用户名: 密码: 验证码:
相反电荷表面活性剂—聚电解质复合溶液流变行为与动力学模型的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于在实际应用与理论研究上的重要性,相反电荷聚电解质-表面活性剂复合溶液体系,受到广泛的关注。然而,由于研究手段的限制,已有的研究大多集中在表面活性剂添加聚电解质稀溶液体系,对于聚电解质在缠结溶液中与相反电荷表面活性剂相互作用的研究迄今未见有报道。多相/多组分聚合物体系的流变特性与其组分间的相互作用、相形态密切相关,本文以两种阴离子聚电解质聚丙烯酸(PAA)与羧甲基纤维素钠(NaCMC)为研究对象,在聚电解质的亚浓缠结溶液区间,采用流变学的方法,系统考察了表面活性剂浓度、烷基链长,聚电解质电荷密度、浓度以及温度对聚电解质.表面活性剂复合溶液流变行为的影响,并从聚电解质标度理论与“Sticky Reptation模型”出发,推导出相反电荷表面活性剂在聚电解质亚浓缠结溶液中的动力学标度关系,揭示了复合体系特征流变响应与其形态及组成的对应关系。论文取得了以下主要结果:
     对阳离子表面活性剂十二烷基三甲基溴化铵(C_(12)TAB)与十六烷基三甲基溴化铵(C_(16)TAB)添加到不同中和度的PAA亚浓缠结溶液体系而言,随着C_(12)TAB和C_(16)TAB浓度(C_(surf))增加,PAA溶液的零剪切粘度(η_0)的变化分为两个阶段(对应的临界表面活性剂浓度为C_c):当C_(surf)<C_c时,η_0变化不明显;当C_(surf)>C_c时,η_0随C_(surf)增加显著增高。对于中和度相同的PAA溶液,当C_(surf)>C_c时,logη_0~logc_(surf)曲线所表现出的斜率基本相等,表明PAA-C_nTAB复合体系η_0变化的标度关系与表面活性剂的烷基链长无关。C_c值大于相应体系的临界聚集浓度(CAC),表明体系粘度上升需要吸附一定量的胶束。另外,还发现,中和度较低的PAA-C_nTAB复合溶液的η_0对C_(surf)更敏感。温度依赖性测试发现,氢键是影响PAA-C_nTAB体系粘度变化的重要因素。
     采用稳态与动态流变测试方法,考察了C_(12)TAB对不同浓度与取代度的NaCMC亚浓缠结溶液流变行为的影响。稳态与动态测试的结果均表明,随着C_(surf)增高,NaCMC-C_(12)TAB复合溶液的流变学参数(η_0、松弛时间(τ)、储能模量(G′)),都分为三个阶段(由η_0~C_(surf),τ~C_(surf)与G′~C_(surf)曲线得到的两个临界浓度分别为C_1,C_2;c_1,c_2与C′_1,C′_2):当C_(surf)<C_1(c_1,C′_1)时,η_0,τ与G′变化不明显;当C_1(c_1,C′_2)<C_(surf)<C_2(c_2,C′_2)时,η_0,τ与G′随C_(surf)增大显著增加;当C_(surf)>C_2(c_2,C′_2)时,η0,τ与G′随C_(surf)增加,上升的幅度下降。C_1(C_1,C′_1)值大于相应体系的CAC,表明体系粘度上升需要一定量的胶束。c_1,c_2与相应的C′_1,C′_2接近,而低于C_1,C_2,表明松弛时间与动态模量对体系的结构变化更敏感。C_1(c_1,C′_1)与C_2(c_2,C′_2)随着C_(surf)的增加与取代度的降低而增加,表明NaCMC浓度越高,取代度越低,形成物理网络所需的临界胶束含量就越大,形成完善网络所需的胶束越多。同时,对于NaCMC-C_(12)TAB复合体系而言,随着C_(surf)的增高,G′~应变(γ)中出现增大的“Payne”效应,G′与损耗模量(G″)对频率(ω)关系曲线在低频区域(终端区域)的斜率减小并逐渐偏离线性粘弹关系,表明体系内物理网络结构逐渐形成与完善。tanδ随C_(surf)增高而降低,表明复合体系的弹性对C_(surf)更敏感。此外,Cox-Merz规则对NaCMC-C_(12)TAB复合体系的适用性表明,分子间的长程相互作用随C_(surf)增高而变化。
     动力学标度关系是研究聚合物流变学重要的理论工具,通过对PAA-C_nTAB与NaCMC-C_(12)TAB复合体系的研究,我们发现,由于表面活性剂胶束吸附并“桥连”了多条聚电解质分子链,抑制了聚电解质分子链的运动,使得相反电荷聚电解质亚浓溶液的粘度,松弛时间与模量上升,因此,我们从“Sticky Reptation模型”与聚电解质标度关系出发,跟据不同表面活性剂浓度,划分了几个标度区间,推导出相反电荷表面活性剂在聚电解质亚浓缠结溶液中的动力学标度关系,并给出了具体表达式。PAA-C_nTAB与NaCMC-C_(12)TAB的实验结果与该模型理论预测一致,表明该模型的推导是合理的。通过该模型可揭示相反电荷聚电解质-表面活性剂复合体系特征流变响应与其形态及组成的对应关系。
The polyelectrolyte and surfactant system with opposite charges has attractedgreat attention both in academic research and commercial application. However, toour knowledge, there were few studies concerning the polyelectrolyte-surfactantinteractions in entangled polyelectrolyte solutions. It is well known that rheologicalbehaviors of multiphase and multicomponent polymer systems are related to thecomponents and phase morphologies. In this dissertation, the rheological behavior ofentangled semidilute solution of anionic polyelectrolyte poly (acrylic acid) (PAA) andsodium carboxymethyl cellulose (NaCMC) containing cationic surfactant wasinvestigated, as a function of surfactant concentration, tail length, polyelectrolyteconcentration, charge density and temperature. Moreover, on the basis of "StickyReptation Model", we modified the polyelectrolyte scaling expression in entangledsemidilute solution. It is found that the relationship between rheological response andstructure of the opposite charged polyelectrolyte and surfactant system can bedescribed by using the modified model.
     On the other hand, The interactions between anionic polyelectrolyte, poly(acrylicacid) (PAA), and cationic surfactant, alkyltrimethylammonium bromide (C_nTAB),were investigated by rheological measurements in PAA entangled semidilute solution.The results reveal that addition of both dodecyl and cetyltrimethylammoniumbromides (C_(12)TAB and C_(16)TAB) into PAA solution could increase its viscosity whenthe surfactant amounts surpassed a critical surfactant concentration (C_c). The increaseof viscosity is attributed to the surfactant micelles bridging of the polymer chains andconfine the mobility PAA chain. On the other hand, the viscosity increases rapidlywith the adding surfactant into PAA solution with lower neutralization extent, due tolower neutralization extent PAA-C_nTAB complex having more hydrogen bondings.
     The steady and dynamic rheological behaviors of NaCMC entangled semidilutesolution filled with C_(12)TAB were investigated. Both steady and dynamic rheologicalresults present that the rheological parameters (zero shear rate viscosity (η_0), relaxation time (τ) and dynamic storage modules (G′)) increase with surfactantconcentration (c_(surf)), and can be divided in three scaling regions by two criticalC_(12)TAB concentrations (C_1, C_2; c_1, c_2; and C_1′, C_2′are from curves ofη_0~c_(surf),τ~c_(surf)and G′~c_(surf), respectively). The presence of two critical C_(12)TAB concentrationsimplies that the structures evolution of NaCMC-C_(12)TAB complex could be exposed tothree states with increase of c_(surf), i.e. no network formation, network extentprogressive formation and perfect network formation, respectively. Moreover, c_1, c_2approach C_1′, C_2′, while a little lower than C_1, C_2, indicating that the relaxation timeand dynamic module are more sensitive to detect the structure change of the complex.Both C_1(c_1, C_1′) and C_2(c_2, C_2′) increase with NaCMC concentration increasing andcharge density decreasing. Meanwhile, the dynamic rheological results also revealedthat the decrease of G′at critical strain amplitude, i.e., the so called "Payne Effect", isprominently enhanced upon increasing c_(surf). Apart from this phenomenon, as c_(surf)increases, the slopes of plotting log G′~logωand log G″~logωdecrease, revealingthat the network extent of NaCMC-C_(12)TAB systems progressively increases as c_(surf)increases. It is also found that G′of NaCMC-C_(12)TAB is much more sensitive to c_(surf)than that of G″.
     The experimental results show that the viscosity, relaxation time and moduleincrease with c_(surf) increasing, which is ascribed to the surfactant micelles bridging ofthe polymer chains and confining of the mobility of polymer chain in entangledsemi-dilute solution. Hence, based on "Sticky Reptation Model", we modify thepolyelectrolyte scaling expression in entangled semidilute solution. And the modelcan be used to explain our experimental results. It is also applied to predict anincrease in viscosity of PAA/C_(12)TAB systems reported in literature. The results are ingood agreement with experimental data, proving our model can be used for examinethe relationship between rheological response and structure of the opposite chargedpolyelectrolyte and surfactant system.
引文
[1] 何曼君,陈维孝,董西侠,高分子物理.复旦大学出版社:上海,2000.
    [2] Barrat J L, Joanny J F, Theory of polyelectrolyte solutions. Advances in Chemical Physics, Vol Xciv, 1996; Vol. 94, pp 1-66.
    [3] Holm C, Joanny J F, Kremer K, Netz R R, Reineker P, Seidel C, Vilgis T A, Winkler R G. Polyelectrolyte Theory. Advances in Polymer Science 2004, 67-111.
    [4] F(o|¨)rster S, Schmidt M. Polyelectrolytes in solution. Advances in Polymer Science 1995, 51-133.
    [5] Petzold G, Mende M, Lunkwitz K, Schwarz S, Buchhammer H M. Higher efficiency in the flocculation of clay suspensions by using combinations of oppositely charged polyelectrolytes. Colloids and Surfaces A-physicochemical and Engineering Aspects 2003, 218, (1-3), 47-57.
    [6] Klitzing R V, Tieke B. Polyelectrolyte Membranes. Advances in Polymer Science 2004, 177-210.
    [7] Harland R S, Prudhomme R K, Polyelectrolyte Gels. In American Chemical Society: Washington DC, 1992.
    [8] 严瑞宣.水溶性高分子.化学工业出版社:北京,1998.
    [9] 赵国玺,表面活性剂物理化学.北京大学出版社:北京,1991.
    [10] 朱友益,韩冬,沈平平,表面活性剂结构与性能的关系.石油工业出版社:北京,2003.
    [11] Jain N, Trabelsi S, Guillot S, McLoughlin D, Langevin D, Letellier P, Turmine M. Critical Aggregation Concentration in Mixed Solutions of Anionic Polyelectrolytes and Cationic Surfactants. Langmuir 2004, 20, (20), 8496-8503.
    [12] Colby R H, Plucktaveesak N, Bromberg L. Critical incorporation concentration of surfactants added to micellar solutions of hydrophobically modified polyelectrolytes of the same charge. Langmuir 2001, 17, (10), 2937-2941.
    [13] Hansson P. Self-Assembly of Ionic Surfactants in Polyelectrolyte Solutions: A Model for Mixtures of Opposite Charge. Langmuir 2001, 17, (14), 4167-4180.
    [14] Plucktaveesak N, Konop A J, Colby R H. Viscosity of polyelectrolyte solutions with oppositely charged surfactant. Journal of Physical Chemistry B 2003, 107, (32), 8166-8171.
    [15] Merta J, Stenius P. Interactions between cationic starch and anionic surfactants .2. Viscosity and aggregate size in dilute solutions. Colloids and Surfaces A-Physicochemical and Engineering Aspects 1997, 122, (1-3), 243-255.
    [16] Yan Y, Li L, Hoffmann H. Clouding: Origin of Phase Separation in Oppositely Charged Polyelectrolyte/Surfactant Mixed Solutions. Journal of Physical Chemistry B 2006, 110, (4), 1949-1954.
    [17] Hansson P, Schneider S, Lindman B. Phase Separation in Polyelectrolyte Gels Interacting with Surfactants of Opposite Charge. Journal of Physical Chemistry B 2002, 106, (38), 9777-9793.
    [18] Dobrynin A V, Rubinstein M. Theory of polyelectrolytes in solutions and at surfaces. Progress in Polymer Science 2005, 30, (11), 1049-1118.
    [19] Fuoss R. Viscosity function for polyelectrolytes. Journal of Polymer Science 1948, 3, 603-604.
    [20] Dobrynin A V, Colby R H, Rubinstein M. Scaling Theory of Polyelectrolyte Solutions. Macromolecules 1995, 28, (6), 1859-1871.
    [21] de Gennes P G, Scaling Concepts in Polymer Physics. Cornell University Press: New York,1979.
    [22] Rubinstein M, Colby R H, Polymer Physics. Oxford University Press: Oxford, 2003.
    [23] Boris D C, Colby R H. Rheology of sulfonated polystyrene solutions. Macromolecules 1998,31,(17), 5746-5755.
    [24] Dou S C, Colby R H. Charge density effects in salt-free polyelectrolyte solution rheology. Journal of Polymer Science Part B-Polymer Physics 2006, 44, (14), 2001-2013.
    [25] Dou S C, Colby R H. Polyelectrolyte solution rheology. Abstracts of Papers of the American Chemical Society 2004, 228, U329-U329.
    [26] Dou S, Colby R H. Solution Rheology of a Strongly Charged Polyelectrolyte in Good Solvent. Macromolecules 2008, 41, (17), 6505-6510.
    [27] Konop A J, Colby R H. Role of condensed counterions in the thermodynamics of surfactant micelle formation with and without oppositely charged polyelectrolytes. Langmuir 1999, 15, (1),58-65.
    [28] Kong L, Cao M, Hai M. Investigation on the Interaction between Sodium Dodecyl Sulfate and Cationic Polymer by Dynamic Light Scattering, Rheological, and Conductivity Measurements. Journal of Chemical and Engineering Data 2007, 52, (3), 721-726.
    [29] Holmberg K, Jonsson B, Kronberg B, Lindman B o, Surfactants and Polymers in Aqueous Solution. John Wiley & Sons, Ltd.: West Sussex, England, 2002.
    [30] Jones M N. The interaction of sodium dodecyl sulfate with polyethylene oxide. Journal of Colloid and Interface Science 1967,23, (1), 36-42.
    [31] Chu D-y, Thomas J K. Effect of cationic surfactants on the conformation transition of poly(methacrylic acid). Journal of the American Chemical Society 1986, 108, 6270-6276.
    [32] Hansson P, Almgren M. Interaction of Alkyltrimethylammonium Surfactants with Polyacrylate and Poly(styrenesulfonate) in Aqueous Solution: Phase Behavior and Surfactant Aggregation Numbers. Langmuir 1994, 10, (7), 2115-2124.
    [33] Piculell L, Lindman B. Association and segregation in aqueous polymer/polymer, polymer/surfactant, and surfactant/surfactant mixtures: similarities and differences. Advances in Colloid and Interface Science 1992, 41, 149-178.
    [34] Anghel D F, Saito S, Baran A, Iovescu A, Cornitescu M. The aggregation of nonionic surfactants in the presence of poly(methacrylic acid). Colloid and Polymer Science 2007, 285, (7), 771-779.
    [35] Guillot S, McLoughlin D, Jain N, Delsanti M, Langevin D. Polyelectrolyte-surfactant complexes at interfaces and in bulk. Journal of Physics-Condensed Matter 2003, 15, (1),S219-S224.
    [36] Bakshi M S, Sachar S. Surfactant polymer interactions between strongly interacting cationic surfactants and anionic polyelectrolytes from conductivity and turbidity measurements. Colloid and Polymer Science 2004, 282, (9), 993-999.
    [37] Kogej K, Skerjanc J. Fluorescence and Conductivity Studies of Polyelectrolyte-Induced Aggregation of Alkyltrimethylammonium Bromides. Langmuir 1999, 15, (12), 4251-4258.
    [38] Hansson P, Almgren M. Interaction of CnTAB with Sodium (Carboxymethyl)cellulose: Effect of Polyion Linear Charge Density on Binding Isotherms and Surfactant Aggregation Number. Journal of Physical Chemistry 1996, 100, 9038-9046.
    [39] Wang C, Tarn K C. Interactions between Poly(acrylic acid) and Sodium Dodecyl Sulfate: Isothermal Titration Calorimetric and Surfactant Ion-Selective Electrode Studies. Journal of Physical Chemistry B 2005, 109, 5156-5161.
    [40] Wang C, Tarn K C. Interaction between polyelectrolyte and oppositely charged surfactant: Effect of charge density. Journal of Physical Chemistry B 2004, 108, (26), 8976-8982.
    [41] Chakraborty T, Chakraborty I, Ghosh S. Sodium Carboxymethylcellulose-CTAB Interaction--A Detailed Thermodynamic Study of Polymer-Surfactant Interaction with Opposite Charges. Langmuir 2006, 22, 9905-9913.
    [42] Ananthapadmanabhan K P, Leung P S, Goddard E D. Fluorescence and solubilization studies of polymer-surfactant systems. Colloids and Surfaces 1985, 13,63-72.
    [43] Leung P S, Goddard E D, Han C, Glinka C J. A study of polycation-anionic-surfactant systems. Colloids and Surfaces 1985, 13, 47-62.
    [44] Hansson P, Almgren M. Polyelectrolyte-Induced Micelle Formation of Ionic Surfactants and Binary Surfactant Mixtures Studied by Time-Resolved Fluorescence Quenching. Journal of Physical Chemistry 1995, 99, (45), 16684-16693.
    [45] Thunemann A F. Polyelectrolyte-surfactant complexes (synthesis, structure and materials aspects). Progress in Polymer Science 2002, 27, (8), 1473-1572.
    [46] Kotz J, Kosmella S, Beitz T. Self-assembled polyelectrolyte systems. Progress in Polymer Science 2001,26, (8), 1199-1232.
    [47] Mata J, Patel J, Jain N, Ghosh G, Bahadur P. Interaction of cationic surfactants with carboxymethylcellulose in aqueous media. Journal of Colloid and Interface Science 2006, 297,(2), 797-804.
    [48] Thalberg K, Lindman B. Interaction between hyaluronan and cationic surfactants. The Journal of Physical Chemistry 1989, 93, (4), 1478-1483.
    [49] Larson R G, The structure and rheology of complex fluids. Oxford University press: New York, 1999.
    [50] Yan P, Jin C, Wang C, Ye J P, Xiao J X. Effect of surfactant head group size on polyelectrolyte-surfactant interactions: steady-state and time-resolved fluorescence study. Journal of Colloid and Interface Science 2005, 282, (1), 188-192.
    [51] Hansson P. A Fluorescence Study of Divalent and Monovalent Cationic Surfactants Interacting with Anionic Polyelectrolytes. Langmuir 2001, 17,(14), 4161-4166.
    [52] Hayakawa K, Fukutome T, Satake I. Solubilization of water-insoluble dye by a cooperative binding system of surfactant and polyelectrolyte. Langmuir 1990, 6, (9), 1495-1498.
    [53] Hayakawa K, Ohta J, Maeda T, Satake I, Kwak J C T. Spectroscopic studies of sye solubilizates in micelle-like complexes of surfactant with polyelectrolyte. Langmuir 1987, 3, (3),377-382.
    [54] Proietti N, Amato M E, Masci G, Segre A L. Polyelectrolyte/surfactant interaction: An NMR characterization. Macromolecules 2002, 35, (11), 4365-4372.
    [55] Wei Y C, Hudson S M. Binding of sodium dodecyl sulfate to a polyelectrolyte based on chitosan Macromolecules 1993, 26, (16), 4151-4154.
    [56] Hansson P, Almgren M. Interaction of C(n)TAB with sodium (carboxymethyl)cellulose:Effect of polyion linear charge density on binding isotherms and surfactant aggregation number.Journal of Physical Chemistry B 1996, 100, (21), 9038-9046.
    [57] Hayakawa K, Santerre J P, Kwak J C T. Study of surfactant-polyelectrolyte interactions. Binding of dodecyl- and tetradecyltrimethylammonium bromide by some carboxylic polyelectrolytes Macromolecules 1983, 16,(10), 1642-1645.
    [58] Tan H, Tarn K C, Jenkins R D. Rheological properties of semidilute hydrophobically modified alkali-soluble emulsion polymers in sodium dodecyl sulfate and salt solutions. Langmuir 2000, 16, (13), 5600-5606.
    [59] Jimenez-Regalado E, Selb J, Candau F. Effect of surfactant on the viscoelastic behavior of semidilute solutions of multisticker associating polyacrylamides. Langmuir 2000, 16, (23), 8611-8621.
    [60] Ye L, Huang R, Hoffman H. Surfactant interactions with P(AM-AA-BPAM) hydrophobically modified polyelectrolytes. Journal of Applied Polymer Science 2003, 89,2664-2671.
    [61] Nystro(?)m B, Thuresson K, Lindman B. Langmuir 1995, 11, 1994-2002.
    [62] Shimizu T. Changes of PH and counterion activity during the binding process of cationic surfactants to carboxylic polyions. Colloids and Surfaces A-physicochemical and Engineering Aspects 1994, 84, (2-3), 239-248.
    [63] Liu J, Takisawa N, Shirahama K, Abe H, Sakamoto K. Effect of polymer size on the polyeletrolyte-surfactant interaction. Journal of Physical Chemistry B 1997, 101, (38),7520-7523.
    [64] Haronska P, Vilgis T A, Grottenmuller R, Schmidt M. Adsorption of polymer chains onto charged spheres: Experiment and theory. Macromolecular Theory and Simulations 1998, 7, (2),241-247.
    [65] Gurovitch E, Sens P. Adsorption of polyelectrolyte onto a colloid of opposite charge. Physical Review Letters 1999, 82, (2), 339-342.
    [66] Mateescu E M, Jeppesen C, Pincus P. Overcharging of a spherical macroion by an oppositely charged polyelectrolyte. Europhysics Letters 1999, 46, (4), 493-498.
    [67] Netz R R, Joanny J F. Complexation between a semifiexible polyelectrolyte and an oppositely charged sphere. Macromolecules 1999, 32, (26), 9026-9040.
    [68] Park S Y, Bruinsma R F, Gelbart W M. Spontaneous overcharging of macro-ion complexes. Europhysics Letters 1999, 46, (4), 454-460.
    [69] Lim P F C, Chee L Y, Chen S B, Chen B H. Study of Interaction between Cetyltrimethylammonium Bromide and Poly(acrylic acid) by Rheological Measurements. Journal of Physical Chemistry B 2003, 107, (26), 6491-6496.
    [70] Wu Q, Du M, Shangguan Y-g, Zhou J-p, Zheng Q. Investigation on the interaction between C16TAB and NaCMC in semidilute aqueous solution based on rheological measurement. Colloids and Surfaces A-Physicochemical and Engineering Aspects 2009,332, 13-18.
    [71 ] Ghimici L, Nichifor M. Flocculation Properties of Some Cationic Polysaccharides. Journal of Macromolecular Science Part B-Physics 2009, 48, (1), 106-113.
    [72] Zheng B Q, Qian J W, Li X K, Zhu Z H. Effect of the parent solution concentration on the flocculation performance of PAAm flocculants and the relation between the optimal parent solution concentration and critical concentrations. Journal of Applied Polymer Science 2007, 103,(3), 1585-1592.
    [73] Ajji A, Choplin L, Prudhomme R E. Rheology and Phase-Separation in Polystyrene Poly (Vinyl Methyl-Ether) Blends. Journal of Polymer Science Part B-Polymer Physics 1988, 26, (11), 2279-2289.
    [74] Lacroix C, Bousmina M., J. C P. Relationships between Rheology and Morphology for Immiscible Molten Blends of Polypropylene and Ethylene Copolymers under Shear Flow. Journal of Rheology 1998, 42, 41-62.
    [75] M.Takahashi, L.Li, Masuda T. Nonlinear viscoelasticity of ABS polymers in molted state. Journal of Rheology 1989, 33, 709-724.
    [76] Pryamitsyn V, Ganesan V. Mechanisms of steady-shear rheology in polymer-nanoparticle composites. Journal of Rheology 2006, 50, (5), 655-683.
    [77] Vinckier I, Moldenaers P, Mewis J. Relationship between Rheology and Morphology of Model Blends in Steady Shear Fow. Journal of Rheology 1996, 40, 613-631.
    [78] Jeon H S, Nakatani A I, Han C C, Colby R H. Melt rheology of lower critical solution temperature polybutadiene/polyisoprene blends. Macromolecules 2000, 33, (26), 9732-9739.
    [79] Pai V, Srinivasarao M, Khan S A. Evolution of Microstructure and Rheology in Mixed Polysaccharide Systems. Macromolecules 2002, 35, (5), 1699-1707.
    [80] Sengers W G F, Sengupta P, Noordermeer J W M, Picken S J, Gotsis A D. Linear viscoelastic properties of olefinic thermoplastic elastomer blends: melt state properties. Polymer 2004,45,(26), 8881-8891.
    [81] Guschl P C, Otaigbe J U, Loong C K. Investigation of phase behavior during melt processing of novel inorganic-organic polymer hybrid material. Polymer Engineering and Science 2004,44, (9), 1692-1701.
    [82] Lipatov Y S, Shumsky V F, Getmanchuk I P, Gorbatenko A N. Rheology of polymer blends. RheologicaActa 1982, 21, 270-279.
    [83] Wu Q, Du M, Peng M, Zuo M, Zheng Q. Effect of SiO2 particles on phase-separation of poly(methyl methacrylate)/poly(styrene-co-acrylonitrile) blends. Acta Polymerica Sinica 2007,(3), 223-229.
    [84] Du M, Wang L Q, Yang B B, Song X B, Zheng Q. Characteristic dynamic rheological response to phase separation for poly(methyl methacrylate)/poly(styrene-co-acrylonitrile) blends.Chemical Journal of Chinese Universities-Chinese 2002,23, (5), 961-964.
    [85] Zheng Q, Yang B B, Wu G, Li L W. A study of dynamic rheology for multicomponent polymers. Chemical Journal of Chinese Universities-Chinese 1999, 20, (9), 1483-1490.
    [86] Zuo M, Zheng Q, Wang W J. Studies on structure and phase behavior of multicomponent polymers through rheological tests. Chinese Journal of Polymer Science 2007, 25, (1), 1-7.
    [87] Hu H G, Lin J, Zheng Q, Xu X M. Effect of filler network on dynamic viscoelastic properties of uncured polymethylvinylsiloxanes filled with silica and carbon black. Journal of Applied Polymer Science 2006, 99, (6). 3477-3482.
    [88] Wu G, Song Y H, Zheng Q, Du M, Zhang P J. Dynamic rheological properties for HDPE/CB composite melts. Journal of Applied Polymer Science 2003, 88, (9), 2160-2167.
    [89] Wang W J, Zheng Q. The dynamic rheological behavior and morphology of nylon/elastomer blends. Journal of Materials Science 2005, 40, (20), 5545-5547.
    [90] Du M, Gong J H, Zheng Q. Dynamic rheological behavior and morphology near phase-separated region for a LCST-type of binary polymer blends. Polymer 2004, 45, (19), 6725-6730.
    [91] Zuo M, Zheng Q. Correlation between rheological behavior and structure of multi-component polymer systems. Science in China Series B-Chemistry 2008, 51, (1), 1-12.
    [92] Anghel D F, Winnik F M, Galatanu N. Effect of the surfactant head group length on the interactions between polyethylene glycol monononylphenyl ethers and poly(acrylic acid). Colloids and Surfaces A-Physicochemical and Engineering Aspects 1999, 149, (1-3), 339-345.
    [93] Pi Y, Shang Y, Peng C, Liu H, Hu Y, Jiang J. Phase behavior of gemini surfactant hexylene-1,6-bis(dodecyldimethylammonium bromide) and polyelectrolyte NaPAA. Journal of Colloid and Interface Science 2006, 299, (1), 410-415.
    [94] Matsuda T, Annaka M. Salt effect on complex formation of neutral/polyelectrolyte block copolymers and oppositely charged surfactants. Langmuir 2008, 24, (11), 5707-5713.
    [95] Fundin J, Hansson P, Brown W, Lidegran I. Poly(acrylic acid)-Cetyltrimethylammonium Bromide Interactions Studied Using Dynamic and Static Light Scattering and Time-Resolved Fluorescence Quenching. Macromolecules 1997, 30, (4), 1118-1126.
    [96] Leonard M J, Strey H H. Phase diagrams of stoichiometric polyelectrolyte-surfactant complexes. Macromolecules 2003, 36, (25), 9549-9558.
    [97] 唐善彧,程绍进,表面活性剂溶液研究新方法.石油工业出版社:北京,1992.
    [98] 于军胜,唐季安.表(界)面张力测定方法的进展.化学通报1997,11,11-15.
    [99] 雷群芳,中级化学实验.科学出版社:北京,2005.
    [100] 宋世谟,王正烈,李文斌,物理化学.高等教育出版社:北京,2001.
    [101] 周持兴,聚合物流变学实验与应用.上海交通大学出版社:上海,2003
    [102] Plucktaveesak N. Solution rheology of polyelectrolytes and polyelectrolyte-surfactant systems. Doctor Dissertation, Pennsylvania State University, 2003.
    [103] 高洁,汤烈贵,纤维素科学.科学出版社:北京.1999.
    [104] Trabelsi S, Raspaud E, Langevin D. Aggregate formation in aqueous solutions of carboxymethylcellulose and cationic surfactants. Langmuir 2007, 23, 10053-10062.
    [105] Trabelsi S, Guillota S, Ritacco H, Boue F, Langevin D. Nanostructures of colloidal complexes formed in oppositely charged polyelectrolyte/surfactant dilute aqueous solutions. European Physical Journal E 2007, 23, (3), 305-311.
    [106] Hoogendam C W, de Keizer A, Stuart M A C, Bijsterbosch B H, Smit J A M, van Dijk J, van der Horst P M, Batelaan J C. Persistence length of carboxymethyl cellulose as evaluated from size exclusion chromatography and potentiometric titrations. Macromolecules 1998, 31,(18), 6297-6309.
    [107] Kamide K, Saito M, Suzuki H. Persistence length of cellulose and cellulose derivatives in solution. Makromolekulare Chemie-Rapid Communications 1983, 4, (1), 33-39.
    [108] Lavrenko P N, Okatova O V, Tsvetkov V N, Dautzenberg H, Philipp B. Conformation of carboxymethylcellulose in cadoxen water solutions. Polymer 1990, 31, (2), 348-352.
    [109] Chen J, Chen P, Wu L C, Zhang J, He J S. Fibrillation of liquid crystalline polymer in polysulfone promoted by increased system elasticity via adding nano-silica. Polymer 2007, 48, (14), 4242-4251.
    [110] Utracki LA, Polymer Alloys and Blends. Carl Hanser: New York, 1989.
    [111] Yanovsky Y G, Polymer Rheology: Theory and Practice. Chapman & Hall: London, 1993.
    [112] Ferry J D, Viscoelastic Properties of Polymers. 3rd ed.; Wiley: New York, 1980.
    [113] Payne A R, Whittaker R E. Low Srain Dnamic Poperties of Filed Rbber. Rubber Chemistry and Technology 1971, 44,440-478.
    [114] Cox W P, Merz E H. Correlation of Dynamic and Steady Flow Viscosities. Journal of Polymer Science 1958, 28, (118), 619-622.
    [115] Chronakis I S, Alexandridis P. Rheological properties of oppositely charged polyelectrolyte-surfactant mixtures: Effect of polymer molecular weight and surfactant architecture. Macromolecules 2001, 34, (14), 5005-5018.
    [116] Doi M, Edwards S F, The Theory of Polymer Dynamic. Oxford University Press: New York, 1996.
    [117] Rubinstein M, Dobrynin A V. Solutions of associative polymers. Trends in Polymer Science 1997,5,(6), 181-186.
    [118] Tanaka F, Edwards S F. Viscoelastic Properties of Physically Cross-Linked Networks-Transient Network Theory. Macromolecules 1992, 25, (5), 1516-1523.
    [119] Rubinstein M, Semenov A N. Dynamics of entangled solutions of associating polymers. Macromolecules 2001, 34, (4), 1058-1068.
    [120] Gonzalez A E. Viscosity of ionomer gels. Polymer 1983, 24, (1), 77-80.
    [121] Gonzalez A E. Viscoelasticity of ionomer gels: 2. The elastic moduli. Polymer 1984, 25,(10), 1469-1474.
    [122] Stadler R, Freitas L D. Thermoplastic Elastomers by Hydrogen-Bonding .1. Rheological Properties of Modified Polybutadiene. Colloid and Polymer Science 1986, 264, (9), 773-778.
    [123] Stadler R, Freitas L D. Complex-Formation and Dynamics in Polymer Melts. Makromolekulare Chemie-Macromolecular Symposia 1989,26, 451-457.
    [124] Stadler R, Freitas L D. Relaxation Behavior of Linear Polymer-Chains with Statistically Distributed Functional-Groups. Macromolecules 1989, 22, (2), 714-719.
    [125] Leibler L, Rubinstein M, Colby R H. Dynamics of reversible networks. Macromolecules 1991, 24, (16), 4701-4707.
    [126] Colby R H, Zheng X, Rafailovich M H, Sokolov J, Peiffer D G, Schwarz S A, Strzhemechny Y, Nguyen D. Dynamics of lightly sulfonated polystyrene ionomers. Physical Review Letters 1998, 81, (18), 3876-3879.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700