晶核围绕在载体表面预置晶种周围,二者共同生长,迅速连接成层;而对微米级晶种而言,晶体团聚体是膜层的主要构成单元,且源自合成液的共生性较差的晶体嵌入膜层,导致瑕疵位的产生。使用1wt.%的晶种液浓度,90nm晶种对应的膜层醇水分离因子>10,000,而1500nm晶种合成的膜层分离因子<10。另外,研究了球磨所得无规则形状纳米级晶体碎片的诱导成膜作用,并呈现了晶种浓度对NaA分子筛膜分离性能的影响曲线。随晶种液浓度增加,膜层醇水分离因子先增加然后趋于稳定,对表面平整的中空纤维载体而言,合成连续致密NaA分子筛膜所需的最低晶种液浓度仅为0.1wt.%。
     (2)改良原位水热合成方法的研究
     从陈化和晶化两个阶段,从增加晶核数目和促进晶体生长两方面,研究合成条件对NaA分子筛膜形貌与性能的影响。提出了载体预置硅源的新型原位水热合成法,具体制备过程为,A.将中空纤维载体预置硅源中,B.滴加铝源制备合成液,C.载体与合成液一同陈化,D.将载体取出旋抹表面凝胶,E.将载体垂直放入合成液离心所得清液中,完成晶化。载体预先被硅源所浸润,随着铝源的滴加,Si和Al成分在载体表面相遇,初晶核从载体表面长出,消除了凝胶不易在载体表面成核的问题,增加了分子筛膜成核位点的分散密度。采用该改良的原位水热法,单次合成即实现具有高醇水分离性能的NaA分子筛膜(分离因子超过10,000,渗透通量范围为5.0~6.5kg m-2h-1)的制备。
     (3)分子筛膜渗透通量影响因素的考察
     从分子筛分离层和载体支撑层两方面考察影响整体渗透通量的因素。通过延长晶化时间和增加晶化次数的方式制备了不同膜厚的NaA分子筛膜,并研究了分子筛膜厚对其渗透汽化通量的影响。通过调整挤出压力、A12O3/PES(聚醚砜)比和焙烧温度等纺丝条件,制备了具有不同大孔结构和壁厚的非对称氧化铝中空纤维,并以之为载体合成NaA分子筛膜,研究了载体孔结构、孔隙率和壁厚对分子筛膜渗透汽化通量的影响。中空纤维载体孔隙率为69%时,NaA分子筛膜渗透汽化通量可达11.1kg m-2h-1;而使用孔隙率接近而壁厚减半的中空纤维作为分子筛膜载体时,合成的NaA膜渗透通量提高~35%。另外,模型化计算了渗透汽化过程透过组分在载体两侧的压降,计算结果表明,使用不同壁厚的载体合成NaA分子筛膜,醇水分离时载体层产生的传质阻力都超过载体与分子筛膜层整体阻力的50%。另外,采用具备内外贯通指状孔结构的新型氧化铝中空纤维作为成膜载体,可使分子筛膜通量进一步提高约15%。可见,载体层结构的改善是提高NaA分子筛膜分离性能和机械性能的关键。
     (4)提高氧化铝中空纤维机械性能的研究。
     将NaA分子筛晶体混入Al2O3/PES纺丝液中,采用浸入诱导相转化结合焙烧技术,通过调整NaA分子筛含量,纺丝液配比,挤出压力以及焙烧温度等条件,制备了机械性能显著提高的Al2O3中空纤维。通过分析NaA分子筛晶体在焙烧过程中的晶型与状态的改变,考察其焙烧残余物对氧化铝中空纤维形貌,结构及性能的影响。发现,高温焙烧过程中,NaA分子筛晶体经历骨架坍塌,晶型改变以及溶解固化过程,成为Al2O3粒子间强有力的粘合剂,可以降低氧化铝中空纤维的烧结温度。
Zeolite NaA with high Al content and small pore size (4.2A), has been found to be suitable for dehydrating water/organic mixtures by pervaporation. Despite the successful commercialization of supported zeolite NaA membranes (Mitsui Engineering&Shipbuilding Co. Ltd.), the fundamental understanding of membrane formation remains limited. Also, the separation performance of zeolite membranes needs to be further improved, and the manufacture cost could be further reduced. Ceramic hollow fibers, used as supports of zeolite membranes, have attracted wide attentions, not only because of their relatively high resistance to abrasion and, to chemical and thermal degradation, but also their higher surface/volume ratio and thinner walls compared with their counterparts of tubular supports. This research focuses on the preparation of zeolite NaA membranes on alumina hollow fiber supports. The induction nucleation of pre-coated zeolite seeds during the secondary growth process is investigated. The in situ hydrothermal synthesis is developed by placing the support in Si source before mixing. The contribution of the support layer to the overall mass-transfer resistance is determined. Accordingly, the permeation property and mechanical strength of alumina hollow fibers is improved. And finally, the dense zeolite NaA membranes with high pervaporation performance are obtained on the suitable alumina hollow fiber supports.
     (1) Influences of seeds on the properties of zeolite NaA membranes
     Zeolite NaA membranes were prepared by seeded growth on the external surface of alumina hollow fiber supports. Based on the morphology and performance of zeolite NaA membranes grown from nano-and micro-sized seeds, seed-assisted membrane formation process is briefly discussed. It is easier for nano-sized seeds to uniformly cover the surface of the support with a low concentration while micro-sized seeds need unreasonably large concentration to get the same coverage. Initial nuclei generated from hydrogel surround the precoated nano-sized seeds everywhere and grow up together with them, leading to a relatively continuous layer at the early crystallization stage. For the micro-sized seeds, the inadequate coverage of seed crystals leads to the embedding of less intergrown cubic crystals and defects. When the seed concentration is as low as1wt.%, the separation factor of as-synthesized membrane from90-nm-sized seeds was higher than10.000with high reproducibility, while for1500-nm-sized seeds, separation factors are even below10. Furthermore, the influence of crystal fragments (~50nm) obtained by ball-milling available crystals (e.g.,1500nm) on the formation of zeolite membranes is also studied. Initially, a rise in the seed concentration leads to an increase of the separation factor. When the concentration reaches a specific value, the separation factors maintain more than10,000. In order to ensure uniform and adequate coverage of seeds, the amount of seeds implanted in the support by dip-coating has to exceed a certain limit. The lowest seed concentration is~0.1wt.%.
     (2) Improvement of in situ hydrothermal synthesis
     The in situ hydrothermal synthesis is developed by placing support in Si source before mixing. The detailed preparation process is as follows. At first, the hollow fiber support is placed in Si solution before mixing with the Al solution; then, the synthesis mixture is aged together with the support; after that, the support is taken out and a bottom-up rotary wiping is applied; finally, a centrifugal clear solution from the synthesis mixture is used to accomplish the zeolite crystallization. As Si ingredient encounters the Al near support, the initial zeolite nuclei start to grow from the surface of the support. Due to the elimination of crowding effect, the dispersion density of nucleation sites for the zeolite membrane increases greatly. As a result, we demonstrate for the first time that, by one single in situ hydrothermal synthesis, zeolite membranes with high pervaporation performance (separation factor>10,000and flux is5.0~6.5kg m-2h-1) and high reproducibility on ceramic hollow fiber supports can be obtained using a placing-support-in-Si source method.
     (3) Effects of support resistances on pervaporation performance of zeolite membranes
     Porous Al2O3hollow fibers with different asymmetric macrostructures, i.e. single or double finger-like layer, have been prepared by a phase inversion/sintering technique. Such hollow fibers are used as supports to synthesize zeolite NaA membranes with high separation factors (>10,000) in the pervaporation of ethanol/water solution (90wt.%,75℃). By means of extending the crystallization time (4~6h) and increasing the number of synthesis cycles (single/double/triple syntheses), zeolite membranes with different thicknesses are synthesized. Extrusion pressure, Al2O3/PES ratio, and calcination temperataure are adjusted to control the asymmetric macrostructure of the ceramic hollow fibers. Influences of both the zeolite layer thickness and support layer macrostructures on pervaporation properties of zeolite NaA/Al2O3supported membranes are investigated. It is indicated that the variation of the support macrostructure rather than zeolite layer thickness results in a greater difference in the pervaporation flux of the supported membrane. There is an approximate linear dependence of the pervaporation flux of the supported membrane on the support porosity despite the fact that these hollow fibers are produced with different preparation conditions. Using a hollow fiber with the porosity of69%as a support, a flux of11.1kg m-2h-1could be achieved. When the wall thickness of the support is reduced by half, the flux could increase by~35%. Furthermore, a mathematical model is used to calculate the pressure drop in the support layer. Using hollow fibers with different wall thickness as supports, the contribution of the support layer to the overall mass-transfer resistance is over50%. In addition, when the alumina hollow fiber with through finger-like pores is used as the support, the flux could further increase by~15%. Therefore, in order to obtain the zeolite NaA/Al2O3supported membranes with the high pervaporation performance and mechanical strength, it is probably effective to focus on the improvement and development of the support properties.
     (4) Improvement in the mechanical strength of ceramic hollow fibers
     With the addition of zeolite NaA to Al2O3/PES spinning slurry, the alumina hollow fibers with high mechanical strength are prepared by a combined phase-inversion and sintering method. Effects of zeolite NaA content, dope composition, extrusion pressure and calcination temperature on the morphology and structure of the ceramic hollow fibers are investigated. Improvement in the mechanical strength of hollow fibers resulting from the addition of zeolite NaA crystals is analysed. During the calcination process, zeolite NaA crystals probably experience framework collapse, crystalline phase transition, dissolution and solidification. Finally the zeolite NaA remains play a role as rivets and lead to the strong adhesive of alumina particles.
引文
[1]Z. P. Lai, G. Bonilla, I. Diaz, J. G. Nery, K. Sujaoti, M. A. Amat, E. Kokkoli, O. Terasaki, R. W. Thompson, M. Tsapatsis, D. G. Vlachos, Microstructural optimization of a zeolite membrane for organic vapor separation. Science,2003,300 (5618),456-460.
    [2]W. H. Yuan, Y. S. Lin, W. S. Yang, Molecular sieving MFI-type zeolite membranes for pervaporation separation of xylene isomers. J Am Chem Soc,2004,126 (15),4776-4777.
    [3]M. Pera-Titus, M. Bausach, J. Llorens, F. Cunill, Preparation of inner-side tubular zeolite NaA membranes in a continuous flow system. Sep Purif Technol,2008,59 (2),141-150.
    [4]V. Van Hoof, C. Dotremont, A. Buekenhoudt, Performance of Mitsui NaA type zeolite membranes for the dehydration of organic solvents in comparison with commercial polymeric pervaporation membranes. Sep Purif Technol,2006,48 (3),304-309.
    [5]G. Li, E. Kikuchi, M. Matsukata, Separation of water-acetic acid mixtures by pervaporation using a thin mordenite membrane. Sep Purif Technol,2003,32 (1-3),199-206.
    [6]X. H. Gu, J. H. Dong, T. M. Nenoff, Synthesis of defect-free FAU-type zeolite membranes and separation for dry and moist CO2/N2 mixtures. Ind Eng Chem Res,2005,44 (4),937-944.
    [7]Y. Morigami, M. Kondo, J. Abe, H. Kita, K. Okamoto, The first large-scale pervaporation plant using tubular-type module with zeolite NaA membrane. Sep Purif Technol,2001,25 (1-3),251-260.
    [8]段维维,王薇,NaA型纳米沸石分子筛的研究进展.天津工业大学学报,2013,32(2),69-72.
    [9]J. Zah, H. M. Krieg, J. C. Breytenbach, Layer development and growth history of polycrystalline zeolite A membranes synthesised from a clear solution. Micropor Mesopor Mater,2006,93 (1-3),141-150.
    [10]H. Ahn, H. Lee, S. B. Lee, Y. Lee, Pervaporation of an aqueous ethanol solution through hydrophilic zeolite membranes. Desalination,2006,193 (1-3),244-251.
    [11]X. C. Xu, Y. Bao, C. S. Song, W. S. Yang, J. Liu, L. W. Lin, Synthesis, characterization and single gas permeation properties of NaA zeolite membrane. JMembr Sci,2005,249 (1-2), 51-64.
    [12]S. Mintova, V. Valtchev, N. Petkov, B. Jean, T. H. Metzger, T. Bein, Structural properties of LTA films assembled from aluminosilicate clear solutions and dense gels:A gid X-ray study. Stud Surf Sci Catal,2004,154,717-724.
    [13]M. Pera-Titus, J. Llorens, F. Cunill, R. Mallada, J. Santamaria, Preparation of zeolite NaA membranes on the inner side of tubular supports by means of a controlled seeding technique. Catal Today,2005,104 (2-4),281-287.
    [14]A. S. Huang, Y. S. Lin, W. S. Yang, Synthesis and properties of A-type zeolite membranes by secondary growth method with vacuum seeding. J Membr Sci,2004,245 (1-2), 41-51.
    [15]G. H. Yang, X. F. Zhang, S. Q. Liu, K. L. Yeung, J. Q. Wang, A novel method for the assembly of nano-zeolite crystals on porous stainless steel microchannel and then zeolite film growth. J Phys Chem Solids,2007,68 (1),26-31.
    [16]A. Berenguer-Murcia, E. Morallon, D. Cazorla-Amoros, A. Linares-Solano, Preparation of thin silicalite-1 layers on carbon materials by electrochemical methods. Micropor Mesopor Mater,2003,66(2-3),331-340.
    [17]K. J. Balkus, A. S. Scott, Zeolite coatings on three-dimensional objects via laser ablation. Chem Mater,1999,11 (2),189-191.
    [18]X. C. Xu, W. S. Yang, J. Liu, L. W. Lin, Synthesis of NaA zeolite membranes from clear solution. Micropor Mesopor Mater,2001,43 (3),299-311.
    [19]Z. L. Cheng, W. Sun, S. Han, X. X. Qin, Microwave-assisted synthesis of NaA zeolite membrane with high separating performance by seeding using VPT method. Chem Lett,2013, 42 (4),436-437.
    [20]A. S. Huang, W. S. Yang, Hydrothermal synthesis of NaA zeolite membrane together with microwave heating and conventional heating. Mater Lett,2007,61 (29),5129-5132.
    [21]X. C. Xu, W. S. Yang, J. Liu, L. W. Lin, N. Stroh, H. Brunner, Synthesis of NaA zeolite membrane on a ceramic hollow fiber. J Membr Sci,2004,229 (1-2),81-85.
    [22]X. C. Xu, W. S. Yang, J. Liu, L. W. Lin, Fast formation of NaA zeolite membrane in the microwave field. Chinese Sci Bull,2000,45 (13),1179-1181.
    [23]X. C. Xu, W. S. Yang, J. Liu, L. W. Lin, Synthesis of a high-permeance NaA zeolite membrane by microwave heating. Adv Mater,2000,12 (3),195-198.
    [24]Y. S. Li, H. L. Chen, J. Liu, W. S. Yang, Microwave synthesis of LTA zeolite membranes without seeding. J Membr Sci,2006,277 (1-2),230-239.
    [25]M. P. Pina, M. Arruebo, A. Felipe, F. Fleta, M. P. Bernal, J. Coronas, M. Menendez, J. Santamaria, A semi-continuous method for the synthesis of NaA zeolite membranes on tubular supports. J Membr Sci,2004,244 (1-2),141-150.
    [26]F. Tiscareno-Lechuga, C. Tellez, M. Menendez, J. Santamaria, A novel device for preparing zeolite A membranes under a centrifugal force field. J Membr Sci,2003,212 (1-2), 135-146.
    [27]M. Pera-Titus, R. Mallada, J. Llorens, F. Cunill, J. Santamaria, Preparation of inner-side tubular zeolite NaA membranes in a semi-continuous synthesis system. J Membr Sci,2006, 278 (1-2),401-409.
    [28]S. Aguado, J. Gascon, J. C. Jansen, F. Kapteijn, Continuous synthesis of NaA zeolite membranes. Micropor Mesopor Mater,2009,120 (1-2),170-176.
    [29]S. Yamazaki, K. Tsutsumi, Synthesis of A-type zeolite membrane using a plate heater and its formation mechanism. Micropor Mesopor Mater,2000,37 (1-2),67-80.
    [30]A. S. Huang, W. S. Yang, J. Liu, Synthesis and pervaporation properties of NaA zeolite membranes prepared with vacuum-assisted method. Sep Purif Technol,2007,56 (2),158-167.
    [31]A. S. Huang, W. S. Yang, Hydrothermal synthesis of uniform and dense NaA zeolite membrane in the electric field. Micropor Mesopor Mater,2007,102 (1-3),58-69.
    [32]Y. H, Ma, Y. J. Zhou, R. Poladi, E. Engwall, The synthesis and characterization of zeolite A membranes. Sep Purif Technol,2001,25 (1-3),235-240.
    [33]Z. B. Wang, Q. Q. Ge, J. Shao, Y. S. Yan, High performance zeolite LTA pervaporation membranes on ceramic hollow fibers by dipcoating-wiping seed deposition. J Am Chem Soc, 2009,131(20),6910-6911.
    [34]Z. B. Wang, Q. Q. Ge, J. S. Gao, J. Shao, C. J. Liu, Y. S. Yan, High-performance zeolite membranes on inexpensive large-pore supports:highly reproducible synthesis using a seed paste. Chemsuschem,2011,4 (11),1570-1573.
    [35]H. Z. Li, J. Q. Wang, J. Xu, X. D. Meng, B. Xu, J. H. Yang, S. Y. Li, J. M. Lu, Y. Zhang, X. L. He, D. H. Yin, Synthesis of zeolite NaA membranes with high performance and high reproducibility on coarse macroporous supports. JMembr Sci,2013,444,513-522.
    [36]Q. Q. Ge, J. Shao, Z. B. Wang, Y. S. Yan, Effects of the synthesis hydrogel on the formation of zeolite LTA membranes. Micropor Mesopor Mater,2012,151,303-310.
    [37]L. L. Lai, J. Shao, Q. Q. Ge, Z. B. Wang, Y. S. Yan, The preparation of zeolite NaA membranes on the inner surface of hollow fiber supports. JMembr Sci,2012,409,318-328.
    [38]M. K. Naskar, D. Kundu, M. Chatterjee, Influence of PVP buffer layer on the formation of NaA zeolite membrane. J Porous Mater,2011,18 (3),319-327.
    [39]S. Aguado, J. Gascon, D. Farrusseng, J. C. Jansen, F. Kapteijn, Simple modification of macroporous alumina supports for the fabrication of dense NaA zeolite coatings:Interplay of electrostatic and chemical interactions. Micropor Mesopor Mater,2011,146 (1-3),69-75.
    [40]H. R. Chen, R. R. Chang, L. Li, W. H. Yuan, High performance NaA zeolite membrane for hydrogen separation synthesized on an organic-functionalized alpha-Al2O3 ceramic hollow fiber surface. Acta Phys-Chim Sin,2011,27 (1),241-247.
    [41]H. Shao, H. R. Zhang, Q. Zhang, G. L. Han, R. Y. Cheng, J. Zhong, Preparation of NaA/PTFE composite Membrane for Separation of DMF/H2O Mixture by Pervaporation. Adv Mater,PTS 1-4,2011,239-242,2624-2627.
    [43]H. Dong, X. Y. Qu, L. Zhang, L. H. Cheng, H. L. Chen, C. J. Gao, Preparation and characterization of surface-modified zeolite-polyamide thin film nanocomposite membranes for desalination. Desalin Water Treat,2011,34 (1-3),6-12.
    [42]W. H. Yuan, H. R. Chen, R. R. Chang, L. Li, Synthesis and characterization of high performance NaA zeolite-polyimide composite membranes on a ceramic hollow fiber by dip-coating deposition. Desalination,2011,273 (2-3),343-351.
    [44]A. S. Huang, N. Y. Wang, J. Caro, Synthesis of multi-layer zeolite LTA membranes with enhanced gas separation performance by using 3-aminopropyltriethoxysilane as interlayer. Micropor Mesopor Mater,2012,164,294-301.
    [45]A. S. Huang, J. Caro, Facile synthesis of LTA molecular sieve membranes on covalently functionalized supports by using diisocyanates as molecular linkers. J Mater Chem,2011,21 (30),11424-11429.
    [46]A. S. Huang, Q. Liu, N. Y. Wang, X. Tong, B. X. Huang, M. Wang, J. Caro, Covalent synthesis of dense zeolite LTA membranes on various 3-chloropropyltrimethoxysilane functionalized supports. JMembr Sci,2013,437,57-64.
    [47]K. P. Dey, D. Kundu, M. Chatterjee, M. K. Naskar, Preparation of NaA zeolite membranes using poly(ethyleneimine) as buffer layer, and study of their permeation behavior. JAm Ceram Soc,2013,96 (1),68-72.
    [48]H. Huang, X. Y. Qu, H. Dong, L. Zhang, H. L. Chen, Role of NaA zeolites in the interfacial polymerization process towards a polyamide nanocomposite reverse osmosis membrane. Rsc Adv,2013,3 (22),8203-8207.
    [49]P. Wei, X. Y. Qu, H. Dong, L. Zhang, H. L. Chen, C. J. Gao, Silane-modified NaA zeolite/PAAS hybrid pervaporation membranes for the dehydration of ethanol. JAppl Polym Sci,2013,128(5),3390-3397.
    [50]D. Oh, S. Lee, Y. Lee, Mixed-matrix membrane prepared from crosslinked PVA with NaA zeolite for pervaporative separation of water-butanol mixtures. Desalin Water Treat, 2013,51 (25-27),5362-5370.
    [51]Z. Huang, Y. Shi, R. Wen, Y. H. Guo, J. F. Su, T. Matsuura, Multilayer poly(vinyl alcohol)-zeolite 4A composite membranes for ethanol dehydration by means of pervaporation. Sep Purif Technol,2006,51 (2),126-136.
    [52]M. M. Shahrestani, A. Moheb, M. Ghiaci, High performance dehydration of ethyl acetate/water mixture by pervaporation using NaA zeolite membrane synthesized by vacuum seeding method. Vacuum,2013,92,70-76.
    [53]M. Kazemimoghadam, A. Pak, T. Mohammadi, Dehydration of water/1-1-dimethylhydrazine mixtures by zeolite membranes. Micropor Mesopor Mater,2004,70 (1-3), 127-134.
    [54]C. H. Cho, K. Y. Oh, S. K. Kim, J. G. Yeo, P. Sharma, Pervaporative seawater desalination using NaA zeolite membrane:Mechanisms of high water flux and high salt rejection. JMembr Sci,2011,371 (1-2),226-238.
    [55]M. Pera-Titus, J. Llorens, F. Cunill, Technical and economical feasibility of zeolite NaA membrane-based reactors in liquid-phase etherification reactions. Chem Eng Process,2009, 48(5),1072-1079.
    [56]W. X. Li, W. W. Liu, W. H. Xing, N. P. Xu, Esterification of acetic acid and n-propanol with vapor permeation using NaA zeolite membrane. Ind Eng Chem Res,2013,52 (19), 6336-6342.
    [57]X. Z. Peng, Q. Lei, G. M. Lv, X. M. Zhang, Zeolite membrane-assisted preparation of high fatty esters. Sep Purif Technol,2012,89,84-90.
    [58]P. Khunnonkwao, P. Boontawan, D. Haltrich, T. Maischberger, A. Boontawan, Purification of L-(+)-lactic acid from pre-treated fermentation broth using vapor permeation-assisted esterification. Process Biochem,2012,47 (12),1948-1956.
    [59]P. Khunnonkwao, C. Ariyawong, W. Lertsiriyothin, A. Boontawan, Purification of D-(-)-lactic acid from fermentation broth using nanofiltration, Esterification, Distillation, and Hydrolysis Technique. Advances in Chemical Engineering Ⅱ,2012,550-553,2945-2952.
    [60]C. L. Yu, C. Zhong, Y. M. Liu, X. H. Gu, G. Yang, W. H. Xing, N. P. Xu, Pervaporation dehydration of ethylene glycol by NaA zeolite membranes. Chem Eng Res Des,2012,90 (9), 1372-1380.
    [61]K. Sato, K. Aoki, K. Sugimoto, K. Izumi, S. Inoue, J. Saito, S. Ikeda, T. Nakane, Dehydrating performance of commercial LTA zeolite membranes and application to fuel grade bio-ethanol production by hybrid distillation/vapor permeation process. Micropor Mesopor Mater,2008,115 (1-2),184-188.
    [62]D. Kunnakorn, T. Rirksomboon, K. Siemanond, R. Aungkavattana, N. Kuanchertchoo, R. Chuntanalerg, K. Hemra, S. Kulprathipanja, R. B. James, S. Wongkasemjit, Techno-economic comparison of energy usage between azeotropic distillation and hybrid system for water-ethanol separation. Renew Energ,2013,51,310-316.
    [63]张小珍,周健儿,江瑜华,新型中空纤维陶瓷膜的制备方法.陶瓷学报,2011,32(1),124-129.
    [64]X. Zhang, B. Lin, Y. Ling, Y. Dong, D. Fang, G. Meng, X. Liu, Highly permeable porous YSZ hollow fiber membrane prepared using ethanol as external coagulant. J Alloy Compd,2010,494 (1-2),366-371.
    [65]C. C. Wei, O. Y. Chen, Y. Liu, K. Li, Ceramic asymmetric hollow fibre membranes-One step fabrication process. JMembr Sci,2008,320 (1-2),191-197.
    [66]J.-J. Qin, Y.-M. Cao, M.-H. Oo, Preparation of poly(ether sulfone) hollow fiber UF membrane for removal of NOM. JAppl Polym Sci,2006,99 (1),430-435.
    [67]D. Wang, K. Li, W. K. Teo, Porous PVDF asymmetric hollow fiber membranes prepared with the use of small molecular additives. J Membr Sci,2000,178 (1-2),13-23.
    [68]M. N. Matrosovich, V. G. Andreev, Y. A. Kostrov, G. A. Butnitskii, Preparation of hollow porous polypropylene fibers having a high gas permeability. Fibre Chem,1984,15 (4), 245-248.
    [69]K. Gerlach, E. Kessler, Methods for the preparation of porous fibers and membranes. US Patent 4564488,1983.
    [70]刘朋超,马敬红,杨曙光,龚静华,徐坚,浸渍相转化法制备陶瓷中空纤维膜的研究进展.无机材料学报,2012,27(7),673-679.
    [71]J. Zhou, X. Zhang, Y. Wang, X. Hu, A. Larbot, M. Persin, Electrokinetic characterization of the Al2O3 ceramic MF membrane by streaming potential measurements. Desalination,2009,235 (1-3),102-109.
    [72]许振良,韩灵凤,俞丽芸,曹悦,中空纤维陶瓷膜的研究进展.化学世界,2010,51(3),183-188.
    [73]T. Suzuki, T. Yamaguchi, Y. Fujishiro, M. Awano, Fabrication and characterization of micro tubular SOFCs for operation in the intermediate temperature. J Power Sources,2006, 160(1),73-77.
    [74]徐南平,刑卫红,赵宜江,无机膜分离技术及应用.化学工业出版社:北京,2003.
    [75]V. Maneeratana, W. M. Sigmund, Continuous hollow alumina gel fibers by direct electrospinning of an alkoxide-based.precursor. Chem Eng J,2008,137 (1),137-143.
    [76]D. Li, Y. N. Xia, Direct fabrication of composite and ceramic hollow nanofibers by electrospinning. Nano Lett,2004,4 (5),933-938.
    [77]W. Sigmund, J. Yuh, H. Park, V. Maneeratana, G. Pyrgiotakis, A. Daga, J. Taylor, J. C. Nino, Processing and structure relationships in electrospinning of ceramic fiber systems. J Am Ceram Soc,2006,89 (2),395-407.
    [78]Y. F. Zhang, J. Y. Li, Q. Li, L. Zhu, X. D. Liu, X. H. Zhong, J. Meng, X. Q. Cao, Preparation of CeO2-ZrO2 ceramic fibers by electrospinning. J Colloid Interf Sci,2007,307 (2),567-571.
    [79]J. Xu, J. Yao, C. Zeng, L. Zhang, N. Xu, Preparation of binderless honeycomb silicalite-1 monolith by using bundled palm fibers as template. J Porous Mater,2010,17 (3),329-334.
    [80]R. S. Yuan, X. Z. Fu, X. C. Wang, P. Liu, L. Wu, Y. M. Xu, X. X. Wang, Z. Y. Wang, Template synthesis of hollow metal oxide fibers with hierarchical architecture. Chem Mater, 2006,18 (19),4700-4705.
    [81]H. Q. Lu, L. X. Zhang, W. H. Xing, H. T. Wang, N. P. Xu, Preparation of TiO2 hollow fibers using poly(vinylidene fluoride) hollow fiber microfiltration membrane as a template. Mater Chem Phys,2005,94 (2-3),322-327.
    [82]S. Loeb, S. Sourirajan, Sea Water Demineralization by Means of an Osmotic Membrane. Advan Chem Ser,1963,38,117-132.
    [83]K. Lee, Y. Kim, Asymmetric hollow inorganic membranes. Key Eng Mater,1992,61, 17-22.
    [84]S. P. Deshmukh, K. Li, Effect of ethanol composition in water coagulation bath on morphology of PVDF hollow fibre membranes. JMembr Sci,1998,150 (1),75-85.
    [85]X. Y. Tan, S. M. Liu, K. Li, Preparation and characterization of inorganic hollow fiber membranes. J Membr Sci,2001,188 (1),87-95.
    [86]S. M. Liu, K. Li, R. Hughes, Preparation of porous aluminium oxide (Al2O3) hollow fibre membranes by a combined phase-inversion and sintering method. Ceram Int,2003,29 (8),875-881.
    [87]K. Li, Ceramic membranes for separation and reaction. Wiley:London,2007.
    [88]张小珍.新型中空纤维陶瓷膜的制备科学研究与性能表征.博士学位论文,中国科学技术大学,2010.
    [89]J. I. Calvo, P. Pradanos, A. Hernandez, W. R. Bowen, N. Hilal, R. W. Lovitt, P. M. Williams, Bulk and surface characterization of composite UF membranes Atomic force microscopy, gas adsorption-desorption and liquid displacement techniques. J Membr Sci, 1997,128(1),7-21.
    [90]E. Jakobs, W. J. Koros, Ceramic membrane characterization via the bubble point technique. J Membr Sci,1997,124 (2),149-159.
    [91]J. B. Wachtman, Mechanical properties of ceramics. Wiley:New York,1996.
    [92]B. F. K. Kingsbury, K. Li, A morphological study of ceramic hollow fibre membranes. J Membr Sci,2009,328 (1-2),134-140.
    [93]S. Koonaphaptleelert, K. Li, Preparation and characterization of hydrophobic ceramic hollow fibre membrane. J Membr Sci,2007,291 (1-2),70-76.
    [94]Z. T. Wu, R. Faiz, T. Li, B. F. K. Kingsbury, K. Li, A controlled sintering process for more permeable ceramic hollow fibre membranes. J Membr Sci,2013,446,286-293.
    [95]Y. L. E. Fung, H. T. Wang, Investigation of reinforcement of porous alumina by nickel aluminate spinel for its use as ceramic membrane. J Membr Sci,2013,444,252-258.
    [96]L. F. Han, Z. L. Xu, Y. Cao, Y. M. Wei, H. T. Xu, Preparation, characterization and permeation property of AI2O3, Al2O3-SiO2 and Al2O3-kaolin hollow fiber membranes. J Membr Sci,2011,372 (1-2),154-164.
    [97]D. Salamon, Z. Chlup, L. Lefferts, M. Wessling, Tailoring of free standing microchannel structures via microtemplating. Mater Res Bull,2011,46 (4),505-511.
    [98]F. R. Garcia-Garcia, L. Torrente-Murciano, D. Chadwick, K. Li, Hollow fibre membrane reactors for high H-2 yields in the WGS reaction. J Membr Sci,2012,405,30-37.
    [99]E. Gbenedio, Z. T. Wu, I. Hatim, B. F. K. Kingsbury, K. Li, A multifunctional Pd/alumina hollow fibre membrane reactor for propane dehydrogenation. Catal Today,2010, 156 (3-4),93-99.
    [100]R. Faiz, M. Fallanza, I. Ortiz, K. Li, Separation of olefin/paraffin gas mixtures using ceramic hollow fiber membrane contactors. Ind Eng Chem Res,2013,52 (23),7918-7929.
    [101]H. Fang, J. F. Gao, H. T. Wang, C. S. Chen, Hydrophobic porous alumina hollow fiber for water desalination via membrane distillation process. J Membr Sci,2012,403,41-46.
    [102]S. V. Jadhav, K. V. Marathe, Micellar enhanced ultrafiltration:A comparative study. Can J Chem Eng,2013,91 (2),311-317.
    [103]J. F. Yao, D. Li, K. Wang, L. He, G. S. Xu, H. T. Wang, Alumina hollow fiber supported ZIF-7 membranes:synthesis and characterization. JNanosci Nanotechno,2013,13 (2),1431-1434.
    [104]M. He, J. F. Yao, L. X. Li, Z. X. Zhong, F. Y. Chen, H. T. Wang, Aqueous solution synthesis of ZIF-8 films on a porous nylon substrate by contra-diffusion method. Micropor Mesopor Mater,2013,179,10-16.
    [105]L. Dumee, L. He, M. Hill, B. Zhu, M. Duke, J. Schutz, F. S. She, H. T. Wang, S. Gray, P. Hodgson, L. X. Kong, Seeded growth of ZIF-8 on the surface of carbon nanotubes towards self-supporting gas separation membranes. J Mater Chem A,2013,1 (32),9208-9214.
    [106]G. S. Xu, J. F. Yao, K. Wang, L. He, P. A. Webley, C. S. Chen, H. T. Wang, Preparation of ZIF-8 membranes supported on ceramic hollow fibers from a concentrated synthesis gel. JMembr Sci,2011,385 (1-2),187-193.
    [107]J. F. Yao, L. X. Li, W. H. B. Wong, C. Z. Tan, D. H. Dong, H. T. Wang, Formation of ZIF-8 membranes and crystals in a diluted aqueous solution. Mater Chem Phys,2013,139 (2-3),1003-1008.
    [108]S. Y. Zhou, X. Q. Zou, F. X. Sun, F. Zhang, S. J. Fan, H. J. Zhao, T. Schiestel, G. S. Zhu, Challenging fabrication of hollow ceramic fiber supported Cu3(BTC)2 membrane for hydrogen separation. J Mater Chem,2012,22 (20),10322-10328.
    [109]L. J. Shan, J. Shao, Z. B. Wang, Y. S. Yan, Preparation of zeolite MFI membranes on alumina hollow fibers with high flux for pervaporation. J Membr Sci,2011,378 (1-2),319-329.
    [110]Z. Hong, F. Sun, D. D. Chen, C. Zhang, X. H. Gu, N. P. Xu, Improvement of hydrogen-separating performance by on-stream catalytic cracking of silane over hollow fiber MFI zeolite membrane. Int J Hydrogen Energ,2013,38 (20),8409-8414.
    [111]N. Kosinov, E. J. M. Hensen, Synthesis and separation properties of an alpha-alumina-supported high-silica MEL membrane. J Membr Sci,2013,447,12-18.
    [112]J. Zhang, W. Liu, Thin porous metal sheet-supported NaA zeolite membrane for water/ethanol separation. J Membr Sci,2011,371 (1-2),197-210.
    [113]A. W. C. van den Berg, L. Gora, J. C. Jansen, M. Makkee, T. Maschmeyer, Zeolite A membranes synthesized on a UV-irradiated TiO2 coated metal support:the high pervaporation performance. J Membr Sci,2003,224 (1-2),29-37.
    [114]X. B. Chen, W. S. Yang, J. Liu, L. W. Lin, Synthesis of zeolite NaA membranes with high permeance under microwave radiation on mesoporous-layer-modified macroporous substrates for gas separation. J Membr Sci,2005,255 (1-2),201-211.
    [I]J. Coronas, J. Santamaria, The use of zeolite films in small-scale and micro-scale applications. Chem Eng Sci,2004,59 (22-23),4879-4885.
    [2]J. Caro, M. Noack, Zeolite membranes-Recent developments and progress. Micropor Mesopor Mater,2008,115 (3),215-233.
    [3]M. Kazemimoghadam, A. Pak, T. Mohammadi, Dehydration of water/1-1-dimethyl-hydrazine mixtures by zeolite membranes. Micropor Mesopor Mater,2004,70 (1-3),127-134.
    [4]M. M. Shahrestani, A. Moheb, M. Ghiaci, High performance dehydration of ethyl acetate/water mixture by pervaporation using NaA zeolite membrane synthesized by vacuum seeding method. Vacuum,2013,92,70-76.
    [5]C. L. Yu, C. Zhong, Y. M. Liu, X. H. Gu, G. Yang, W. H. Xing, N. P. Xu, Pervaporation dehydration of ethylene glycol by NaA zeolite membranes. Chem Eng Res Des,2012,90 (9), 1372-1380.
    [6]H. Z. Li, J. Q. Wang, J. Xu, X. D. Meng, B. Xu, J. H. Yang, S. Y. Li, J. M. Lu, Y. Zhang, X. L. He, D. H. Yin, Synthesis of zeolite NaA membranes with high performance and high reproducibility on coarse macroporous supports. J Membr Sci,2013,444,513-522.
    [7]Y. Morigami, M. Kondo, J. Abe, H. Kita, K. Okamoto, The first large-scale pervaporation plant using tubular-type module with zeolite NaA membrane. Sep Purif Technol,2001,25 (1-3),251-260.
    [8]J. Zah, H. M. Krieg, J. C. Breytenbach, Layer development and growth history of polycrystalline zeolite A membranes synthesised from a clear solution. Micropor Mesopor Mater,2006,93 (1-3),141-150.
    [9]K. Okamoto, H. Kita, K. Horii, K. Tanaka, M. Kondo, Zeolite NaA membrane: Preparation, single-gas permeation, and pervaporation and vapor permeation of water/organic liquid mixtures. Ind Eng Chem Res,2001,40 (1),163-175.
    [10]X. C. Xu, W. S. Yang, J. Liu, L. W. Lin, Synthesis of NaA zeolite membranes from clear solution. Micropor Mesopor Mater,2001,43 (3),299-311.
    [11]Q. Q. Ge, Z. B. Wang, Y. S. Yan, High-performance zeolite NaA membranes on polymer-zeolite composite hollow fiber supports. J Am Chem Soc,2009,131 (47),17056-17057.
    [12]H. Ahn, H. Lee, S. B. Lee, Y. Lee, Pervaporation of an aqueous ethanol solution through hydrophilic zeolite membranes. Desalination,2006,193 (1-3),244-251.
    [13]M. P. Pina, M. Arruebo, A. Felipe, F. Fleta, M. P. Bernal, J. Coronas, M. Menendez, J. Santamaria, A semi-continuous method for the synthesis of NaA zeolite membranes on tubular supports. JMembr Sci,2004,244 (1-2),141-150.
    [14]Y. Han, H. Ma, S. L. Qui, F. S. Xiao, Preparation of zeolite A membranes by microwave heating. Micropor Mesopor Mater,1999,30 (2-3),321-326.
    [15]Y. S. Li, H. L. Chen, J. Liu, W. S. Yang, Microwave synthesis of LTA zeolite membranes without seeding. J Membr Sci,2006,277 (1-2),230-239.
    [16]M. P. Bernal, J. Coronas, M. Menendez, J. Santamaria, On the effect of morphological features on the properties of MFI zeolite membranes. Micropor Mesopor Mater,2003,60 (1-3),99-110.
    [17]X. C. Xu, Y. Bao, C. S. Song, W. S. Yang, J. Liu, L. W. Lin, Synthesis, characterization and single gas permeation properties of NaA zeolite membrane. J Membr Sci,2005,249 (1-2), 51-64.
    [18]A. S. Huang, W. S. Yang, Hydrothermal synthesis of NaA zeolite membrane together with microwave heating and conventional heating. Mater Lett,2007,61 (29),5129-5132.
    [19]M. Pera-Titus, M. Bausach, J. Llorens, F. Cunill, Preparation of inner-side tubular zeolite NaA membranes in a continuous flow system. Sep Purif Technol,2008,59 (2),141-150.
    [20]S. Mintova, V. Valtchev, N. Petkov, B. Jean, T. H. Metzger, T. Bein, Structural properties of LTA films assembled from aluminosilicate clear solutions and dense gels:A gid X-ray study. Stud Surf Sci Catal,2004,154,717-724.
    [21]A. S. Huang, Y. S. Lin, W. S. Yang, Synthesis and properties of A-type zeolite membranes by secondary growth method with vacuum seeding. J Membr Sci,2004,245 (1-2), 41-51.
    [22]M. Pera-Titus, J. Llorens, F. Cunill, R. Mallada, J. Santamaria, Preparation of zeolite NaA membranes on the inner side of tubular supports by means of a controlled seeding technique. Catal Today,2005,104 (2-4),281-287.
    [23]K. Sato, T. Nakane, A high reproducible fabrication method for industrial production of high flux NaA zeolite membrane. JMembr Sci,2007,301 (1-2),151-161.
    [24]X. C. Xu, W. S. Yang, J. Liu, L. W. Lin, N. Stroh, H. Brunner, Synthesis of NaA zeolite membrane on a ceramic hollow fiber. JMembr Sci,2004,229 (1-2),81-85.
    [25]Z. B. Wang, Q. Q. Ge, J. Shao, Y. S. Yan, High performance zeolite LTA pervaporation membranes on ceramic hollow fibers by dipcoating-wiping seed deposition. J Am Chem Soc, 2009,131 (20),6910-6911.
    [26]O. Larlus, S. Mintova, T. Bein, Environmental syntheses of nanosized zeolites with high yield and monomodal particle size distribution. Micropor Mesopor Mater,2006,96 (1-3), 405-412.
    [27]J. Hedlund, B. Schoeman, J. Sterte, Ultrathin oriented zeolite LTA films. Chem Commun, 1997, (13),1193-1194.
    [28]M. M. J. Treacy, J. B. Higgins, Collection of simulated XRD powder patterns for zeolites. 4th ed.; Elsevier:2001.
    [29]T. Brar, P. France, P. G. Smimiotis, Control of crystal size and distribution of zeolite A. Ind Eng Chem Res,2001,40 (4),1133-1139.
    [30]L. B. Sand, A. Sacco, R. W. Thompson, A. G. Dixon, Large zeolite crystals-their potential growth in space. Zeolites,1987,7 (5),387-392.
    [1]Hiroshi Suzuki, Composite membrane having a surface layer of an ultrathin film of cage-shaped zeolite and processes for production thereof. US Patent 4699892 A,1987.
    [2]Y. S. Lin, I. Kumakiri, B. N. Nair, H. Alsyouri, Microporous inorganic membranes. Sep Purif Method,2002,31 (2),229-379.
    [3]S. Miachon, E. Landrivon, M. Aouine, Y. Sun, I. Kumakiri, Y. Li, O. P. Prokopova, N. Guilhaume, A. Giroir-Fendler, H. Mozzanega, J. A. Dalmon, Nanocomposite MFI-alumina membranes via pore-plugging synthesis-Preparation and morphological characterisation. J Membr Sci,2006,281 (1-2),228-238.
    [4]S. P. Davis, E. V. R. Borgstedt, S. L. Suib, Growth of zeolite crystallites and coatings on metal-surfaces. Chem Mater,1990,2 (6),712-719.
    [5]W. Y. Xu, J. X. Dong, J. P. Li, J. Q. Li, F. Wu, A novel method for the preparation of zeolite ZSM-5. J Chem Soc Chem Comm,1990, (10),755-756.
    [6]T. Matsufuji, N. Nishiyama, M. Matsukata, K. Uyama, Separation of butane and xylene isomers with MFI-type zeolitic membrane synthesized by a vapor-phase transport method. J Membr Sci,2000,178 (1-2),25-34.
    [7]A. Gouzinis, M. Tsapatsis, On the preferred orientation and microstructural manipulation of molecular sieve films prepared by secondary growth. Chem Mater,1998,10 (9),2497-2504.
    [8]J. Hedlund, M. Noack, P. Kolsch, D. Creaser, J. Caro, J. Sterte, ZSM-5 membranes synthesized without organic templates using a seeding technique. J Membr Sci,1999,159 (1-2),263-273.
    [9]Z. P. Lai, G. Bonilla, I. Diaz, J. G. Nery, K. Sujaoti, M. A. Amat, E. Kokkoli, O. Terasaki, R. W. Thompson, M. Tsapatsis, D. G. Vlachos, Microstructural optimization of a zeolite membrane for organic vapor separation. Science,2003,300 (5618),456-460.
    [10]G. Clet, L. Gora, N. Nishiyama, J. C. Jansen, H. van Bekkum, T. Maschmeyer, An alternative synthesis method for zeolite Y membranes. Chem Commun,2001, (01),41-42.
    [11]J. Coronas, J. L. Falconer, R. D. Noble, Characterization and permeation properties of ZSM-5 tubular membranes. AIChE J,1997,43 (7),1797-1812.
    [12]S. Miachon, P. Ciavarella, L. van Dyk, I. Kumakiri, K. Fiaty, Y. Schuurman, J. A. Dalmon, Nanocomposite MFI-alumina membranes via pore-plugging synthesis:Specific transport and separation properties. J Membr Sci,2007,298 (1-2),71-79.
    [13]Y. Li, M. Pera-Titus, G. Xiong, W. Yang, E. Landrivon, S. Miachon, J. A. Dalmon, Nanocomposite MFI-alumina membranes via pore-plugging synthesis:Genesis of the zeolite material. J Membr Sci,2008,325 (2),973-981.
    [14]F. Guillou, L. Rouleau, G. Pirngruber, V. Valtchev, Synthesis of FAU-type zeolite membrane:An original in situ process focusing on the rheological control of gel-like precursor species. Micropor Mesopor Mater,2009,119 (1-3),1-8.
    [15]Y. S. Li, H. L. Chen, J. Liu, W. S. Yang, Microwave synthesis of LTA zeolite membranes without seeding. J Membr Sci,2006,277 (1-2),230-239.
    [16]Y. S. Li, J. Liu, W. S. Yang, Formation mechanism of microwave synthesized LTA zeolite membranes. J Membr Sci,2006,281 (1-2),646-657.
    [17]X. C. Xu, W. S. Yang, J. Liu, L. W. Lin, Synthesis of NaA zeolite membranes from clear solution. Micropor Mesopor Mater,2001,43 (3),299-311.
    [18]M. Pera-Titus, R. Mallada, J. Llorens, F. Cunill, J. Santamaria, Preparation of inner-side tubular zeolite NaA membranes in a semi-continuous synthesis system. J Membr Sci,2006, 275(1-2),401-409.
    [19]S. Aguado, J. Gascon, J. C. Jansen, F. Kapteijn, Continuous synthesis of NaA zeolite membranes. Micropor Mesopor Mater,2009,120 (1-2),170-176.
    [20]L. L. Lai, J. Shao, Q. Q. Ge, Z. B. Wang, Y. S. Yan, The preparation of zeolite NaA membranes on the inner surface of hollow fiber supports. J Membr Sci,2012,409,318-328.
    [21]Q. Q. Ge, J. Shao, Z. B. Wang, Y. S. Yan, Effects of the synthesis hydrogel on the formation of zeolite LTA membranes. Micropor Mesopor Mater,2012,151,303-310.
    [22]X. M. Li, Z. B. Wang, J. Zheng, S. Q. Shao, Y. C. Wang, Y. S. Yan, Dynamic hydrothermal synthesis of a b-oriented MFI zeolite film. Chinese J Catal,2011,32 (2),217-223.
    [23]K. Okamoto, H. Kita, K. Horii, K. Tanaka, M. Kondo, Zeolite NaA membrane: Preparation, single-gas permeation, and pervaporation and vapor permeation of water/organic liquid mixtures. Ind Eng Chem Res,2001,40 (1),163-175.
    [24]Q. Q. Ge, Z. B. Wang, Y. S. Yan, High-performance zeolite NaA membranes on polymer-zeolite composite hollow fiber supports. J Am Chem Soc,2009,131 (47),17056-17057.
    [25]H. Ahn, H. Lee, S. B. Lee, Y. Lee, Pervaporation of an aqueous ethanol solution through hydrophilic zeolite membranes. Desalination,2006,193 (1-3),244-251.
    [26]M. P. Pina, M. Arruebo, A. Felipe, F. Fleta, M. P. Bernal, J. Coronas, M. Menendez, J. Santamaria, A semi-continuous method for the synthesis of NaA zeolite membranes on tubular supports. JMembr Sci,2004,244 (1-2),141-150.
    [27]Y. Han, H. Ma, S. L. Qui, F. S. Xiao, Preparation of zeolite A membranes by microwave heating. Micropor Mesopor Mater,1999,30 (2-3),321-326.
    [28]A. S. Huang, W. S. Yang, Hydrothermal synthesis of NaA zeolite membrane together with microwave heating and conventional heating. Mater Lett,2007,61 (29),5129-5132.
    [29]X. C. Xu, W. S. Yang, J. Liu, L. W. Lin, N. Stroh, H. Brunner, Synthesis of NaA zeolite membrane on a ceramic hollow fiber. JMembr Sci,2004,229 (1-2),81-85.
    [30]S. Mintova, V. Valtchev, N. Petkov, B. Jean, T. H. Metzger, T. Bein, Structural properties of LTA films assembled from aluminosilicate clear solutions and dense gels:A gid X-ray study. Stud Surf Sci Catal,2004,154,717-724.
    [31]G. Q. Zhu, Y. S. Li, H. L. Chen, J. Liu, W. S. Yang, An in situ approach to synthesize pure phase FAU-type zeolite membranes:effect of aging and formation mechanism. J Mater Sci,2008,43 (9),3279-3288.
    [32]I. Kumakiri, T. Yamaguchi, S. Nakao, Preparation of zeolite A and faujasite membranes from a clear solution. Ind Eng Chem Res,1999,38 (12),4682-4688.
    [1]M. Pera-Titus, M. Bausach, J. Llorens, F. Cunill, Preparation of inner-side tubular zeolite NaA membranes in a continuous flow system. Sep PurifTechnol,2008,59 (2),141-150.
    [2]Y. Morigami, M. Kondo, J. Abe, H. Kita, K. Okamoto, The first large-scale pervaporation plant using tubular-type module with zeolite NaA membrane. Sep Pruif Technol,2001,25 (1-3),251-260.
    [3]M. P. Pina, M. Arruebo, A. Felipe, F. Fleta, M. P. Bernal, J. Coronas, M. Menendez, J. Santamaria, A semi-continuous method for the synthesis of NaA zeolite membranes on tubular supports. J Membr Sci,2004,244 (1-2),141-150.
    [4]Z. B. Wang, Q. Q. Ge, J. Shao, Y. S. Yan, High performance zeolite LTA pervaporation membranes on ceramic hollow fibers by dipcoating-wiping seed deposition. J Am Chem Soc, 2009,131(20),6910-6911.
    [5]S. Koonaphaptleelert, K. Li, Preparation and characterization of hydrophobic ceramic hollow fibre membrane. J Membr Sci,2007,291 (1-2),70-76.
    [6]M. Pera-Titus, J. Llorens, F. Cunill, R. Mallada, J. Santamaria, Preparation of zeolite NaA membranes on the inner side of tubular supports by means of a controlled seeding technique. Catal Today,2005,104 (2-4),281-287.
    [7]J. Zah, H. M. Krieg, J. C. Breytenbach, Layer development and growth history of poly crystalline zeolite A membranes synthesised from a clear solution. Micropor Mesopor Mater,2006,93 (1-3),141-150.
    [8]H. R. Chen, R. R. Chang, L. Li, W. H. Yuan, High performance NaA zeolite membrane for hydrogen separation synthesized on an organic-functionalized alpha-Al2O3 ceramic hollow fiber surface. Acta Phys-Chim Sin,2011,27 (1),241-247.
    [9]W. H. Yuan, H. R. Chen, R. R. Chang, L. Li, Synthesis and characterization of high performance NaA zeolite-polyimide composite membranes on a ceramic hollow fiber by dip-coating deposition. Desalination,2011,273 (2-3),343-351.
    [10]G. S. Xu, J. F. Yao, K. Wang, L. He, P. A. Webley, C. S. Chen, H. T. Wang, Preparation of ZIF-8 membranes supported on ceramic hollow fibers from a concentrated synthesis gel. J Membr Sci,2011,385 (1-2),187-193.
    [11]L. J. Shan, J. Shao, Z. B. Wang, Y. S. Yan, Preparation of zeolite MFI membranes on alumina hollow fibers with high flux for pervaporation. J Membr Sci,2011,378 (1-2),319-329.
    [12]X. C. Xu, W. S. Yang, J. Liu, L. W. Lin, N. Stroh, H. Brunner, Synthesis of NaA zeolite membrane on a ceramic hollow fiber. JMembr Sci,2004,229 (1-2),81-85.
    [13]B. F. K. Kingsbury, K. Li, A morphological study of ceramic hollow fibre membranes. J Membr Sci,2009,328 (1-2),134-140.
    [14]D. Shen, W. Xiao, J. H. Yang, N. B. Chu, J. M. Lu, D. H. Yin, J. Q. Wang, Synthesis of silicalite-1 membrane with two silicon source by secondary growth method and its pervaporation performance. Sep Purif Technol,2011,76 (3),308-315.
    [15]V. Nikolakis, G. Xomeritakis, A. Abibi, M. Dickson, M. Tsapatsis, D. G. Vlachos, Growth of a faujasite-type zeolite membrane and its application in the separation of saturated/unsaturated hydrocarbon mixtures. JMembr Sci,2001,184 (2),209-219.
    [16]A. Malekpour, M. R. Millani, M. Kheirkhah, Synthesis and characterization of a NaA zeolite membrane and its applications for desalination of radioactive solutions. Desalination, 2008,225 (1-3),199-208.
    [17]D. Kunnakorn, T. Rirksomboon, P. Aungkavattana, N. Kuanchertchoo, D. Atong, K. Hemra, S. Kulprathipanja, S. Wongkasemjit, Optimization of synthesis time for high performance of NaA zeolite membranes synthesized via autoclave for water-ethanol separation. Desalination,2011,280 (1-3),259-265.
    [18]H. Zhou, D. Korelskiy, T. Leppajarvi, M. Grahn, J. Tanskanen, J. Hedlund, Ultrathin zeolite X membranes for pervaporation dehydration of ethanol. J Membr Sci,2012,399,106-111.
    [19]A. Navajas, R. Mallada, C. Tellez, J. Coronas, M. Menendez, J. Santamaria, Preparation of mordenite membranes for pervaporation of water-ethanol mixtures. Desalination,2002, 148 (1-3),25-29.
    [20]F. T. de Bruijn, L. Sun, Z. Olujic, P. J. Jansens, F. Kapteijn, Influence of the support layer on the flux limitation in pervaporation. JMembr Sci,2003,223 (1-2),141-156.
    [21]S. S. Madaeni, R. Pourghorbani, V. Vatanpour, Investigation of parameters affecting the flux of microfiltration poly(vinylidenefluoride) membranes for particulate removal. Adv Polym Tech,2012,31 (1),29-40.
    [22]J. G. Li, J. Shao, Q. Q. Ge, G. L. Wang, Z. B. Wang, Y. S. Yan, Influences of the zeolite loading and particle size in composite hollow fiber supports on properties of zeolite NaA membranes. Micropor Me sopor Mater,2012,160,10-17.
    [23]Y. Hasegawa, C. Abe, M. Nishioka, K. Sato, T. Nagase, T. Hanaoka, Formation of high flux CHA-type zeolite membranes and their application to the dehydration of alcohol solutions. JMembr Sci,2010,364 (1-2),318-324.
    [24]L. L. Lai, J. Shao, Q. Q. Ge, Z. B. Wang, Y. S. Yan, The preparation of zeolite NaA membranes on the inner surface of hollow fiber supports. JMembr Sci,2012,409,318-328.
    [25]Q. Q. Ge, J. Shao, Z. B. Wang, Y. S. Yan, Effects of the synthesis hydrogel on the formation of zeolite LTA membranes. Micropor Mesopor Mater,2012,151,303-310.
    [26]J. Shao, Q. Q. Ge, L. J. Shan, Z. B. Wang, Y. S. Yan, Influences of seeds on the properties of zeolite naa membranes on alumina hollow fibers. Ind Eng Chem Res,2011,50 (16),9718-9726.
    [27]X. C. Xu, W. S. Yang, J. Liu, L. W. Lin, Synthesis of NaA zeolite membranes from clear solution. Micropor Mesopor Mater,2001,43 (3),299-311.
    [28]X. H. Xu, W. H. Yang, J. Liu, L. W. Lin, Synthesis of NaA zeolite membrane by microwave heating. Sep Purif Technol,2001,25 (1-3),241-249.
    [1]R. Weber, H. Chmiel, V. Mavrov, Characteristics and application of new ceramic nanofiltration membranes. Desalination,2003,157 (1-3),113-125.
    [2]J. Galuszka, R. N. Pandey, S. Ahmed, Methane conversion to syngas in a palladium membrane reactor. Catal Today,1998,46 (2-3),83-89.
    [3]J. N. Keuler, L. Lorenzen, The dehydrogenation of 2-butanol in a Pd-Ag membrane reactor. JMembr Sci,2002,202 (1-2),17-26.
    [4]H. W. J. P. Neomagus, G. Saracco, H. F. W. Wessel, G. F. Versteeg, The catalytic combustion of natural gas in a membrane reactor with separate feed of reactants. Chem Eng J, 2000,77(3),165-177.
    [5]C. C. Wei, K. Li, Yttria-stabilized zirconia (YSZ)-based hollow fiber solid oxide fuel cells. Ind Eng Chem Res,2008,47 (5),1506-1512.
    [6]Z. B. Wang, Q. Q. Ge, J. Shao, Y. S. Yan, High performance zeolite LTA pervaporation membranes on ceramic hollow fibers by dipcoating-wiping seed deposition. J Am Chem Soc, 2009,131 (20),6910-6911.
    [7]S. T. Oh, K. Tajima, M. Ando, T. Ohji, Fabrication of porous Al2O3 by microwave sintering and its properties. Mater Lett,2001,48 (3-4),215-218.
    [8]N. Claussen, S. X. Wu, D. Holz, Reaction bonding of aluminum-oxide (RBAO) composites-processing, reaction-mechanisms and Properties. J Eur Ceram Soc,1994,14 (2), 97-109.
    [9]G. Y. Li, Y. Q. Fan, Y. A. Zheng, Y. P. Wu, Preparation and properties of high toughness RBAO macroporous membrane support. Ceram Int,2010,36(7),2025-2031.
    [10]C. Falamaki, A. Aghaei, N. R. Ardestani, RBAO membranes/catalyst supports with enhanced permeability. J Eur Ceram Soc,2001,21 (12),2267-2274.
    [11]K. Konopka, A. Olszowka-Myalska, M. Szafran, Ceramic-metal composites with an interpenetrating network. Mater Chem Phys,2003,81 (2-3),329-332.
    [12]H. L. Cong, M. Radosz, B. F. Towler, Y. Q. Shen, Polymer-inorganic nanocomposite membranes for gas separation. Sep Purif Technol,2007,55 (3),281-291.
    [13]C. V. Funk, D. R. Lloyd, Zeolite-filled microporous mixed matrix (ZeoTIPS) membranes:Prediction of gas separation performance. J Membr Sci,2008,313 (1-2),224-231.
    [14]Y. Li, H. M. Guan, T. S. Chung, S. Kulprathipanja, Effects of novel silane modification of zeolite surface on polymer chain rigidification and partial pore blockage in polyethersulfone (PES)-zeolite A mixed matrix membranes. J Membr Sci,2006,275 (1-2), 17-28.
    [15]D. Li, H. Y. Zhu, K. R. Ratinac, S. P. Ringer, H. T. Wang, Synthesis and characterization of sodalite-polyimide nanocomposite membranes. Micropor Mesopor Mater, 2009,126(1-2),14-19.
    [16]D. Sen, H. Kalipcilar, L. Yilmaz, Development of polycarbonate based zeolite 4A filled mixed matrix gas separation membranes. J Membr Sci,2007,303 (1-2),194-203.
    [17]T. T. Moore, W. J. Koros, Non-ideal effects in organic-inorganic materials for gas separation membranes. J Mol Struct,2005,739 (1-3),87-98.
    [18]H. T. Wang, B. A. Holmberg, Y. S. Yan, Homogeneous polymer-zeolite nanocomposite membranes by incorporating dispersible template-removed zeolite nanocrystals. J Mater Chem,2002,12 (12),3640-3643.
    [19]Z. Huang, Y. Li, R. Wen, M. M. Teoh, S. Kulprathipanja, Enhanced gas separation properties by using nanostructured PES-zeolite 4A mixed matrix membranes. J Appl Polym Sci,2006,101 (6),3800-3805.
    [20]I. Tiscornia, S. Valencia, A. Corma, C. Tellez, J. Coronas, J. Santamaria, Preparation of ITQ-29 (Al-free zeolite a) membranes. Micropor Mesopor Mater,2008,110 (2-3),303-309.
    [21]A. Radulovic, V. Dondur, P. Vulic, Z. Miladinovic, G. Ciric-Marjanovic, R. Dimitrijevic, Routes of synthesis of nepheline-type polymorphs:An influence of Na-LTA bulk composition on its thermal transformations. JPhys Chem Solids,2013,74 (9),1212-1220.
    [22]T. Tarvornpanich, G. P. Souza, W. E. Lee, Microstructural evolution in clay-based ceramics I:Single components and binary mixtures of clay, flux, and quartz filler. J Am Ceram Soc,2008,91 (7),2264-2271.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700