用户名: 密码: 验证码:
新型A型分子筛复合膜制备及其渗透汽化性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
A型分子筛由于具有规整的孔道结构、优异的热稳定性和化学稳定性,广泛应用于吸附与分离领域。A型分子筛的有效孔径为0.42nm,与小分子气体和低碳烷烃分子的动力学直径接近,因此对气体分离具有很好的选择性。同时A型分子筛由于具有很低的硅铝比(硅铝比等于1),具有很强的亲水性,由它构成的分子筛膜可以通过渗透汽化将高浓度有机物中的水脱除,特别对于生物乙醇的脱水。正是基于这些优点,A型分子筛膜的研究受到国内外学者的广泛关注。1998年,日本三井造船公司首次建成了用于乙醇脱水的A型分子筛膜分离装置,迈出了分子筛膜工业化应用的第一步。由于载体成本高,制膜技术不成熟,导致分子筛膜的价格高,因而A型分子筛膜分离至今没有在全世界得到推广。因此,A型分子筛膜的研究具有重要的学术意义和实际应用价值。
     本文的研究目标为低成本高性能A型分子筛膜的制备与应用。通过采用廉价大孔氧化铝,设计和构建氧化铝中空纤维及分子筛/聚合物复合中空纤维为载体来降低分子筛膜的成本;通过创制新型涂晶技术来提高分子筛膜的成膜率。合成的A型分子筛膜在75℃下对浓度为90wt%的乙醇/水溶液进行渗透汽化表征,获得了优异的分离性能。主要研究内容和结果如下:
     (1)廉价大孔氧化铝管表面成膜
     人们通常在具有中间层(平均孔径小于1μm)的氧化铝管(外径12mm)表面制备分子筛膜,从而造成分子筛膜的成本提高。直接采用一次性制备、平均孔径大于1μm的廉价大孔氧化铝管为载体,可以降低分子筛膜的生产成本,但是该载体表面局部存在很大的缺陷孔(>10μm),所以在该类载体表面合成A型分子筛膜具有很大的挑战性。本文提出了一种新型晶种浆料涂晶法,将晶种与部分合成液(9:1)调成晶种浆料(固含量50wt%)后擦涂至载体表面。通过该涂晶方法不仅可以有效地填补载体表面存在的大孔缺陷,而且可以在载体表面覆盖一层均匀的晶种层。通过一次水热合成可以获得高分离因子(>10000)和高通量(3.5-4.0kg/m2.h)的A型分子筛膜。同时,通过滚擦晶种浆料法,也可在大孔氧化铝载体内表面成功合成高性能的A型分子筛膜,膜的分离因子大于10000,通量可达5.0kg/m2.h。考察了乙醇水溶液中NaOH对氧化铝管载体上合成的A型分子筛膜通量的影响。研究发现,乙醇水溶液中的NaOH对分子筛膜的分离通量有降低作用。研究还发现膜的洗涤对分离性能有重要影响。
     (2)氧化铝中空纤维载体(HF)表面成膜
     为了提高分子筛膜的表面积,减小膜组件的规模,采用氧化铝中空纤维(外径<2mm)为载体(表面积/体积比>1000m2/m3)合成具有高分离性能的A型分子筛膜。本文提出了一种新型浸涂-滚擦涂晶法,通过滚擦处理后载体表面覆盖均匀的晶种痕迹,使晶种进入载体缺陷,通过一次水热合成就可以高重复性地获得具有高分离性能的A型分子筛膜,其分离因子大于10000,通量高达9.0kg/m2.h,是日本三井造船公司工业化膜的4倍以上。同时研究载体孔隙率对A型分子筛膜通量的影响,研究发现分子筛膜的通量主要取决于载体的孔隙率,随着载体孔隙率的增大而提高,两者几乎成线性关系。
     (3)复合中空纤维载体(CHF)表面成膜
     设计构建了一种新型分子筛膜载体,即分子筛/聚合物(聚醚砜,PES)复合中空纤维(CHF)(外径<2mm)。CHF载体是将A型分子筛晶体与聚醚砜在有机溶剂中均匀地混合后,通过干-湿法纺丝技术制备而成,无需高温煅烧,极大地降低了分子筛膜载体的成本。复合中空纤维载体的内、外表面具有均匀分布的分子筛晶体,可作为分子筛膜生长的晶种,省略了制膜过程中复杂的预涂晶过程,直接通过一次水热合成,高重复性地获得了高分离性能的A型分子筛膜。其分离因子大于10000,通量高达8.0-9.0kg/m2.h。鉴于CHF载体无涂晶过程的影响,考察了合成液组成(硅源和碱度)对合成A型分子筛膜的影响。结果表明,硅源在合成液中的溶解度对合成A型分子筛膜至关重要。如当硅源以硅单体(如九水偏硅酸钠)的形式存在于合成液中时,合成液自身的晶化速度快,导致合成液营养快速消耗,无法为载体表面分子筛膜的生长提供充足的营养。提高碱度可以提高硅源在合成液中的溶解度,从而加速合成液自身的晶化速度,影响分子筛膜的生长,造成膜的上下段不均匀。使用动态合成可以使合成液中的营养均匀分布,获得膜厚均匀的分子筛膜,从而提高了分子筛膜的成膜率。
Due to unique pore structure, good thermal and chemical stability, A-type zeolite was wildely used in adsorption and separation field. A-type zeolite has a pore diameter of ca.0.42nm, which is close to the small molecule gases and light-alkane molecules. So it has good separation selectivity to gases. At the same time, owing to the low silicon-aluminum ratio (Si/Al=1), A-type zeolite has perfect hydrophilicity, and the A-type zeolite membranes can be used for dehydration of high concentration organics, especially for bioethanol dehydration. With these advantages, the perspectives of A-type zeolite membranes have received widespread attentions all over the world. In1998, Mitsui Engineering and Shipbuilding Co. Ltd. in Japan built the first large scale pervaporation (PV) plant using tubular A-type membranes for dehydration of bioethanol solvents, which made the first step of zeolite membranes in industrial application. Because of the high cost of the supports and the immaturity of membrane synthesis technology, the cost of A-type zeolite membrane is still very high, so the separation process by A-type zeolite membrane has not yet been used in the world. Therefore, the research of A-type zeolite membrane is very important in both academic and practical applications.
     Thus the purpose of this article is to synthesize low cost and high performance A-type membrane. By using inexpensive large-pore a-alumina support, designing and constructing alumina hollow fiber and zeolite/polymer composite hollow fiber support, the cost of zeolite membrane will be decreased; and by creating a new seeding method the reproducibility of zeolite membrane will be improved. The dehydration performance of as-synthesized membranes is studied by pervaporation of90wt%ethanol/water mixture under75℃. The main experimental results and conclusions are summarized as follows:
     (1) Preparation of zeolite A-type membranes on the surface of inexpensive large-pore α-alumina tube supports
     As people often synthesized zeolite membranes on the out surface of α-alumina tubular support (out diameter:12mm) with an intermediate layer (average pore size< 1μm), which leads to high price of zeolite membranes. The large-pore (>1μm) a-alumina tubular supports can be prepared at one time, which largely reduces the cost of the support. But due to the large defects (>10μm) on its surface, it is a great challenge to synthesize high performance A-type zeolite membranes on the surface of this kind of support. Here we presented a novel seeding method, rubbing a seed paste, in which a small amount of the synthesis hydrogel is mixed with small zeolite crystals (seeds)(crystals/gel=9:1) and used as a binding agent to paste the seeds to the surface of the support. By this new method, not only the large defects can be filled up, but a uniform seeding layer on the outer surface of the support can be obtained. A-type zeolite membranes with high separation factor (>10000) and high flux (3.5-4.0kg/m2.h) can be fabricated by once hydrothermal synthesis. At the same time, by wiping the seed paste, a high performance A-type zeolite membrane can be synthesized on the inner surface of the large-pore a-alumina tubular support. The separation factor of the membrane is more than10000, and its flux is as high as5.0kg/m2h. The effect of NaOH in the ethanol aqueous feed on the flux of A-type zeolite membrane was investigated. It is found that NaOH in the ethanol aqueous feed decreased the flux of the zeolite membrane. It is also found that the washing step has a great influence on the separation property of the membrane.
     (2) Preparation of zeolite A-type membranes on the surface of a-alumina hollow fiber (HF) support
     In order to improve the surface of zeolite membrane and reduce the size of membrane modules, high performance A-type zeolite membrane is synthesized on the outer surface of a-alumina hollow fiber support (outer diameter<2mm, surface area/volume ratio>1000m2/m3). Here we proposed a new seeding method: dipcoating-wiping seeding method. After wipping, a trace amount of "seeds" are obtained and seeds can enter into the defects on the surface of hollow fiber, and then A-type zeolite membranes with high performance and high reproducibility can be successfully obtained by one single in-situ hydrothermal synthesis. The separation factor of the membrane is more than10000, and the flux is as high as9.0kg/m2.h, which is four times higher than the membrane synthesized by Mitsui Engineering and shipbuilding Co. Ltd used in industrial application. And the relationship between the flux of A-type zeolite membrane and the porosity of the support is also investigated. It is found that the flux of the membrane was mainly associated with the porosity of the supports. The flux was almost increased linearly with the increase of the support porosity.
     (3) Preparation of zeolite A-type membrane on the surface of the composite hollow fiber (CHF)
     Zeolite/polymer (PES) composite hollow fiber (CHF, outer diameter less than2mm), a new kind of support is designed. A-type zeolite crystals are uniformly dispersed into the PES solution, and then the composite hollow fibers (CHF) were spun by a dry-wet spinning process. Without calcination process, it greatly cut the cost of the support. While zeolite crystals distribute homogeneously on the the inner and outer surface of the CHF, which serve as seeds for the zeolite membrane growth, a complex seeding process could be omitted, and a high performance A-type zeolite membrane can be directly synthesized by once hydrothermal synthesis. The separation factor of the membrane was more than10000, and the flux reached8.0to9.0kg/m2.h. With the advantage of no seeding process for CHF supports, we studied the influence of the synthesis hydrogel composition (silica sources and alkalinity) on the synthesis of zeolite membrane. It is found that the solubility of silica source is a crucial factor for the zeolite membrane synthesis. If the silica source existed as monomers (such as sodium metasilicate nonahydrate), the crystallization rate of the synthesis hydrogel is fast, the nutrition of the hydrogel is consumed fast by the synthesis hydrogel itself, leading to that the synthesis hydrogel has not enough nutrition for zeolite membrane growth. Increasing the alkalinity can increase the solubility of the hydrogel, and accelerate the crystallization rate of the synthesis hydrogel, leading to the bad growth and non-uniform of the membranes. Dynamic synthesis process can improve the nutrition distribution status of the synthesis hydrogel, and zeolite membranes with more uniform thickness can be synthesized, which improves the reproducibility of the synthesis of zeolite membranes.
引文
[1]徐如人,庞文琴.分子筛与多孔材料化学.科学出版社,2004.
    [2]Z. B. Wang, Y. S. Yan, Controlling crystal orientation in zeolite MFI thin films by direct in situ crystallization, Chem. Mater.13 (2001) 1101-1107
    [3]Z.B. Wang, Y.S. Yan, Oriented zeolite MFI monolayer films on metal substrates by in situ crystallization, Microp.Mesop.Mater.48 (2001) 229-238
    [4]K. Okamoto, H. Kita, K. Horii, Zeolite NaA membrane:Preparation, single-gas permeation and pervaporation and vapor permeation of water/organic liquid mixtures, Ind. Eng. Chem. Res.40 (2001) 163-175
    [5]J. Caro, M. Noack, Zeolite membranes-Recent developments and progress, Micropor. Mesopor. Mater.115(2008)215-233
    [6]H. Vanbekkum, E. R. Geus, H. W. Kouwenhoven, Supported zeolite systems and applications, Stud. Surf. Sci. Catal.85 (1994) 509-542
    [7]J. N. Armor, Applications of catalytic inorganic membrane reactors to refinery products, J. Membr. Sci.247 (1998) 217-233.
    [8]D. R. Rolison, Zeolite-modified electrodes and electrode-modified zeolites, Chem. Rev.90 (1990)867-878
    [9]J. H. Koegler, H. W. Zantbergen, J. L. N. Nieuwenhuizen, M. S. Jansen, J. C. Jansen, H. VanBekkum, Oriented coatings of silicalite-1 for gas sensor applications, Stud. Surf. Sci. Catal.84(1994)307-314
    [10]D. R. Paul, C. T. Wiight, Gas sorption and transport in UV-irradiated polyarylate copolymers based on tetramethyl bisphenol-A and dihydroxybenzophenone, J. Membr. Sci.124 (1997) 161-174
    [11]H. J. C. HennePe, D. Bargeman, M. H. V. Mulder, Exeitability, memory and oseillations in artificial acetylcholinesterase membranes, J. Membr. Sci.8 (1981) 33-39
    [12]W. O. Hagg, J. G Tsikoyiannis, Catalytic conversion over membranes composed of a pure molecular sieve, US Patent,1992 5110478
    [13]H. Suzuki, Stipline filter apparatus and method of making the same. US Patent,1987 4609892
    [14]C. L. Kong, J. M. Lu, Preparation of siliealite-1 membranes on stainless steel supports by a two-stage varying-temperature in situ synthesis, J. Membr. Sci.285 (2006) 258-264
    [15]谢素娟,彭建彪,徐龙伢,吴治华,王清遐,以环己胺为模板剂的ZSM-35分子筛的合成及其催化性能,催化学报,24(2003)531-534
    [16]H. S. Cho, R. Ryoo, Synthesis of ordered mesoporous MFI zeolite using CMK carbon templates, J. Catal.151 (2012) 107-112
    [17]R. C. Xiong, S. I. Sandler, D. G. Vlachos, Molecular screening of alcohol and polyol adsorption onto MFI-Type zeolites, Langmuir,28 (2012) 4491-4499
    [18]M. Raileanr, M. Popa, J. Moreno, Preparation and characterization of alumina supported silicalite membranes by sol-gel hydrothermal method, J. Membr. Sci.210 (2002) 197-207
    [19]M. Noack, P. Kolsh, Caro, MFI membranes of different Si/Al ratios for pervaporation and steam permeation, Micropor. Mesopor. Mater.35-36 (2000) 253-265
    [20]李永生,王金渠,晶种涂层对合成ZSM-5沸石膜影响,大连理工学报,40(2004)546-551
    [21]李永生,王金渠,郭树才,沸石膜的合成最新进展,化工进展,2(2001)42-48
    [22]李永生,王金渠,郭树才,ZSM-5沸石晶粒尺寸对合成膜性能的影响,石油学报,16(2000)51-56
    [23]张雄福,王金渠,殷德宏,用喷涂晶种法合成ZSM-5沸石膜及其影响因素考察,催化学报,21(2000)451-457
    [24]M. P. Pina, M. Arruebo, A semi-continuous method for the synthesis of NaA zeolite membranes on tubular supports, J. Membr. Sci.244 (2004) 141-150
    [25]吕丹,李邦民,王金渠等.NaA分子筛膜的水热合成及表征,安全与环境学报,5(2005)32
    [26]S. Alfaro, C. Rodriguez, Aging time effect on the synthesis of small crystal LTA zeolites in the absence of organic template, Mater. Lett.61 (2007) 4655-4658
    [27]X. C. Xu, W. S. Yang, Synthesis and perfection evaluation on NaA membranes, Sep. Purfi. Techol.25(2001)475-485
    [28]Y. Morigami, M. Kondo, The first large-scale pervaporation plant using tubular-type membranes with zeolite NaA membranes, Sep. Purfi. Technol.25 (2001) 251-260
    [29]X. Xu, W. S. Yang, J. Liu, Synthesis of NaA zeolite membranes from clean solution, Micropor. Mesopor. Mater.,43(2002) 299-311
    [30]Y. Han, H. Ma, S. Qiu, Synthesis of a high-permeance NaA zeolite membrane by microwave heating, Micropor. Mesopor. Mater.30 (1999) 321-326
    [31]G. Guan, K. Kusakabe, S. Morooka, Gas permeation properties of ion-exchanged LTA-type zeolite membranes, Sep. Sci. Technol.36 (2001) 2233-2245
    [32]N. Nishiyama, K. Ueyama, M. Matukata, Synthesis of defect-free zeolite-alumina composite membranes by a vapor-phase transport method, Micropor. Mater.7 (1996) 299-308
    [33]S. Yamazaki, K. Tsutsumi, Synthesis of an A-type zeolite membrane on silicon oxide film-silicon, quartz plate and quartz fiber filter, Micropor. Mesopor. Mater.4 (1995) 205-212
    [34]Y. Hasegawa, K. Watanabe, K. Kusakabe, Influence of alkali cations on Permeation Properties of Y-type zeolite membranes, J. Membr. Sci.208 (2002) 415-418
    [35]M. Osada,1. Sasaki, M. Nishioka, Synthesis of a faujasite thin layer and its application for SO2 sensing at elevated temperatures, Micropor. Mesopor. Mater.23 (1998) 287-293
    [36]Y. Hasegawa, K. Kusakalle, S. Morooka, Selective oxidation of carbon monoxide in hydrogen-rich mixtures by permeation though a platimum-loaded Y-type zeolite membranes, J. Membr. Sci.191 (2001)1-8
    [37]K. Kusakabe, T. Kuroda, S. Morooka, Separation of carbon dioxide from nitrogen using ion-exchanged faujasite-type zeolite membranes formed on porous support tubes, J. Membr. Sci.148(1998)13-23
    [38]B. H. Jeong, K. I. Sotowa, K. Kusakabe, Modeling of a FAU-type zeolite membranes reactor for catalytic dehydrogenation of cyclohexane, Chem. Eng. J.103 (2004) 69-75
    [39]K. Okada, K.Kuboyama, T. Takei, In situ zeolite NaX coating on glass fibers by soft solution process, Micropor. Mesopor. Mater.37 (2000) 99-105
    [40]B. H. Jeong, K. I. Sotowa, K. Kusakabe, Catalytic dehydrogenation of cyclohexane in a FAU-type zeolite membranes reactor, J. Membr. Sci.224 (2003) 151-255
    [41]N. Nishiyama, T. Matsufuji, K. Ueyajma, FER membranes synthesized by a vapor-phase transport method:its structure and separation characteristics, Micropor. Mesopor. Mater.12 (1997)293-303
    [42]J. C. Poshusta, V. A. Tuan, J. L. Faleoner, Synthesis and permeation properties of SAPO-34 tubular membranes, Ind. Eng. Chem. Res.37 (1998) 3924-3929
    [43]S. H. Jhung, J. S. Chang, J. S. Huang, Selective formation of SAPO-5 and SAPO-34 molecular sieves with microwave irradiation and hydrothermal heating, Micropor. Mesopor. Mater.64 (2003) 33-39
    [44]K. T. Taek, Y. C. Shul, Preparation of transparent TS-1 zeolite film by using nanosized TS-1 particles, Chem. Mater.9 (1997) 420-422
    [45]K. J. Balkus, A. S. Scott, M. E. Gimon-Kinsel, Oriented films of mesoporous MCM-41 on macroporous tubules via pulsed laser deposition, Micropor. Mesopor. Mater.38 (2008) 97-105
    [46]T. Seike, M. Matsuda, M. Miyake, Preparation of FAU type zeolite membranes by electrophoretic deposition and their separation properties, J. Mater. Chem.12 (2002) 366-368
    [47]A. Berenguer-Murcia, E. Morallon, D. Cazorla-Amoros, A. Linares-Solano, Preparation of thin silicalite-1 layers on carbon materials by electrochemical methods, Micropor. Mesopor. Mater.66 (2003) 331-340
    [48]A.S. Huang, W. S. Yang, Hydrothermal synthesis of uniform and dense NaA zeolite membrane in the electric field, Micropor. Mesopor. Mater.102 (2007) 58-69
    [49]L. H. Wee, L. Tosheva, L. Itani, V. Valtchev, A. M. Doyle, Steam-assisted synthesis of zeolite films from spin-coated zeolite precursor coatings, J. Mater. Chem.18 (2008) 3563-3567
    [50]A. S. Huang, W. S. Yang, Enhancement of NaA Zeolite membrane properties through organic cation addition, Sep. Purif. Technol.61 (2008) 175-181
    [51]T. G. Bilongo, J. C. Remigy, M. J. Clifton, Modification of hollow fibers by surface grafting, J. Membr. Sci.364 (2010) 304-308
    [52]Q. Y. Zhao, J. Q. Wang, N. B. Chu, X. Y. Yin, J. H. Yang, C. L. Kong, A. F. Wang, J. M. Liu, Preparation of high-permeance MFI membrane with the modified secondary growth method on the macroporous a-alumina tubular support, J. Membr. Sci.320 (2008) 303-309
    [53]H. Ahn, H. Lee, S. B. Lee, Pervaporation of an Aqueous Ethanol Solution through Hydrophilic Zeolite Membranes, Desalination 193 (2006) 244-251
    [54]A. S. Huang, Y. S. Lin, W. S. Yang, Synthesis and properties of A-type zeolite membranes by secondary growth method with vacuum seeding, J. Membr. Sci.245 (2004) 41-51
    [55]J. Shao, Q. Q. Ge, Z. B. Wang, Y. S. Yan, Influences of Seeds on the Properties of Zeolite NaA Membranes on Alumina Hollow Fibers, Ind. Eng. Chem. Res.50 (2011) 16 9718-9726
    [56]王金渠,刘春艳,邵国林等.分子筛膜制备研究进展,科学技术与工程,3(2003)601
    [57]E. Kikuchi, K. Yamashita, S. Hiromoto, K. Ueyama, M. Matsukata, Synthesis of a zeolitic thin layer by a vapor-phase transport method:Appearance of a preferential orientation of MFI zeolite, Micropor. Mater.11 (1997) 107-116
    [58]J. X. Dong, T. Dou, X. G. Zhao, L. H. Gao, Synthesis of membranes of zeolites ZSM-5 and ZSM-35 by the vapor-phase method, J. Chem. Soc. Chem. Commun.28 (1992) 1056-1058
    [59]N. Nishiyama, T. Matsufuji, K. Ueyama, M. Matsukata, FER membrane synthesized by a vapor-phase transport method:its structure and separation characteristics, Micropor. Mater. 12(1997)293-303
    [60]M. Matsukata, N. Nishiyama, K. Veyama, Crystallization of FER and MFI zeolites by a vapor phase method, Micropor. Mater.7 (1996) 109-117
    [61]S. G. Thoma, T. M. Nenoff, Vapor phase transport synthesis of zeolites from sol-gel precursors, Micropor. Mesopor. Mater.41 (2000) 295-305
    [62]S. Mintova, S. Mo, T. Bein, Nanosized AlPO4-5 molecular sieves and ultrathin films prepared by microwave synthesis, Chem. Mater.10 (1998) 4030-4036
    [63]W. S. Ling, T. C. Thian, S. Bhatia, Synthesis, characterization and pervaporation properties of microwave synthesized zeolite A membrane, Desalination 277 (2011) 383-389
    [64]D. Kunnakorn, T. Rirksomboon, P. Aungkavattana, N. Kuanchertchoo, Performance of sodium A zeolite membranes synthesized via microwave and autoclave techniques for water-ethanol separation:Recycle-continuous pervaporation process, Desalination 269 (2011) 78-83
    [65]W. Xiao, Z. Chen, L. Zhou, J. H. Yang, J. M. Lu, J. Q. Wang, A simple seeding method for MFI zeolite membrane synthesis on macroporous support by microwave heating, Micropor. Mesopor. Mater.142 (2011) 154-160
    [66]J. Caro, F. Marlow, K. Hoffnann, News from AlPO4-5:Microwave synthesis, application as medium to organize molecules for spectroscopy and nonlinear optics, material for one-dimensional membranes, Stud. Surf. Sci. Catal.105 (1997) 2171-2178
    [67]徐晓春,杨维慎,刘杰,林励吾,微波场中NaA型分子筛膜的快速合成,科学通报45(2000)835-837
    [68]X. Xu, W. S. Yang, J. Liu, Synthesis of NaA zeolite membranes by microwave heating, Sep. Purif. Technol.25 (2001) 241-249
    [69]K. J. Balkus, J. A. S. Scott, Chem. Mater.11 (1999) 189
    [70]Y. K. Chen, K. C. Chang, K. Y. Wu, Y. L. Tsai, J. S. Lu, H. Chen, Fabrication of superhydrophobic silica-based surfaces with high transmittance by using tetraethoxysilane precursor and different polymeric species, Appl. Surf. Sci.255 (2009) 8634-8642
    [71]L. Lang, X. F. Liu, B. Q. Zhang, Synthesis and characterization of (h 0 h)-oriented silicalite-1 films on alpha-Al2O3 substrates, Appl. Surf. Sci.254 (2008) 2353-2358
    [72]C. M. Lew, Y. Liu, B. Day, G. A. Kloster, H. Tiznado, M. W. Sun, F. Zaera, J. L. Wang, Y. S. Yan, Hydrofluoric-acid-resistant and hydrophobic pure-silica-zeolite MEL low-dielectric-constant films, Langmuir 25 (2009) 5039-5044
    [73]V. A. Tuan, S. G. Li, J. L. Falconer, R. D. Noble, Separating organics from water by pervaporation with isomorphously-substituted MFI zeolite membranes, J. Membr. Sci.196 (2002)111-123
    [74]T. Sano, S. Ejiri, K. Yamada, Y. Kawakami, H. Yanagishita, Separation of acetic acid-water mixtures by pervaporation through silicalite membrane, J. Membr. Sci.123 (1997) 225-233
    [75]Q. Liu, R. D. Noble, J. L. Falconer, H. H. Funke, Organics/water separation by pervaporation with a zeolite membrane, J. Membr. Sci.117 (1996) 163-174
    [76]W. H. Yuan, Y. S. Lin, W. S. Yang, Molecular sieving MFI-type zeolite membranes for pervaporation separation of xylene isomers, J. Am. Chem. Soc.126 (2004) 4776-4777
    [77]G Xomeritakis, Z. P. Lai, M. Tsapatsis, Separation of xylene isomer vapors with oriented MFI membranes made by seeded growth, Ind. Eng. Chem. Res.40 (2001) 544-552
    [78]申少华,李爱珍,张术根,王大伟.A型沸石的水热制备及生长机制研究,硅酸盐学报,31(2003)732-737
    [79]A. S. Huang, A. S. Yang, Hydrothermal synthesis of NaA zeolite membrane together with microwave heating and conventional heating, Mater. Lett.61 (2007) 5129-5162
    [80]董强,徐南平,时均.铝硅酸盐溶液中NaA型沸石分子筛膜合成规律的研究,硅酸盐通报1(2002)54-57
    [81]S. Dominguez-Dominguez, A. Berenguer-Murcia, Zeolite LTA/carbon membranes for air separation, Micropor. Mesopor. Mater.115 (2008) 51-60
    [82]S. Mintova, V. Valtcho, Zeolites,16 (1996) 31-34
    [83]T. Masuda, H. Hara, Preparation of an A-type zeolite film on the surface of an alumina ceramic filter, Micropor. Mater.3 (1995) 565-571
    [84]I. Kumakiri, T. Yamaguchi, S. Nakao, Preparation of Zeolite A and Faujasite Membranes from a Clear Solution, Ind. Eng. Chem. Res.38 (1999) 4682-4688
    [85]K. Aoki, K. Kusakabe, S. Morooka, Gas permeation properties of A-type zeolite membrane formed on porous substrate by hydrothermal synthesis, J. Membr. Sci.141 (1998) 197-206
    [86]董强,徐南平,时钧.A型沸石分子筛膜微波合成及渗透气化性能,化工学报,52(2001)649-751
    [87]F. T. De Bruijin, L. Sun, Influence of the support layer on the flux limitation in pervaporation, J. Membr. Sci.223 (2003) 141-156
    [88]T. C. Bowen, S. G. Li, Driving force for pervaporation through zeolite membranes, J. Membr. Sci.225 (2003) 165-176
    [89]J. Zah, H. M. Krieg, Pervaporation and related properties of time-dependent growth layers of zeolite NaA on structured ceramic supports, J. Membr. Sci.284 (2006) 276-290
    [90]K. Sato, K. Sugimoto, Preparation of higher flux NaA zeolite membrane on asymmetric porous support and permeation behavior at higher temperatures up to 145℃ in vapor permeation, J. Membr. Sci.307 (2008) 181-195
    [91]Y. Morigami, M. Kondo, J, Abe, H. Kita, K.Okamoto, The first large-scale pervaporation plant using tubular-type module with zeolite NaA membrane, Sep. Purif. Technol.25 (2001) 251-260
    [92]Bruschke, H. E. A. Tusel, G. F. Rautenbach, Reverse Osmosis and Ultrafiltration, American Chemical Society Symposium, Washington D C,1985:467-478
    [93]A. Mochizuki, Y. Sato, H. Ogawara, S. Yamashita, Pervaporation separation of water/ethanol mixtures through polysaccharide membranes. Ⅰ. The effects of salts on the permselectivity of cellulose membrane in pervaporation, J. Appl. Polym. Sci.37 (1989) 3375-3384
    [94]J. H. Kim, K. H. Lee, S. Y. Kim, Pervaporation separation of water from ethanol through polyimide composite membranes, J. Membr. Sci.169 (2000) 81-93
    [95]黄彦科,徐文清,杨维慎,A型分子筛膜在分离乙二醇水溶液中的应用,化工进展,25(9)(2006)1110
    [96]G. Q. Guan, K. Kusakabe, S. Morooka, J. Membr. Eng. Jpn.34(2001) 990-997
    [97]G. R. Rigby, H. C. Watson, Application of membrane gas separation to oxygen enrichment of diesel engines, J. Membr. Sci.87 (1994) 159-169
    [98]Z. Huang, Y. Li, R. Wen, M. M. Teoh, S. Kulprathipanja, Enhanced gas separation properties by using nanostructured PES-Zeolite 4A mixed matrix membranes, J. Appl. Polym. Sci.101 (2006)3800-38051
    [99]K. Okamoto, K. Kita, K. Hotii, Zeolite NaA membrane:preparation, single-gas permeation, and pervaporation and vapor permeation of water/organic liquid mixtures, Ind. Eng. Chem. Res.40 (2001) 163-175
    [100]H.T. Wang, L. M. Huang, B. A. Holmberg, Y.S. Yan, Nanostructured zeolite 4A molecular sieving air separation membranes, Chem. Commun. (2002) 1708-1709
    [101]Z. Gao, Y. Yue, W. Li, Application of zeolite-filled pervaporation membrane, Zeolites 16 (1996) 70-74
    [102]Y. Morigami, M. Kondo, J. Abe, H. Kita, K. Okamoto, The first large-scale pervaporation plant using tubular-type module with zeolite NaA membrane, Sep. Purif. Technol.25 (2001) 251-260
    [103]C. Yu, C. Zhong, Y. Liu, X. Gu, G Yang, W. Xing, Pervaporation dehydration of ethylene glycol by NaA zeolite membranes, N. Xu, Chem. Eng. Res. Des.909 (2012) 1372-1380
    [104]S.-L. Wee, C.-T. Tye, S. Bhatia, Membrane separation process-pervaporation through zeolite membrane, Sep. Purif. Technol.63 (2008) 500-516
    [105]J. Caro, M. Noack, P. Kolsch, Zeolite Membranes:From the Laboratory Scale to Technical Applications, Adsorption,11 (2005)215-227
    [106]T. Gallego-Lizon, E. Edwards, G. Lobiundo, L. F. D. Santos, Dehydration of water/f-butanol mixtures by pervaporation:comparative study of commercially available polymeric, microporous silica and zeolite membranes, J. Membr. Sci.197 (2002) 309-319
    [107]A. Urtiaga, E. D. Gorri, C. Casado, I. Ortiz, Pervaporative dehydration of industrial solvents using a zeolite NaA commercial membrane, Sep. Purif. Technol.32 (2003) 207-213
    [108]M. Kondo, M. Komori, H. Kita, K. I. Okamoto, Tubular-type pervaporation module with zeolite NaA membrane, J. Membr. Sci.133 (1997) 133-141
    [109]G. L. Chen, H. Qi, W. H. Xing, Synthesis of ionic liquid using a four-compartment configuration electrodialyzer, N. P. Xu, J, Membr. Sci.318 (2008) 38-44
    [110]X. C. Xu, W. S. Yang, J. Liu, L. W. Lin, Synthesis of a High-permeance NaA Zeolite Membrane by Microwave Heating, Adv. Mater.12 (2000) 195-198
    [111]M. P. Pina, M. Arruebo, A semi-continuous method for the synthesis the NaA membranes on the tubular support, J. Membr. Sci.244 (2004) 141-150
    [112]M. Pera-Titus, R. Mallada, Preparation of inner-side tubular zeolite NaA membranes in a semi-continuous synthesis system, J. Membr. Sci.278 (2006) 401-408
    [113]M. Pera-Titus, M. Bausach, Preparation of inner-side tubular zeolite NaA membranes in a continuous snythsis system, Sep. Purif. Technol.59 (2008) 141-150
    [114]M. Pear-Titus, J. Llorens, F. Cunill, R. Mallada, J. Santamaria, Prepartion of zeolite NaA membranes on the inner side of tubular supports by means of a controlled seeding technique, Catal. Today 104 (2005) 281-287
    [115]W. Xiao, J. H. Yang, D. Shen, J. M. Liu, J. Q. Wang, Synthesis and property of silicalite-1 membranes by restricting growth method with dilute solution, Micropor. Mesopor. Mater. 129(2010)22-29
    [1]B. Akinci, P. G. Kassebaum, J. V. Fitch, R. W. Thompson, The role of bio-fuels in satisfying US transportation fuel demands, Energy Policy 36 (2008) 3485-3491
    [2]H. G. Qiu, J. K. Huang, M. Keyzer, W. Veen, Policy options for China's bio-ethanol development and the implication for its agricultural economy, China & World Economy 16 (2008)112-124
    [3]A. Percze, P. Balazs, EU bio-fuel Technologies and policies:An environmental benefit for sustainable energy, Cereal Res. Commun.36 (2008) 1591-1594
    [4]T. Matsuura, Synthetic membranes and membrane separation processes, CRC Press, Boca Raton (1994)
    [5]J. Caro, M. Noack, Zeolite membranes:recent developments and progress, Micropor. Mesopor. Mater.115(2008)215-233
    [6]Y. Morigami, M. Kondo, J. Abe, H. Kita, K. Okamoto, The first large-scale pervaporation plant using tubular-type module with zeolite NaA membrane, Sep. Purif. Technol.25 (2001) 251-260
    [7]K. Okamoto, H. Kita, K. Horii, K. Tanaka, M. Kondo, Zeolite NaA membrane:Preparation, single-gas permeation, and pervaporation and vapor permeation of water/organic liquid mixtures, Ind. Eng. Chem. Res.40 (2001)163-175
    [8]J. Zah, H. M. Krieg, J. C. Breytenbach, Layer Development and growth history of polycrystalline zeolite A membranes synthesised from a clear solution, Micropor. Mesopor. Mater.93 (2006) 141-150
    [9]J. Zah, H. M. Krieg, J. C. Breytenbach, Pervaporation and related properties of time-dependent growth layers of zeolite NaA on structured ceramic supports, J. Membr. Sci.284 (2006) 276-290
    [10]X. C. Xu, Y. Bao, C. S. Song, Synthesis, Characterization and single gas permeation properties of NaA zeolite membrane, J. Membr. Sci.249 (2005) 51-64
    [11]H. Ahn, H. Lee, S. B. Lee, Pervaporation of an aqueous ethanol solution through hydrophilic zeolite membranes, Desalination 193 (2006) 244-251
    [12]J. X. Ju, C. F. Zeng, L. X. Zhang, Continuous synthesis of zeolite NaA in a microchannel reactor, Chem. Eng, J.116 (2006) 115-121
    [13]F. Tiscareno-Lechuga, C. Tellez, M. Menendez, A novel device for preparing zeolite-A membranes under a centrifugal force field, J. Membr. Sci.212 (2003) 135-146
    [14]L. Bonaccorsi, E. Proverbio, Microwave ssisted crystallization of zeolite A from dense gels, J. Cryst. Growth.247 (2003) 555-562
    [15]Y. S. Li, H. L. Chen, J. Liu, Microwave synthesis of LTA Zeolite membranes without Seeding, J. Membr. Sci.277 (2006) 230-239
    [16]Y. H. Ma, Y. J. Zhou, R. Poladi, The synthesis and characterization of zeolite A membranes, Sep. Purif. Technol.25 (2001) 235-240
    [17]K. Sato, T. A. Nakane, High reproducible fabrication method for industrial production of high flux NaA zeolite membrane, J. Membr. Sci.301 (2007)151-161
    [18]A. S. Huang, Y. S. Lin, W. S. Yang, Synthesis and properties of A-type zeolite membranes by secondary growth method with vacuum seeding, J. Membr. Sci.245 (2004) 41-51
    [19]M. Pera-Titus, J. Llorens, F. Cunill, Preparation of zeolite NaA membranes on the inner side of tubular supports by means of a controlled seeding technique, Catal. Today 104 (2005) 281-287
    [20]M. Pera-Titus, R. Mallad, J. Llorens, F. Cunill, J. Santamaria, Preparation of inner-side tubular zeolite NaA membranes in a semi-continuous synthesis system, J. Membr. Sci.278 (2006) 401-409
    [21]M. P. Pina, M. Arruebo, M. Felipe, F. Flea, M. P. Bernal, J. Coronas, M. Menendez, J. Santamaria, A semi-continuous method for the synthesis of NaA zeolite membranes on tubular supports, J. Membr. Sci.244 (2004) 141-150
    [22]I. Kumakiri, T. Yamaguchi, S. Nakao, Preparation of zeolite A and faujasite membranes from a clear solution, Ind. Eng. Chem. Res.38 (1999) 4682-4688
    [23]X. C. Xu, W. S. Yang, J. Liu, N. Stroh, H. Brunner, Synthesis of NaA zeolite membrane on a ceramic hollow fiber,229 (2004) 81-85
    [24]M. Pera-Titus, J. Llorens, F. Cunill, R. Mallada, J. Santamaria, Preparation of zeolite NaA membranes on the inner side of tubular supports by means of a controlled seeding technique, Catal. Today 104 (2005) 281-287
    [25]W. Xiao, Z. Chen, L. Zhou, J. H. Yang, J. M. Liu, J. Q. Wang, A simple seeding method for MFI zeolite membrane synthesis on macroporous support by microwave heating, Micropor. Mesopor. Mater.142 (2011) 154-160
    [26]A. S. Huang, F. Y. Liang, F. Steinbach, J. Caro, Preparation and separation properties of LTA membranes by using 3-aminopropyltriethoxysilane as covalent linker, J. Membr. Sci.350 (2010)5-9
    [27]A. S. Huang, J. Caro, Cationic polymer used to capture zeolite precursor particles for the facile synthesis of orientied zeolite LTA molecular sieve membrane, J. Membr. Sci.22 (2010) 4353-4355
    [28]W. C. Yoo, J. A. Stoeger, P. S. Lee, M. Tsapatsis, A. Stein, High-performance randomly oriented zeolite membranes using brittle seeds and rapid thermal processing, Angew. Chem. Int. Ed.49 (2010) 8699-8703
    [29]S. Khajavi, J.C. Jansen, F. Kapteijn, Performance of hydroxyl sodalite membranes as absolute water selective materials under acidic and basic conditions, J. Membr. Sci.356 (2010) 1-6
    [30]C. H. Cho, K. Y. Oh, S. K. Kim, J. G. Yeo, P. Sharma, Pervaporation seawater desalination using NaA zeolite membrane:Mechanisms of high water flux and high salt rejection, J. Membr. Sci.371 (2011) 226-238
    [31]A. Malekpour, M.R. Millani, M. Kheirkhah, Synthesis and characterization of a NaA zeolite membrane and its applications for desalination of radioactive solutions, Desalination 225 (2008) 199-208
    [32]S. Khajavi, J. C. Jansen, F. Kapteijn, Production of ultra purewater by desalination of seawater using a hydroxyl sodalite membrane, J.Membr. Sci.356 (2010) 52-57
    [1]A. Tavolaro, E. Drioli, Zeolite membrane, Adv. Mater.11 (1999) 975-996
    [2]K. Okamoto, H. Kita, K. Horii, K. Tanaka, M. Kondo, Zeolite NaA membrane:Preparation, single-gas permeation, and pervaporation and vapor permeation of water/organic liquid mixtures, Ind. Eng. Chem. Res.40 (2001) 163-175
    [3]L. C. Boudreau, J. A. Kuck, M. Tsapatsis, Deposition of oriented zeolite A films:in situ and secondary growth, J. Membr. Sci.152 (1999) 41-59
    [4]J. J. Jafar, P. M. Budd, Separation of alcohol/water mixtures by pervaporation through zeolite A membranes, Micropor. Mater.12 (1997) 305-311
    [5]X. C. Xu, W. S. Yang, J. Liu, L. W. Lin, Synthesis of a high-permeance NaA zeolite membrane by microwave heating, Adv. Mater.12 (2000) 195-198
    [6]D. Shah, K. Kissick, A. Ghorpade, R. Hannah, D. Bhattacharyya, Pervaporation of alcohol-water and dimethylformadine-water mixture using hydrophilic zeolite NaA membranes:mechanism and experimental results, J. Membr. Sci.179 (2000) 185-205
    [7]M. Pera-Titus, J. Llorens, F. Cunill, R. Mallada, J. Santamaria, Preparation of zeolite NaA membranes on the inner side of tubular supports by means of a controlled seeding technique, Catal. Today 104 (2005) 281-287
    [8]J. Zah, H. M. Krieg, J. C. Breytenbach, Pervaporation and related properties of time-dependent growth layers of zeolite NaA on structured ceramic supports, J. Membr. Sci.284 (2006) 276-290
    [9]A. S. Huang, W. S. Yang, Electrophoretic technique for hydrothermal synthesis of NaA zeolite membranes on porous α-Al2O3 supports, Mater. Res. Bull.42 (2007) 657-665
    [10]C. Yu, Y. Liu, G. Chen, X. Gu, W. Xing, Pretreatment of isopropanol solution from pharmaceutical industry and pervaporation dehydration by NaA zeolite membranes, Chin. J. Chem. Eng.19 (6) (2011) 904-910
    [11]K. Sato, T. A. Nakane, High reproducible fabrication method for industrial production of high flux NaA zeolite membrane, J. Membr. Sci.301 (2007)151-161
    [12]A. Alshebani, M. Pera-Titus, E. Landrivon, Th. Schiestel, J. A. Dalmon, Nanocomposite MFI-ceramic hollow fibres:Prospects for CO2 separation, Micropor. Mesopor. Mater.115 (2008) 197-205
    [13]H. Richter, I. Voight, P. Fischer, P. PuhlfurB, Preparation of zeolite membranes on the inner surface of ceramic tubes and capillaries, Sep. Purif. Technol.32 (2003) 133-138
    [14]X. C. Xu, W. S. Yang, J. Liu, L. W. Lin, N. Stroh, H. Brunner, Synthesis of NaA zeolite membrane on a ceramic hollow fiber, J. Membr. Sci.229 (2004) 81-85
    [15]A. S. Huang, Y. S. Lin, W. S. Yang, Synthesis and properties of A-type zeolite membranes by secondary growth method with vacuum seeding, J. Membr. Sci.245 (2004) 41-51
    [16]A. S. Huang, W. S. Yang, Hydrothermal synthesis of uniform and dense NaA zeolite membrane in the electric field, Micropor. Mesopor. Mater.102 (2007) 58-69
    [17]M. Pear-Titus, J. Llorens, F. Cunill, R. Mallada, J. Santamaria, Preparation of zeolite NaA membranes on the inner side of tubular supports by means of a controlled seeding technique, Catal. Today 104 (2005) 281-287
    [18]I. Kumakiri, T. Yamaguchi, S. Nakao, Preparation of zeolite A and faujasite membranes from a clear solution, Ind. Eng. Chem. Res.38 (1999) 4682-4688
    [19]M. P. Pina, M. Arruebo, M. Felipe, F. Flea, M. P. Bernal, J. Coronas, M. Menendez, J. Santamaria, A semi-continuous method for the synthesis of NaA zeolite membranes on tubular supports, J. Membr. Sci.244 (2004) 141-150
    [20]S. Kumar, Z. P. Wang, R. L. Penn, M. Tsapatsis, A Structural Resolution Cryo-TEM Study of the Early Stages of MFI Growth, J. Am. Chem. Soc.130 (2008) 17284-17286
    [21]F. T. de Bruijn, L. Sun, Z. Olujic, P. J. Jansens, F. Kapteijn, Influence of the support layer on the flux limitation in pervaporation, J. Membr. Sci.223 (2003) 141-156
    [22]K. Sato K, K. Sugimoto, T. Nakane, Preparation of higher flux NaA zeolite membrane on asymmetric porous support and permeation behavior at higher temperatures up to 145℃ in vapor permeation, J. Membr. Sci.307 (2008) 181-195
    [I]Y. Morigami, M. Kondo, J. Abe, H. Kita, K. Okamoto, The first large-scale pervaporation plant using tubular-type module with zeolite NaA membrane, Sep. Purif. Technol.25 (2001) 251-260
    [2]K. Okamoto, H. Kita, K. Horii, K. Tanaka, M. Kondo, Zeolite NaA Membrane:Preparation, Single-Gas Permeation, and Pervaporation and Vapor Permeation of Water/Organic Liquid Mixtures, Ind. Eng. Chem. Res.40 (2001) 163-175
    [3]K. Sato, T. Nakane, A high reproducible fabrication method for industrial production of high flux NaA zeolite membrane, J. Membr. Sci.301 (2007) 151-161
    [4]K. Sato, K. Sugimoto, T. Nakane, A high reproducible fabrication method for industrial production of high flux NaA zeolite membrane, J. Membr. Sci.307 (2008) 181
    [5]L. C. Boudreau, J. A. Kuck, M. Tsapatsis, Deposition of oriented zeolite A films:in situ and secondary growth, J. Membr. Sci.152 (1999) 41-59
    [6]A. Tavolaro, E. Drioli, zeolite membranes, Adv. Mater.11 (1999) 975-996
    [7]X. C. Xu, W. S. Yang, J. Liu, L. W. Lin, Synthesis of a High-Permeance NaA Zeolite Membrane by Microwave Heating, Adv. Mater.12 (2000)195-198
    [8]D. Shah, K. Kissick, A. Ghorpade, R. Hannah, D. Bhattacharyya, Pervaporation of alcohol-water and dimethylformamide-water mixtures using hydrophilic zeolite NaA membranes:mechanisms and experimental results, J. Membr. Sci.179 (2000) 185-205
    [9]L. C. Boudreau, M. Tsapatsis, A highly oriented thin film of zeolite A, Chem. Mater.9 (1997) 1705-1709
    [10]A. S. Huang, Y. S. Lin, W. S. Yang, Synthesis and properties of A-type zeolite membranes by secondary growth method with vacuum seeding, J. Membr. Sci.245 (2004) 41-51
    [11]M. P. Pina, M. Arruebo, M. Felipe, F. Flea, M. P. Bernal, J. Coronas, M. Menendez, J. Santamaria, A semi-continuous method for the synthesis of NaA zeolite membranes on tubular supports, J. Membr. Sci.244 (2004) 141-150
    [12]I. Kumakiri, T. Yamaguchi, S. Nakao, Preparation of Zeolite A and Faujasite Membranes from a Clear Solution, Ind. Eng. Chem. Res.38 (1999) 4682-4688
    [13]M. Pera-Titus, J. Llorens, F. Cunill, R. Mallada, J. Santamaria, Preparation of zeolite NaA membranes on the inner side of tubular supports by means of a controlled seeding technique, Catal.Today 104 (2005) 281-287
    [14]J. Zah, H. M. Krieg, J. C. Breytenbach, Pervaporation and related properties of time-dependent growth layers of zeolite NaA on structured ceramic supports, J. Membr. Sci. 284 (2006) 276-290
    [15]L. C. Boudreau, M. Tsapatsis, A highly oriented thin film of zeolite A, Chem. Mater.9 (1997) 1705-1709
    [16]W. H. Yuan, Y. S. Lin, W. S. Yang, Molecular Sieving MFI-Type Zeolite Membranes for Pervaporation Separation of Xylene Isomers, J. Am. Chem. Soc.126 (2004) 4776-4782
    [17]Z. P. Lai, G Bonilla,1. Diaz, J. G. Nery, K. Sujaoti, M. A. Amat, E. Kokkoli, O. Terasaki, R. W. Thompson, M. Tsapatsis, D. G. Vlachos, Microstructural Optimization of a Zeolite Membrane for Organic Vapor Separation, Science 300 (2003) 456-460
    [18]T. S. Chung, L. Y. Jiang, Y. Li, S. Kulprathipanja, Mixed matrix membranes(MMMs) comprising organic polymers with dispersed inorganic fillers for gas separation, Prog. Polym. Sci.32 (2007) 483-491
    [19]A. F. Ismail, P. S. Goh, S. M. Sanip, M. Aziz, Transport and separation properties of carbon nanotube-mixed matrix membrane, Sep. Purif. Technol.70 (2009) 12-22
    [20]S. M. Liu, K. Li, Hughes, Preparation of porous aluminium oxide (Al2O3) hollow fibre membranes by a combined phase-inversion and sintering method, Ceram. Int.29 (2003) 875-881
    [21]L. Gora, J. C. Jansen, T. Maschmeyer, Controlling the Performance of Silicalite-1 Membrane, Chem. Eur. J.6 (2000) 2537-2543
    [22]S. Alfaro, M. A. Valenzuela, P. Bosch, Synthesis of silicalite-1 by dry-gel coversion method: factors affecting its crystal size and morphology, J. Porous Mater.16 (2009) 337-342
    [23]C.F. Wang, J. S. Li, L. J. Wang, X. Y. Sun, Influence of NaOH concentrations on synthesis of pure-form zeolite A from fly ash using two-stage method, J. Hazard. Mater.155 (2008) 58-64
    [24]L.X. Li, N. Liu, B. McPherson, R. Lee, Enhanced water permeation of reverse osmosis through MFI-type zeolite membranes with high aluminum contents, Ind. Eng. Chem. Res.46 (2007) 1584-1589
    [25]T. Ban, T. Ohwaki, Y. Ohya, Y. Takahashi, Influence of the addition of alkanolamines and tetramethylamminium hydroxide on the shape and size of zeolite-A particles, Inorg. Mater.1 (1999)243-251
    [26]Z. A. E. P. Vroon, K. Keizer, A. J. Burggraaf, H. Verweij, Preparation and characterization of thin zeolite MFI membranes on porous supports, J. Membr. Sci.144 (1998) 65-76
    [27]K. Kusakabe, S. Yoneshige, A. Murata, S. Morooka, Morphology and gas permeance of ZSM-5-type zeolite membrane formed on a porous a-alumina support tube, J. Membr. Sci.116 (1996)39-46
    [28]P. Marc, H. Stefan, M. R. Rachel, M. Huub, P. Robert, C. Gion, Time-and space-resolved luminescence of a photonic dye-zeolite antenna, Angew. Chem. Int. Ed.40 (2001) 2839-2842
    [29]Z. Shan, O. L. Oudshoorn, J. C. Jansen, H. P. A. Calis, Optimization of the preparation of binderless ZSM-5 coatings on stainless steel monoliths by in situ hydrothermal synthesis, Micropor. Mesopor. Mater.34 (2000) 81-91
    [30]V. Sebastian, Z. Lin, J. Rocha, C. Tellez, J. Santamaria, J. Coronas, Synthesis, characterization, and separation properties of Sn-and Ti-silicate umbite membranes, Chem. Mater.18 (2006) 2472-2479
    [31]J. J. Jafar, P. M. Budd, Separation of alcohol/water mixtures by pervaporation through zeolite A membranes, Micropor. Mater.12 (1997) 305-311

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700