用户名: 密码: 验证码:
Li掺杂p型Zn_(1-x)Mg_xO薄膜及ZnO和ZnMgO纳米材料的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
ZnO是一种Ⅱ-Ⅵ族化合物半导体材料,其室温禁带宽度为3.37 eV,激子束缚能为60 meV,远大于室温热能(26 meV),因而理论上会在室温下获得高效的紫外激子发光和激光。而且,ZnO外延生长温度低,抗辐射能力强,原材料资源丰富、价格低廉,对环境无毒无害,制备工艺简单。因此,ZnO是制备室温和更高温度下的半导体激光器(LDs)、紫外光探测器、蓝紫波段LEDs和LDs等的理想材料。通过改变ZnO中Mg的掺入量,让Mg取代Zn的位置,所形成的Zn_(1-x)Mg_xO薄膜在保持纤锌矿结构不变的前提下能够调节带隙在3.3~4.3 eV之间变化,而且可以和ZnO形成较好的晶格匹配。通过在光电器件中建立ZnO/ZnMgO多量子阱或超晶格结构,可以提高器件的发光效率,调制器件的发光特性。然而要实现这些ZnO/ZnMgO异质结发光器件,一个关键的问题就是获得性能优良的p型Zn_(1-x)Mg_xO薄膜。目前,国外虽然有人在从事p型Zn_(1-x)Mg_xO薄膜的研究,但他们都采用Ⅴ族元素作为掺杂源,还没有人采用Ⅰ族元素来制备p型Zn_(1-x)Mg_xO薄膜。但是,理论计算表明,Ⅰ族元素在ZnO中具有较浅的受主能级。而且,Li原子置换Zn原子形成的受主,在杂质原子周围基本不会形成明显的晶格形变,所以,在本文中我们采用Li掺杂来制备p型Zn_(1-x)Mg_xO薄膜。
     此外,ZnO纳米材料由于尺寸的减少,表面和量子限域效应明显,纳米结构表现出比体材料更高的导电率、透明性和传输性等特点,从而使ZnO的纳米结构可以在场发射、医疗、生物传感等领域得到应用。所以,ZnO纳米材料的合成成为一个新的研究热点。目前已经制备出多种不同形貌的ZnO一维纳米材料,包括纳米线、纳米棒、纳米带、纳米钉等。而且,通过Mg的掺杂,可以实现对ZnO能带调制作用,使制备ZnO和Zn_(1-x)Mg_xO纳米异质结成为可能。因此,ZnO和Zn_(1-x)Mg_xO纳米材料在构建纳米电子和光学器件方面具有巨大的应用潜力。
     根据目前ZnO和Zn_(1-x)Mg_xO薄膜和纳米材料研究中的难点和热点问题,我们分别采用脉冲激光沉积(PLD)和热蒸发的方法对单一Li掺杂和Li-N共掺杂的p型Zn_(1-x)Mg_xO薄膜以及ZnO和Zn_(1-x)Mg_xO纳米材料进行了研究。结果如下:
     [1]采用PLD技术单一Li掺杂的方法成功制备了不同组分的p-Zn_(1-x)Mg_xO薄膜。观察到吸收边随着薄膜中Mg含量的增加发生蓝移,说明薄膜禁带宽度随Mg含量增加而增大。首次在单一Li掺杂p-Zn_(0.89)Mg_(0.11)O薄膜的PL谱中发现了DAP向e,A~0的转换,并且通过计算在Zn_(0.89)Mg_(0.11)O:Li和Zn_(0.72)Mg_(0.28)O:Li薄膜中分别获得了位于价带顶之上约为150 meV和174 meV处的两个Li_(Zn)的受主能级。我们认为禁带宽度的增大和受主能级的加深是电阻率随着Mg含量升高而升高,载流子浓度随着Mg含量升高而减小的主要原因。
     [2]研究了氧气压强对PLD生长的单一Li掺杂Zn_(0.89)Mg_(0.11)O薄膜性能的影响。SIMS测试结果表明薄膜在5-25 Pa氧压的范围内生长时,薄膜中Li元素的含量随着氧压的增大呈现出先增大再减小的趋势。在氧压为15 Pa的条件下沉积的Zn_(0.89)Mg_(0.11)O薄膜具有较高的Li的含量,这就是薄膜在此时呈现p型的原因。
     [3]通过研究其它生长参数如衬底温度、脉冲激光能量以及靶材中的Li含量等对p型性能的影响,获得了PLD方法生长单一Li掺杂p型Zn_(1-x)Mg_xO薄膜的最佳工艺参数,实现了稳定性和重复性都较好的p型Zn_(1-x)Mg_xO薄膜的生长。
     [4]采用PLD方法,在高压电离N_2O的气氛中制备了性能良好的Li-N双受主共掺杂p型Zn_(0.89)Mg_(0.11)O薄膜,通过在不同N_2O压强下生长的Zn_(0.89)Mg_(0.11)O薄膜电学性能的测试,得出在N_2O压强为23 Pa时Zn_(0.89)Mg_(0.11)O薄膜的p型性能最好,室温下的电阻率为133Ω·cm,Hall迁移率为1.3 cm~2/Vs,载流子浓度为3.62×10~(16) cm~(-3)。在获得性能优良的p型Zn_(0.89)Mg_(0.11)O薄膜的基础上,研制了Zn_(0.89)Mg_(0.11)O:(Li,N)/ZnO异质p-n结。Ⅰ-Ⅴ测试表明该结构具有明显的整流特性,这进一步证明Li-N双受主掺共杂Zn_(0.89)Mg_(0.11)O已经实现了p型转变。
     [5]采用锌粉和醋酸锌的混合物为原料热蒸发的方法制备了玫瑰花状和剑麻状两种新颖的花状ZnO结构。结果表明源材料中有醋酸锌是形成花状结构的主要原因。剑麻状结构的样品具有较好的场发射性能,是优良的阴极场发射材料。
     [6]在硅衬底上用热蒸发纯锌粉的方法生长了ZnO纳米棒和纳米钉阵列。测试结果表明这两种结构均属于六方纤锌矿结构,具有明显的c轴择优取向性。由于氧气不足造成Zn蒸气在纳米棒顶端聚集,是形成ZnO纳米钉结构的主要原因。
     [7]采用热蒸发锌粉和镁粉的混合物通过低温-升温-高温三步生长的方法,首次获得了核/壳结构的ZnO/cubic-Zn_(1-x)Mg_xO异质结纳米棒,纳米棒是由上下两部分组成,顶部直径约为20 nm的线状结构直接生长在直径约为180 nm的棒状结构之上。测试结果表明纳米棒的顶端线状结构是立方ZnMgO结构,而底部的纳米棒是由六方的纯ZnO和立方的ZnMgO组成核/壳结构构成。我们认为生长温度以及生长工艺的控制是最终获得异质结纳米棒的主要原因。
ZnO is a kind ofⅡ-Ⅵcompound semiconductor with a wide direct band gap of 3.37 eV at room temperature (RT) and a hexagonal wurtzite structure. Its high exciton binding energy (60 meV at RT), which is much higher than RT heat energy (26 meV), will theoretically favor efficient UV excitonic emission processes at RT. In addition, ZnO is abundant, cheap, innoxious, easy to be prepared and with potential commercial value. Thus, ZnO has been considered as a promising material for optoelectronic devices such as UV light- emitting diodes (LEDs), Laser diodes (LDs) and photodetectors. It is well known that the band gap of ZnO can be modulated from 3.3 eV to 4.3 eV by alloying different concentrations of MgO and the Zn_(1-x)Mg_xO alloy still maintains the wurtzite structure. Moreover, the ionic radius of Zn~(2+)(0.74 (?)) is close to that of Mg~(2+) (0.72(?)), therefore, the substitution of Zn~(2+) by Mg~(2+) does not induce a significant change in lattice constant. ZnMgO is a suitable material for ZnO/ZnMgO superlattices and quantum wells. These ZnMgO/ZnO heterosystem can improve the emission efficiency of devices and modulate the working waveband. However, in order to realize such optoelectronic applications based on ZnO/ ZnMgO heterostructures, one of the critical issues is to achieve stable p-type ZnMgO. Recently, several works have been reported on p-type ZnMgO films. They all focused on p-type doping ZnMgO with group V elements, whereas few reports have considered groupⅠelements on substitutional Zn or Mg sites. Compared with other groupⅠand groupⅤdopants, Li is considered as a relative shallow acceptor, and for Li_(Zn), almost no lattice relaxations occurs around the impurity atom. Therefor, in this paper, we choose Li as a dopant to realize the p-type ZnMgO thin films using pulsed laser deposition (PLD).
     With reduction in size, nanostructures ZnO materials exhibits more excellent performance (such as higher conductance, transparency and electronic quantum transport) compared with the bulk counterparts, ZnO nanostructures have promising potentials in nanosized gas sensors, transducers, and field emitters etc. Thus, the syntheses of ZnO nanomaterials have become a new hotspot. Many kinds of ZnO nanostructures such as nanowires, nanotubes, nanobelts and nanorings have been obtained so far. Moreover, the band-gap of ZnO can be modulated by doping with Mg for further applications, which makes it possible for fabricating ZnO/Zn_(1-x)Mg_xO nano-heterostructures. So ZnO and Zn_(1-x)Mg_xO nanostructures have promising potential applications in nano-optoelectronics and nano- electronics devices.
     According to the hotspot and difficult questions existed in the study of ZnMgO thin films and ZnO nanostructures, p-type Li doped and Li-N codoped Zn_(1-x)Mg_xO thin films have been realized by PLD. ZnO and ZnMgO one-dimensional nanostructures were also successfully fabricated using thermal evaporation method. The main content of this thesis is as follows:
     [1] We have grown Li doped p-type ZnMgO films on glass substrates with different Mg content (11-28 at. %) by pulsed laser deposition. Hall measurements suggest that the resistivity increases with Mg concentration. Acceptor levels related to Li_(Zn) located at about 150 meV and 174 meV above the valence band maximum was discriminated in photoluminescence spectra for Li doped Zn_(0.89)Mg_(0.11)O and Zn_(0.72)Mg_(0.28)O films, respectively. The conversion of donor-acceptor pair (DAP) to a free-to-neutral-acceptor (e, A~0) transition was also observed in Zn_(0.89)Mg_(0.11)O: Li film. The optical band gap and the acceptor binding energy increase with an increase of Mg content in the films, which leads to a reduction in the hole concentration and an increase in the resistivity.
     [2] Li doped p-type Zn_(0.95)Mg_(0.05)O thin films have been achieved on glass substrates by pulsed laser deposition. The results of the Hall measurements indicate that p-type conduction in Li doped Zn_(0.95)Mg_(0.05)O films is strongly dependent on the oxygen pressure. Increasing oxygen pressure from 5 Pa to 25 Pa, the Li concentration in Zn_(0.95)Mg_(0.05)O firstly increases and then decreases. SIMS result suggests that a high Li acceptor concentration in the films grown at an oxygen pressure of 15 Pa and 20 Pa is responsible for the definitive p-type conductivity in these films.
     [3] p-type Zn_(1-x)Mg_xO thin films were realized via monodoping Li by analyzing the influence of experimental parameters (such as the glass substrate temperatures, the laser pulse energy, the distance between target and substrate and the Li content in the targets) on the films. The optimal growth conditions are achieved. Stable and reproduceable p-type Zn_(1-x)Mg_xO thin films have been obtained under optimized conditions.
     [4] Li-N dual-acceptor codoped p-type Zn_(0.89)Mg_(0.11)O films have been deposited on glass substrates by pulsed laser deposition under an ionized N_2O ambient. Hall measurements reveal that the films grown under a moderate N_2O pressure (23 Pa) have the lowest room-temperature resistivity of 133Ω·cm, with a hole concentration of 3.62×10~(16) cm~(-3) and a Hall mobility of 1.3 cm~2/Vs. The enhancement of Li and N incorporations was responsible for the good p-type conduction of this film, which was demonstrated by secondary ion mass spectroscopy. Zn_(0.89)Mg_(0.11)O/ZnO p-n heterojunction was fabricated. The rectifying current-voltage curve confirmed that Li-N dual-acceptor codoping is a promising method for p-type doping of ZnO.
     [5] Rose-like and sisal-shaped ZnO nanostructures have been synthesized by thermal evaporation method. Zinc acetate dihydrate powders were used as one of the source materials, which is deemed as the main reason for the formation of flower-like ZnO structures. The field-emission properties indicate that the sisal-shaped ZnO structures have better field emission properties than the rose-like structures. Our experiment results suggest that sisal-shaped ZnO structures are promising materials for applications in a flat panel display and brightness electron source.
     [6] ZnO nanorods and nanonails have been synthesized on silicon wafers by evaporating Zn powders. All the samples are hexagonal phase ZnO with highly c-axis preferential orientation. The analysis results demonstrated that the caps of nanonails possess a large number of oxygen vacancies, which may play a key role in determining the formation of nanonails and the high intensity of green emission.
     [7] ZnO/cubic ZnMgO coaxial heterostructure nanorods with wire-shaped tips have been synthesized via a three-step catalyst-free thermal evaporation process on the Si (111) substrates. The results of the measurements demonstrate that the nanorod with a cubic-phased tip consists of a wurtzite ZnO core surrounded by a cubic ZnMgO shell. We suggest that the growth temperature and the process control are responsible for the formation of the ZnO/ZnMgO heterostructure nanorods.
引文
[1] A. Ohtomo, M. Kawasaki, Y. Sakurai, Y. Yoshida, H. Koinuma, P. Yu, Z. K. Tang, G.K.LWong, Y. Segawa, Room temperature ultraviolet laser emission from ZnO nanocrystal thinfilms grown by laser MBE, Mat. Sci. & Eng. B, 54 (1998) 24-28.
    
    [2] Kramer. J., Blue-green luminescence in ZnO: Excitation by 20eV kinetic energy gas-phasepositive ions, J. Appl. Phys., 47(4) (1976) 1719-1720.
    
    [3] K.Vanheusden, C. H. Seager, W. L. Warren, D. R. Tallant, J. A. Voigt, Correlation betweenphotoluminescence and oxygen vacancies in ZnO phosphors, Appl. Phys. Lett., 68(3) (1996)403-405.
    
    [4] K.Vanheusden, W. L. Warren, C. H. Seager, D. R. Tallant, J. A. Voigt, Mechanisms behindgreen photo luminescence in ZnO phosphor powders, J.Appl.Phys., 79(10) (1996) 7983-7990.
    
    [5] P. Yu, Z. K. Tang,G.K. L.Wong, M. Kawasaki, A. Ohtomo, H. Koinuma, Y. Segawa, Ultravioletspontaneous and stimulated emission fromZnO microcrystallite thin films at roomtemperature, Solid State Commun.,103 (1997) 459-463.
    
    [6] D. M. Bagnall, Y. F. Chen, Z. Zhu, T. Yao, S. Koyama, M. Y. Shen, T. Goto, Optically pumpedlasing of ZnO at room temperature, Appl. Phys. Lett., 70(17) (1997) 2230-2232.
    
    [7] R. F. Service, Will UV laser beat the blues? Science, 276 (1997) 895-895.
    
    [8] W. I. Park, G. C.Yi, H. M. Jang, Metalorganic vapor-phase epitaxial growth andphotoluminescent properties of Zn_(1-x)Mg_xO(0    
    [9] T. Minemoto, T. Negami, S. Nishiwaki, Preparation of Zn_(1-x)Mg_xO films by radio frequencymagnetron sputtering, Thin Solid Films, 372 (2000) 173-176.
    
    [10]邹璐,汪雷,黄靖云,赵炳辉,叶志镇,硅衬底上Zn_(1-x)Mg_xO薄膜的结构与光学性质,物 理学报,52(4)(2003)935-938.
    
    [11] A. K. Sharma, J. Narayan, J. F. Muth, Optical and structural properties of epitaxial Mg_xZn_(1-x)Oalloys, Appl Phys Lett, 75 (1999) 3327-3329.
    
    [12] G Santana, A. Morales-Acevedo, O. Vigil, L. Vaillant, F. Cruz, G. Contreras-Puente, Structuraland optical properties of (ZnO)_x(CdO)_(1-x) thin films obtained by spray pyrolysis,Thin SolidFilms, 373 (2000) 235-238.
    
    [13] S. L. King, I. W. Boyd, J. G E. Gardeniers, Pulsed-laser deposited ZnO for device applications,Appl. Surf. Sci., 96-98 (1996) 811-818.
    
    [14] D. C. Look, B. Claflin, P-type doping and devices based on ZnO, Phys. Stat. sol., 241 (2004)624-600.
    
    [15] U. Ozgur, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Dogan. V. Avrutin, S. J. Cho andH. Morkoc, A comprehensive review of ZnO materials and devices, J. Appl. Phys. 98 (2005)??041301: 1-103.
    
    [16] D. C. Look, Recent advances in ZnO materials and devices, Materials science and engineeringB, 80 (2005) 383-387.
    
    [17] R. Triboulet, J. Perriere, Epitaxial growth of ZnO films, Progress in crystal growth andcharacterization of materials, 47 (2003) 65-138..
    
    [18] D. C. Look, B. Claflin, P-type doping and devices based on ZnO, Phys. Stat. sol. 241 (2004)624-600.
    
    [19] S. J. Pearton, D.P. Norton, K. Ip, Y.W. Heo, T. Steiner, Recent progress in processing andproperties of ZnO, Superlattices & Microstructures 34 (2003) 3-32.
    
    [20] S. J. Pearton, D. P. Norton, K. Ip, Y. W. Heo, T. Steiner, Recent progress in processing and properties of ZnO, Progress in Materials Science, 50 (2005) 293-340.
    
    [21] 李剑光,叶志镇,赵炳辉,袁骏,硅基上直流反应磁控溅射沉积优质ZnO薄膜及其性能 研究,半导体学报,17(1996)877-880.
    
    [22] J. F. Muth, R. M. Kolbas, A. K. Sharma, S. Oktyabrsky, J. Narayan, Excitonic structure and absorption coefficient measurements of ZnO single crystal epitaxial films deposited by pulsed laser deposition, J. Appl. Phys. 85 (1999) 7884-7887.
    
    [23] C. R. Gorla, N. W. Emanetoglu, S. Liang, W. E. Mayo, Y. Lu, M. Wraback, H. Shen, Structural, optical, and surface acoustic wave properties of epitaxial ZnO films grown on (01(?) 2) sapphire by metalorganic chemical vapor deposition, J. Appl. Phys, 85 (1999) 2595-2602.
    
    [24] H. Fabricius, T. Skettrup, P. Bisggard, Ultraviolet detectors in thin sputtered ZnO films, ApplOptics, 25 (1986) 2764.
    
    [25] Y. Liu, C. R. Gorla, S. Liang, et al., Ultraviolet detectors based on epitaxial ZnO films grownby MOVCD, J Electronic Mater, 29 (2000) 69.
    
    [26] S. Liang, H. Sheng, Y. Liu, et al., ZnO Schottky ultraviolet photodetectors . J Crystal Growth,225(2001)110.
    
    [27] 叶志镇,张银珠,陈汉鸿,何乐年,邹璐,黄靖云,吕建国,ZnO光电导紫外探测器的 制备和特性研究,电子学报,2003,31(11):5-7.
    
    [28] H. Ohta, K. Kawamura, M. Hirano, et al., Current injection emission from a transparent p-njunction composed of p-SrCu_2O_2/n-ZnO. Appl Phys Lett, 77 (2000) 475.
    
    [29] T. Aoki, Y. Hatanaka, D. C. Look, Appl. Phys. Lett., ZnO diode fabricated by excimer-laserdoping, Applied Physics Letters, 76 (2000) 3257.
    
    [30] A. Tsukazaki, A. Ohtomo, T. Onuma, M. Ohtani, T. Makina, M. Sumiya, K. Ohtani, S.Chichibu, S. Fuke, Y. Segawa, H. Ohno, H. Koinuma, and M. Kawasaki, Repeated temperaturemodulation epitaxy for p-type doping and light-emitting diode based on ZnO, Nature materials,4 (2005) 42-46..
    
    [31] Z. Z. Ye, J. G Lu, H. H. Chen, et al, Preparation and characteristics of p-type ZnO films by DCreactive magnetron sputtering J.Cryst.Growth, 253 (2003) 258-264.
    
    [32] F. Zhuge, L. P. Zhu, Z. Z. Ye, et al., ZnO pn homojunctions and ohmic contacts toAl--N-co-doped p-type ZnO, Appl Phys Lett, 87 (2005) 092103.
    [33] W. Z. Xu, Z. Z. Ye, Y. J. Zeng, et al, ZnO light-emitting diode grown by plasma-assisted metal organic chemical vapor deposition, Appl Phys Lett, 88 (2006)173506.
    [34] W. Liu, S. L. Gu, J. D. Ye, et al., Blue-yellow ZnO homostructural light-emitting diode realized by metalorganic chemical vapor deposition technique, Appl. Phys. Lett.. 88 (2006) 092101:1-3.
    [35] S. J. Jiao, Z. Z. Zhang, Y. M Lu, et al., ZnO p-n junction light-emitting diodes fabricated on sapphire substrates, Appl. Phys. Lett. 88 (2006) 031911:1-3.
    [36] R. Groenen, J. L. Linden, H. R. M. van Lierop, D. C. Schram, A. D. Kuypers, and M. C. M. van de Sanden, An expanding thermal plasma for deposition of surface textured ZnO:Al with focus on thin film solar cell applications, Appl. Surf. Sci., 173 (2001) 40-43.
    [37] Y. Nakanishi, A. Miyake, H. Kominami, T. Aoki, Y. Hatanaka, G. Shimaoka, Preparation of ZnO thin films for high-resolution field emission display by electron beam evaporation, Applied Surface Science 142 (1999) 233-236.
    [38] R. Groenen, J. L. Linden, An expanding thermal plasma for deposition of surface textured ZnO: Al with focus on thin film solar, Appl Sur Sci, 172 (2001) 40-43.
    [39] D. C. Look, D. C. Reynnods, J. W. Hemsky, Production and annealing of electron irradiation damage in ZnO, Appl Phys Lett, 75 (1999) 811-813.
    [40] E. Bonnotte, C. Gorechi, H. Toshiyoshi., Guided-wave acoustooptic interaction with phase modulation in a ZnO thin film transducer on a Si-based integrated Mach-Zehnder interferometer. [J]. Journal of Lightwave Technology, 17 (1999) 35-42.
    [41] C. C. Chang and Y. E. Chen, Fabrication of high sensitivity ZnO thin film ultrasonic devices by electrochemical etch techniques, IEEE Transactions on Ultrasonic Ferroelectrics and Frequency Control, 44 (1997) 624-628.
    [42] D. L. Devoe, Piezoelectric thin film micromechanical beam resonators, Sensors & Actuators A, 88(2001)263-272.
    [43] S. K. Hong, T. Hanada, H. Makino, Y. Chen, H. J. Ko, and T. Yao, Band alignment at a ZnO-(GaN) (0001) heterointerface, Appl. Phys. Lett., 78 (2001) 3849-3850.
    [44] A. Nahhas, H. K. Kim, and J. Blachere, Epitaxial growth of ZnO films on Si substrates using an epitaxial GaN buffer, Appl. Phys. Lett., 78 (2001) 1511-1513.
    [45] Y. I. Alivov, E. V. Kalinina, A. E. Cherenkov, D. C. Look, B. M. Ataev, A. K. Omaev, M. V. Chukichev, and D. M. Bagnall, Fabrication and chanracterization of n-ZnO/p-AlGaN heterojunction light-emitting diodes on 6H-SiC substrate, Appl. Phys. Lett., 83 (2003) 4719-4721. [46] D. K. Hwang, S. H. Kang, J. H. Lim, E. J. Yang, J. Y. Oh, J. H. Yang, and S. J. Park, p-ZnO/n-GaN heterostructure ZnO light-emitting diodes, Appl. Phys., Lett. 86 (2005) 222101:1-3.
    [47] M. H. Huang, S. Mao, H. Feick, H. Q. Yan, Y. Y. Wu, H. Kind, E. Weber, R. Russo and P. D. Yang, Room-temperature ultraviolet nanowire nanolasers, Science, 292 (2001) 1897-1899.
    [48] K. Govender, D. S. Boyle, P. O. Brien, D. Binks, D. West and D. Coleman, Room-temperature lasing observed from ZnO nanocolumn growth from aqueous solution deposition, Adv.Mater., 14 (2002) 1221-1224.
    [49] Z. Y. Fan and J. G. Lu, Chemical sensing with ZnO nanowire FETs, Proc of SPIE, 6008 (2005) 60080H1-8.
    [50] Q. Wan, Q. H. Li, Y. J. Chen, and T. H. Wang, Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors, Appl. Phys. Lett. 84 (2004) 3654-3656.
    [51] C. J. Lee, T. J. Lee, S. C. Lyu, Y. Zhang, "Field emission from well-aligned zinc oxide nanowires grown at low temperature" Appl. Phys. Lett. 81 (2002) 3648-3650.
    [52] Y. W. Zhu, H. Z. Zhang, X. C. Sun, S. Q. Feng, J. Xu, Q. Zhao, B. Xiang, R. M. Wang, and D. P. Yu, Efficient field emission from ZnO nanoneedle arrays, Appl.Phys.Lett., 83 (2003) 144-146.
    [53] C. X. Xu and X. W. Sun, Field emission from zinc oxide nanopins, Appl. Phys. Lett., 83 (2003) 3806-3808.
    [54] L. Liao, J. C. Li, D. H. Liu, C. Liu, D. F. Wang, W. Z. Song, Self-assembly of aligned ZnO nanoscrews:Growth, configuration, and field emission, Appl.Phys.Lett., 86 (2005) 083106:1-3.
    [55] N. S. Ramgir, I. S. Mulla, and K. Vijayamohanan, Ultralow threshold field emission from a single multipod structure of ZnO, Appl.Phys.Lett., 88 (2006) 042107:1-3.
    [56] Z.Z. Ye, F. Yang, Y.F. Lu, M.J. Zhi, H.P. Tang and L.P. Zhu, ZnO nanorods with different morphologies and their field emission properties, Solid State Communications, 142 (2007) 425-428.
    [57] Z.L.Wang and J.H.Song, Piezoelectric nanogenerators based on Zinc Oxide nanowire arrays. Science, 309 (2005) 1700-1704.
    [58] A. V. Singh, R. M. Mehra, A. Wakahara, A. Yoshida, p-type conduction in codoped ZnO thin films, J.Appl.Phys., 93 (2003) 396-399.
    [59] C. H. Park, S. B. Zhang, and Su. H. Wei, Origin of p-type doping difficulty in ZnO: The impurity perspective, Phys. Rev. B, 66 (2002) 073202.
    [60] D. C. Look, D. C. Reynolds, C. W. Litton, R. L. Jones, D. B. Eason, and G. Cantwell, rization of homoepitaxial p-type ZnO grown by molecular beam epitaxy, Appl. Phys. Lett. 81 (2002) 1830-1832.
    [61] Garces NY, Wang LJ, Giles NC, Halliburton LE, Look DC, Reynolds DC. Thermal diffusion of lithium acceptors into ZnO crystals. Journal of electronic materials, 32 (2003) 766-771.
    [62] T. Yamamoto and H. Katayama-Yoshida, Unipolarity of ZnO with a wide-band gap and its solution using codoping method, J. Crystal Growth 552 (2000) 214-215.
    [63] E. C. Lee and K. J. Chang. Possible p-type doping with group-I elements in ZnO. Phys. Rev. B, 70(2004)115210.
    [64] M. G. Wardle, J. P. Goss, and P. R. Briddon. Theory of Li in ZnO: A limitation for Li-based p-type doping. Phys. Rev. B, 71 (2005) 155205.
    [65] Y. J. Zeng, Z. Z. Ye, W. Z. Xu, L. L. Chen, D. Y. Li, L. P. Zhu, B. H. Zhao, Y. L. Hu. Realization of p-type ZnO films via monodoping of Li acceptor. Journal of Crystal Growth 283(2005)180-184.
    [66] Y. J. Zeng, Z. Z. Ye, W. Z. Xu, D. Y. Li, J. G. Lu, L. P. Zhu, and B. H. Zhao, Dopant source choice for formation of p-type ZnO: Li acceptor, Appl. Phys. Lett., 88 (2006) 062107:1-3.
    [67] Y. Kanai, Admittance Spectroscopy of ZnO Crystals Containing Ag, Japanese Journal of Applied Physics, 30 (9A) (1991) 2021-2022.
    [68] Y. Kanai Admittance Spectroscopy of Cu-Doped ZnO Crystals. Japanese Journal of Applied Physics, 30 (4) (1991) 703-707.
    [69] A. N. Gruzintsev, V. T. Volkov and E. E. Yakimov, Photoelectric properties of ZnO films doped with Cu and Ag acceptor impurities, Semiconductors, 37(3) (2003) 259-262.
    [70] P. Fons, A. Yamada, K. Iwata, et al. An EXAFS and XANES study of MBE grown Cu-doped ZnO, Nuclear Instruments and Methods in Physics Research B, 199 (2003) 190-194.
    [71] H. S. Kang, B. D. Ahn, J. H. Kim, G. H. Kim, S. H. Lim, H. W. Chang, and S. Y Lee, Structural, electrical, and optical properties of p-type ZnO thin films with Ag dopant, Appl. Phys. Lett., 88 (2006) 202108.
    [72] K. Minegishi, Y. Koiwai, Y. Kikuchi, K. Yano, M. Kasuga, A. Shimizu, Growth of p-type zinc oxide films by chemical vapor deposition, Jpn. J. Appl. Phys. 36 (1997) L1453-1455.
    [73] X. L. Guo, H. Tabata, T. Kawai. Pulsed laser reactive deposition of p-type ZnO film enhanced by an electron cyclotron resonance source, J Crystal Growth, 223 (2001) 135-139.
    [74] X. L. Guo, H. Tabata, T. Kawai., p-type conduction in transparent semiconductor ZnO thin films induced by electron cyclotron resonance N_2O plasma, Optical Materials, 19 (2002) 229-233.
    [75] X. L. Guo, J.H. Choi, H. Tabata, and T. Kawai, Fabrication and optoelectronic properties of a transparent ZnO homostructural light-emitting diode, Jpn. J. Appl. Phys., 40 (2001) L177-180.
    [76] M. Joseph, H. Tabata, T. Kawai, p-type electrical conduction in ZnO thin films by Ga and N codoping, Jpn J Appl. Phys. 38(1999) L1205-1207.
    [77] M. Joseph, H. Tabata, H. Saeki, K. Ueda, and T. Kawai, Fabrication of the low-resistive p-type ZnO by codoping method, Physica B 302/303 (2001) 140-148.
    [78] H. Tabata, M. Saeki, S.L. Guo, J.H. Choi, and T. Kawai, Control of the electric and magnetic properties of ZnO films, Physica B 310 (2001) 993-998.
    [79] J. M. Bian, X. M. Li, X. D. Gao, W. D. Yu, and L. D. Chen, Deposition and electrical properties of N-In codoped p-type ZnO films by ultrasonic spray pyrolysis, Appl. Phys. Lett., 84(4)(2004)541-543.
    [80] J. M. Bian, X. M. Li, C. Y Zhang, L. D. Chen, and Q. Yao, Synthesis and characterization of two-layer-structured ZnO p-n homojunctions by ultrasonic spray pyrolysis, Appl. Phys. Lett., 84(19) (2004) 3783-3785.
    
    [81] T. Aoki, Y. Hatanaka, D. C. Look, ZnO diode fabricated by excimer-laser doping, Appl. Phys. Lett., 76 (2000) 3257-3258.
    [82] V. Vaithianathan, B. T. Lee, and S. S. Kim, Pulsed-laser-deposited p-type ZnO films with phosphorus doping, J. Appl. Phys. 98 (2005) 043519.
    [83] Y. R. Ryu, T. S. Lee, and H. W. White, Properties of arsenic-doped p-type ZnO grown by hybrid beam deposition, Appl. Phys. Lett., 83 (2003) 87-89.
    [84] F. X. Xiu, Z. Yang, L. J. Mandalapu, D. T. Zhao, and J. L. Liu, Photoluminescence study of Sb-doped p-type ZnO films by molecular-beam epitaxy, Appl. Phys. Lett., 87 (2005) 152101(1-3).
    [85] J. G. Lu, Z. Z. Ye, L. Wang, B. H. Zhao, J. Y. Huang, Preparation and properties of N-doped p-type ZnO films by solid-source chemical vapour deposition with the c-axis parallel to the substrate, Chin. Phys. Lett., 19 (2002) 1494-1497.
    [86] J. G. Lu, Z. Z. Ye, L. Wang, J. Y. Huang, and B. H. Zhao, Structural, electrical and optical properties of N-doped ZnO films synthesized by SS-CVD Mater. Sci. in Semicond. Proc., 5 (2003)491-496.
    [87] Z. Z. Ye, F. Zhu-Ge, J. G. Lu, Z. H. Zhang, L. P. Zhu, B. H. Zhao, J.Y . Huang, Preparation of p-type ZnO films by Al-N codoping method, J. Cryst. Growth 2004, 265: 127-132.
    [88] J. G. Lu, Y. Z. Zhang, Z. Z. Ye, L. Wang, B. H. Zhao, and J. Y. Huang, p-type ZnO films deposited by DC reactive magnetron sputtering at different ammonia concentrations, Mater. Lett., 57 (2003) 3311-3314.
    [89] J. Y. Huang, Z. Z. Ye, H. H. Chen, B. H. Zhao, and L. Wang, Growth of N-doped p-type ZnO films using ammonia as dopant source gas, J. Mater. Sci. Lett., 22 (2003) 249-251.
    [90] Z. G. Ji, C. X. Yang, K. Liu, and Z. Z. Ye, Fabrication and characterization of p-type ZnO films by pyrolysis of zinc-acetate-ammonia solution, J. Cryst. Growt, 253 (2003) 239-242
    [91] Y. R. Ryu, S. Zhu, D. C. Look, J. M. Wrobel, H. M. Jeong, and H. W. White, Synthesis of p-type ZnO films, J. Cryst. Growth, 216 (2000) 330-334.
    [92] X. Pan, Z. Z. Ye, J. S. Li, X. Q. Gu, Y. J. Zeng, H. P. He, L. P. Zhu and Y. Che.Fabrication of Sb-doped p-type ZnO thin films by pulsed laser deposition, Appl. Phys. Sci., 253 (2007) 5067-5069.
    [93] L. P. Zhu, Z. Z. Ye, F. Zhuge, G. D. Yuan, J. G. Lu, Al-N codoping and p-type conductivity in ZnO using different nitrogen sources, Surface & Coatings Technology, 198 (2005) 354- 356.
    
    [94] H. P. He, F. Zhuge, Z. Z. Ye, L. P. Zhu, F. Z. Wang, B. H. Zhao, and J. Y. Huang, Strain and its effect on optical properties of Al-N codoped ZnO films, J. Appl. Phys. 99 (2006) 023503.
    [95] L. L. Chen, Z. Z. Ye, J. G. Lu, Paul K. Chu, Control and improvement of p-type conductivity in indium and nitrogen codoped ZnO thin films, Appl. Phys. Lett. 89, 252113 (2006).
    [96] L. L. Chen, J. G. Lu, Z. Z. Ye, Y. M. Lin, B. H. Zhao, Y. M. Ye, J. S. Li, and L. P. Zhu, p-type behavior in In-N codoped ZnO thin films, Appl. Phys. Lett. 87 (2005) 252106.
    [97] Z. W. Pan, Z. R. Dai, Z. L. Wang, Nanobelts of semiconducting oxides, Science, 291 (2001) 1947-1949.
    [98] W. L. Hughes and Z. L. Wang, Controlled synthesis and manipulation of ZnO nanorings and nanobows, Appl.Phys.Lett, 86 (2005) 043106.
    [99] P. X. Gao and Z. L. Wang, Nanopropeller arrays of zinc oxide, Appl.Phys.Lett., 84 (2004) 2883-2885.
    [100] H. Q. Yan, R. R. He, J Johnson, M. Law, R. J. Saykally and P. D. Yang, Dendritic nanowire ultraviolet laser array, J.AM.CHEM.SOC, 125 (2003) 4728-4729.
    [101] P. D. Yang, Semiconductor nanowire array, Proc of SPIE, 4806 (2002) 222-224.
    [102] H. Q. Yan, R. R. He, J. Pham, P. D. Yang, Morphogenesis of one-dimensional ZnO nano- and microcrystals, Adv.Mater., 15 (2003) 402-405.
    [103] J. Johnson, H. Q. Yan, P. D. Yang and R. J. Saykally, Optical cavity effects in ZnO nanowire lasers and waveguides, J.Phys.Chem.B., 107 (2003) 8816-8828.
    
    [104] P. D. Yang, From nanowire lasers to quantum wire Lasers, Proc of SPIE., 5349 (2004) 18-23.
    [105] A. Ohtomo, M. Kawasaki, T. Koida, K. Masubuchi, H. Koinuma, Y. Sakurai, Y. Yoshida, T. Yasuda, and Y. Segawa, Mg_xZn_(1-x)O as a II—VI widegap semiconductor alloy, Appl. Phys. Lett., 72(1998)2466-2468.
    [106] W. L. Park, G. C. Yi, H. M. Jany, Metalorganic vapor-phase epitaxial growth and photoluminescent properties of Zn_(1-x)Mg_xO (0≤x≤0.49) thin films, Appl. Phys. Lett. 79 (2001) 2022-2024.
    [107] L. Zou, Z. Z.Ye, J. Y. Huang, B. H. Zhao, Structural characterization and pluminescent properties of Zn_(1-x)Mg_xO films on silicon, Chin. Phys. Lett. 19 (2002) 1350-1352.
    [108] T. Makino, K. Tamura, C. H. Chia, Y. Segawa, M. Kawasaki, A. Ohtomo, and H. Koinuma, Effect of MgZnO-layer capping on optical properties of ZnO epitaxial layers, Appl. Phys. Lett., 81 (2002):2172-2174.
    [109] S. Choopun, R. D. Vispute, W. Yang, R. P. Sharma, T. Venkatesan, and H. Shen, Realization of band gap above 5.0 eV in metastable cubic-phase Mg_xZn_(1-x)O alloy films, Appl. Phys. Lett., 80 (2002) 1529-1531.
    [110] T. Makino, Y. Segawa, M. Kawasaki, A. Ohtomo, R. Shiroki, K. Tamura, T. Yasuda, and H. Koinuma, Band gap engineering based on Mg_xZn_(1-x)O and Cd_yZn_(1-y)O ternary alloy films, Appl., Phys. Lett. 78 (2001) 1237-1239.
    [111] K. Sakurai, T. Takagi, T. Kubo, D. Kajita, T. Tanabe, H. Takasu, Shizuo Fujita, and Shigeo Fujita, Spatial composition fluctuations in blue-luminescent ZnCdO semiconductor films grown by molecular beam epitaxy, J. Cryst. Growth, 37-239 (2002) 514-517.
    [112] Z. Z. Ye, D. W. Ma, J. H. He, J. Y. Huang, B. H. Zhao, X. D. Luo, and Z. Y. Xu, Structural and photoluminescent properties of ternary Zn_(1-x)Cd_xO crystal films grown on Si (111) substrates, J. Cryst. Growth, 256 (2003) 78-82.
    [113] H. S. Kang, S. H. Lim, J. W. Kim, H. W. Chang, G. H. Kim, J. H. Kim, S. Y. Lee, Y. Li, J. S. Lee, J. K. Lee, M. A. Nastasi, S. A. Crooker, and Q. X. Jia, Exciton localization and Stokes' shift in Zn_(1-x)Cd_xO thin films depending on chemical composition, J. Cryst. Growth, 28 (2006) 70-73.
    [114] J. Chen, W. Z. Shen, N.B. Chen, D.J. Qiu, and H.Z. Wu, The study of composition non-uniformity in ternary Mg_xZn_(1-x)O thin films, J. Phys: Condens. Matter, 15 (2003) L475-L482.
    [115] D.J. Qiu, H.Z. Wu, N.B. Chen, and T.N. Xu, Characterizations of cubic ZnMgO films grown on Si (111) at low substrate temperature, Chin. Phys. Lett., 20 (2003) 582-584.
    [116] Jun. Liang, Huizhen. Wu, Naibo. Chen and Tianning. Xu, Annealing effect on electrical properties of high-k MgZnO film on silicon, Semicond. Sci. Technol., 20 (2005) L15-L19.
    [117] A. Seko, F. Oba, A. Kuwabara, I. Tanaka, Pressure-induced phase transition in ZnO and ZnO-MgO pseudobinary system: A first-principles lattice dynamics study, Phys. Rev. B, 72 (2005)024107.
    
    [118] T. Takagi, H. Tanaka, S. Fujita, Sh. Fujita, Molecular beam epitaxy of high Magnesium contentsingle-Phase wurzite Mg_xZn_(1-x)O alloys (x≤0.5) and their application to aolar-blind regionphotodetectors, Jpn. J. Appl. Phys., Part 2 (2003) L401-L403.
    
    [119] H. Tanaka, S. Fujita, S. Fujita, Fabrication of wide-band-gap Mg_xZn_(1-x)O quasi-ternary alloysby molecular-beam epitaxy, Appl. Phys. Lett., 86 (2005) 192911.
    
    [120] W. Liu, S. Gu, S. Zhu, et al. The deposition and annealing study of MOCVD ZnMgO [J]. J.Crystal Growth, 277 (2005) 416-421.
    
    [121]吴春霞,吕有明,申德振,等.Mg_xZn_(1-x)O单晶薄膜和MgZnO/ZnO异质结构的光学性质 薄膜[J].半导体学报,25(2004)1258-1263.
    
    [122]邹璐,叶志镇,黄靖云,等.脉冲激光沉积法生长Zn1-xMgxO薄膜,半导体学报,23(2002) 1291-1294.
    
    [123] Y. Z. Zhang, J. H. He, Z. Z. Ye, et al. Structural and photoluminescence properties ofZn0.8Mg0.2O thin films grown on Si substrate by pulsed laser deposition, Thin Solid Films,458(2004)161-164.
    
    [124] A. K. Sharma, J. Narayan, J. F. Muth, C. W. Teng, C. Jin, A. Kvit, R. M. Kolbas, O.W. Holland,Optical and structural properties of epitaxial Zn_(1-x)Mg_xO alloys, Appl. Phys. Lett., 75 (1999)3327-3329.
    
    [125] T. Minemoto, T. Negami, S. Nishiwaki, H. Takakura, Y. Hamakawa, Preparation ofZn_(1-x)Mg_xO films by radio frequency magnetron sputtering, Thin Solid Films,372 (2000)173-176.
    
    [126] C. W. Teng, J. F. Muth, U. Ozgur, M. J. Bergmann, H. O. Everitt, A. K. Sharma, C. Jin, and J.Narayan, Refractive indices and absorption coefficients of MgxZnl(?)xO alloys, Appl. Phys.Lett., 76 (2000) 979-981.
    
    [127] R. Schmidt, B. Rheinlander, M. Schubert, D. Spemann, T. Butz, J. Lenzner,E. M. Kaidashev,M. Lorenz, A. Rahm, H. C. Semmelhack, and M. Grundmann, Dielectric functions (1 to 5 eV)of wurtzite Mg_xZn_(1-x)O (x≤0.29) thin films, Appl. Phys. Lett., 82 (2003) 2260-2262.
    
    [128] C. Bundesmann, M. Schubert, D. Spemann, T. Butz, M. Lorenz, E. M. Kaidashev, M.Grundmann, N. Ashkenov, H. Neumann, G. Wagner, Infrared dielectric functions and phononmodes of wurtzite Mg_xZn_(1-x)O (x≤0.2), Appl. Phys. Lett., 81 (2002) 2376-2378.
    
    [129] 冯文修,等.半导体物理学基础教程[M].第1版.北京:国防工业出版社,(2005)222-225.
    
    [130] S. Krishnamoorthy, A. A. Iliads, A. Inumpudi, et al. Observation of resonant tunneling actionin ZnO/Zn_(0.8)Mg_(0.2)O devices, Solid-State Electronics, 46 (2002)1633-1637.
    
    [131] H. Tampo, H. Shibata, K. Matsubara, A. Yamada, P. Fons, S. Niki, M. Yamagata, H. Kanie,Two-dimensional electron gas in Zn polar ZnMgO/ZnO heterostructures grown by radicalsource molecular beam epitaxy, Appl. Phys. Lett., 89 (2006) 132113.
    
    [132] H. Shibata, H. Tampo, K. Matsubara, A. Yamada, K. Sakurai, S. Ishizuka, S. Niki, M. Sakai,Photoluminescence characterization of Zn_(1-x)Mg_xO epitaxial thin films grown on ZnO byradical source molecular beam epitaxy, Appl. Phys. Lett., 90 (2007) 124104.
    
    [133] A.Ohtomo, M. Kawaski, I. Ohkubo, et al. Structure and optical properties of ZnO/Mg_(0.2)Zn_(0.8)Osuperlattices,Appl. Phys. Lett, 75 (1999) 980-982 .
    
    [134] A. Ohtomo, K. Tamura, K. Saikusa, et al. Room-temperature stimulated emissio of excitons inZnO/(Mg, Zn)O superlattices. Appl. Phys. Lett, 77 (2000) 2204-2206.
    
    [135]康昌鹤,杨树人,等.半导体超晶格材料及其应用[M].第1版.北京:国防工业出版社, (1995)9-10.
    
    [136] H.D. Sun, T. Makino, N.T. Tuan, et al. Stimulated emission induced by exciton-exciton scattering in ZnO/ZnMgO multiquantum wells up to room temperature, Appl. Phys. Lett, 77 (2000) 4250-4252.
    
    [137] X. Q. Gu, L. P. Zhu, Z. Z. Ye, H. P. He, Y. Z. Zhang, F. Huang, M. X. Qiu, Y. J. Zeng, F. Liu,W. Jaeger, Room-temperature photoluminescence from ZnO/ZnMgO multiple quantum wellsgrown on Si (111) substrates, Appl. Phys. Lett, 91 (2007) 022103.
    
    [138] W. Yang, R.D. Vispute, S. Choopun, R.P. Sharma, and T. Venkatesan, Ultravioletphotoconductive detector based on epitaxial Mg_(0.34)Zn_(0.66)O thin films, Appl. Phys. Lett., 78(2001)2787-2789.
    
    [139] W. Yang, S. S. Hullavarad, B. Nagaraj, I. Takeuchi, R. P. Sharma, T. Venkatesan, R. D.Vispute, H. Shen, Compositionally-tuned epitaxial cubic Mg_xZn_(1-x)O on Si (100) for deepultraviolet photodetectors, Appl. Phys. Lett., 82 (2003) 3424-3426.
    
    [140] S. S. Hullavarad, S. Dhar, B. Varughese, I. Takeuchi, T. Venkatesan, and R. D. Vispute,Realization of Mg(x=0.15)Zn(1-x=0.85) O-based metal-semiconductor metal UV detector onquartz and sapphire, J. Vac. Sci. Technol. A, 23 (2005) 982-985.
    
    [141] I. Takeuchi, W. Yang, K.S. Chang, M. A. Aronova, T. Venkatesan, R. D. Vispute, L. A.Bendersky, Monolithic multichannel ultraviolet detector arrays and continuous phaseevolution in Zn_(1-x)Mg_xO composition spreads, J. Appl. Phys., 94 (2003) 7336-7340.
    
    [142] 李德杰.低电子亲和势的场助热电子发射阴极,清华大学学报(自然科学版),43(2003) 461-465.
    
    [143] K.Ogata, K. Koike, T. Tanite, T. Komuro, F. Yan, S. Sasa, M. Inoue and M. Yano, ZnO andZnMgO growth on a-plane sapphire by molecular beam epitaxy, J Crystal Growth, 251 (2003)623-627.
    
    [144] N. W. Emanetoglu, S. Muthukumar, P. Wu, R. Wittstruck, Y. Lu, Mg_xZn_(1-x)O: A NewPiezoelectric Material, IEEE Ult rasonics Symposium, 2 (2001) 253-256.
    
    [145] Z. P. Wei, B. Yao, Z. Z. Zhang, Y. M. Lu, D. Z. Shen, B. H. Li, X. H. Wang, J. Y. Zhang, D.X. Zhao, X. W. Fan, Z. K. Tang, Formation of p-type MgZnO by nitrogen doping, Appl. Phys.Lett., 89 (2006) 102104.
    
    [146] X. Zhang, X. M. Li, T. L. Chen, C. Y. Zhang, W. D. Yu, p-type conduction in wide-gapZn_(1-x)Mg_xO films grown by ultrasonic spray pyrolysis, Appl. Phys. Lett., 87 (2005) 092101.
    
    [147] Y. M. Ye, Z. Z. Ye, L.L. Chen, B.H. Zhao, L.P. Zhu, Fabrication of p-type ZnMgO codopedwith Al and N using dc reactive magnetron sputtering, Applied Surface Science, 253 (2006)2345-2347.
    
    [148] Y. W. Heo, Y. W. Kwon, Y.Li,S.J. Pearton, D. P. Norton, p-type behavior inphosphorus-doped (Zn, Mg)O device structures, Appl. Phys. Lett., 84 (2004) 3474-3476.
    
    [149] K. Ip, Y. W. Heo, D. P. Norton, S. J. Pearton, J. R. LaRoche, F. Ren, Zn_(0.9)Mg_(0.1)O/ZnO p-njunctions grown by pulsed-laser deposition, Appl. Phys. Lett., 85 (2004) 1169-1171.
    
    [150] Y. J. Li, Y. W. Heo, J. M. Erie, H. S. Kim, K. Ip, S. J. Pearton, D. P. Norton, Properties ofphosphorus-doped ZnO and (Zn,Mg)O thin films via pulsed laser deposition, SPIE, 2005,Bellingham, Fifth International Conference on Solid State Lighting, Proc. of SPIE, 5941 (2005)59411T.
    
    [151] H. Yang, Y. Li, D.P. Norton, S. J. Pearton, S. Jung, F. Ren, L.A. Boatner, Characteristics ofunannealed ZnMgO/ZnO p-n junctions on bulk (100) ZnO substrates, Appl. Phys. Lett., 86(2005)172103.
    
    [152] S.Kim, B.S. Kang, F.Ren, Y. W. Heo, K. Ip, D. P. Norton, S. J. Pearton, Contacts to p-typeZnMgO, Appl. Phys. Lett., 84 (2004) 1904-1906.
    
    [153] H. S. Yang, Y. Li, D. P. Norton, K. Ip, S. J. Pearton, S. Jang, F Ren, Low-resistance ohmiccontacts to p-ZnMgO grown by pulsed-laser deposition, Appl. Phys. Lett., 86 (2005) 192103.
    
    [154] K. Ip, Y. Li, D. P. Norton, S. J. Pearton, F. Ren, Low-resistance Au and Au/Ni/Au Ohmiccontacts to p-ZnMgO, Appl. Phys. Lett, 87 (2005) 071906.
    
    [155] P. Wang, N. Chen, Z. Yin, R. Dai, Y. Bai, p-type Zn_(1-x)Mg_xO films with Sb doping byradio-frequency magnetron sputtering, Appl. Phys. Lett., 89 (2006) 202102.
    
    [156] Y. W. Heo, M. Kaufrnan, K. Pruessner, D. P. Norton, F. Ren, M. F. Chisholm and P. H.Fleming,Optical properties of ZnMgO nanorods using catalysis-driven molecular beam epitaxy,Solid-State Electronics., 47 (2003) 2269-2273.
    
    [157] M. Lorenz,E. M. Kaidashev,A. Rahm, Th. Nobis, J. Lenzner, G Wagner,D. Spemann, H.Hochmuth, and M. Grundmann. Mg_xZn_(1-x)O(0    
    [158] M. J. Zhi, L. P. Zhu, Z. Z. Ye, F. Wang, and B. H Zhao Preparation and properties of TernaryZnMgO Nanowires Journal of Physical Chemistry B, 109 (2005) 23930-23934,
    
    [159] L. P. Zhu, M. J. Zhi, et al, Catalyst-free two growth of quasialigned ZnMgO nanorods and theirproperties, Applied Physics Letters, 88 (2006) 113106.
    
    [160] H. P. Tang, H. P. He, et al, Synthesis and characterization of dendritic ZnMgO nanostructures,J. Phys. D, Appl. Phys., 39 (2006) 3764-3768.
    
    [161] W. Park, G. C. Yi, M. Kim and S. J. Pennycook, Quantum Confinement Observed inZnO/ZnMgO Nanorod Heterostructures, AdV. Mater., 15 (2003) 526-529.
    
    [162] W. Park, S. J. An, J. L. Yang,G C. Yi,S. Hong,T. Joo,M. Kim. Photoluminescent Properties ofZnO/Zn_(0.8)Mg_(0.2)O Nanorod Single-Quantum-Well Structures, J. Phys. Chem. B., 108 (2004)15457-15460.
    
    [163] R. Kling, C. Kirchner, T. Gruber, F. Reuss,A. Waag. Analysis of ZnO and ZnMgO nanopillarsgrown by self-organization. Nanotechnology, 15 (2004) 1043.
    
    [164] Y. W. Heo, M. Kaufrnan, K. Pruessner, K. N. Siebein, D.P.Norton, F.Ren, ZnO/cubic(Mg,Zn)O radial nanowire heterostructures, Appl. Phys. A, 80 (2005) 263-266.
    
    [165] G Wang, Z. Z. Ye, H. P. He, H. P. Tang and J. S. Li, Growth and properties of ZnO/ hexagonalZnMgO/ cubic ZnMgO nanopagoda heterostructures. Journal of Physics D: Applied Physics.,40 (2007) 5287-5290.
    
    [166] J. F. Ready, Development of plume of material evaporized by giant-pulse laser, Appl. Phys.Lett., 39 (1963) 11-13.
    
    [167] D. Dijkkamp, T. Venkatesan, X. D. Wu, S. A. Shaheen, N. Jisrawi, Y. H. M. Lee, W. L. Mclean,and M. Croft, Preparation of Y-Ba-Cu oxide superconductor thin films using pulsed laserevaporation from high Tc bulk material, Appl. Phys. Lett., 51 (1987) 619-621.
    
    [168] R. Diamant, E. Jimenez, E. Haro-Poniatowski, L. Ponce, M. Fernandez-Guasti, J.C. Alonso,Plasma dynamics inferred from optical emission spectra,during diamond-like thin film pulsedlaser deposition, Diamond & Related Materials, 8 (1999) 1277-1284.
    
    [169] M. Yoshimoto, K. Yoshida, H. Maruta, Y. Hishitani, H. Koinuma, S. Nishio, M. Kakihana, andT. Tachibana, Epitaxial diamond growth on sapphire in an oxidizing environment, Nature, 399(1999) 340-342.
    
    [170] C. B. Collins, F. Davanloo, E. M. Juengerman, W. R. Osborn, and D. R. Jander, Laser plasmasource of amorphic diamond, Appl. Phys. Lett., 54 (1989) 216-218.
    
    [171] Z. Paszti, G. Peto, Z.E. Horvath, A. Karacs, Laser ablation induced formation of nanoparticlesand nanocrystal networks, Appl. Surf. Sci., 168 (2000) 114-117.
    
    [172] Y. Sun, G. M. Fuge, and M. N. R. Ashfold, Growth of aligned ZnO nanorod arrays bycatalyst-free pulsed laser deposition methods, Chem. Phys. Lett., 396 (2004) 21-26.
    
    [173] J. W. Hastie, D. W. Bonnel, A.J. Paul, and P.K. Schenck, Gas dynamics and chemistry in the??pulsed laser deposition of oxide dielectric thin films, Mater. Res. Soc. Symp. Proc., 334 (1994)305.
    
    [174] Cracium V, Cracium D, Bunescu M C, et al. Growth of highly transparent oxide layers bypulsed laser deposition: reduction of droplet density. Appl. Surf. Sci., 109-110 (1997) 354-358.
    
    [175] D. C. Look, Electrical and optical properties of p-type ZnO, Semiconductor science andtechnology, 20 (2005) s55-s61
    
    [176] T. Yamamoto, Codoping for the fabrication of p-type ZnO, Thin Solid Films, 420 (2002)100-106.
    
    [177] H. Kim, C. M. Gilmore, J. S. Horwitz, et al. Transparent conducting aluminum-doped zincoxide thin films for organic light-emitting devices. Appl. Phys. Lett., 76 (2000) 259-261.
    
    [178] 吕建国,ZnO半导体光电材料的制备及其性能研究,浙江大学博士学位论文,(2005).06.
    
    [179] 王新昌.脉冲激光沉积法制备硅基LiNbO3薄膜及其性能研究[D].浙江大学博士学位论 文,叶志镇,浙江大学,硅材料国家重点实验室,(2005)年6月.
    
    [180] E. C. Lee, Y. S. Kim. Y. G Jin, K. J. Chang, Compensation mechanism for N acceptors in ZnO,Physical Review B., 64 (2001) 085120:1-5.
    
    [181] S. H. Wei, S. B. Zhang, Chemical trends of defect formation and doping limit in Ⅱ-Ⅵsemiconductors: The case of CdTe, Phys. Rev. B, 66 (2002) 155211:1-3.
    
    [182] T. Scharf, H.U. Krebs, Influence of inert gas pressure on deposition rate during pulsed laserdeposition, Appl. Phys. A, 75 (2002) 551-554.
    
    [183] J. G. Lu, Y. Z. Zhang, Z. Z. Ye, Y. J. Zeng, H. P. He, L. P. Zhu, J.Y.Huang, L. Wang, J Yuan,B. H. Zhao and X.H. Li, Control of p- and n-type conductivities in Li-doped ZnO thin films,Appl. Phys. Lett., 89 (2006) 112113.
    
    [184] W. Q. Peng, S. C. Qu, G. W. Cong, and Z. G. Wang, Synthesis and temperature-dependentnear-band-edge emission of chain-like Mg-doped ZnO nanoparticles, Appl. Phys. Lett. 88(2006)101902.
    
    [185] B. K. Meyer, H. Alves, D. M. Hofmann, W. Kriegseis, D. Forster,F. Bertram, J. Christen, A.Hoffmann, M. Strassburg, M. Dworzak, U. Haboeck, and A. V. Rodina, Bound exciton anddonor-acceptor pair recombinations in ZnO,Phys.Status Solidi B, 241 (2004) 231-260.
    
    [186] Y. J. Zeng, Z. Z. Ye, J. G. Lu, W. Z. Xu, L. P. Zhu, and B. H. Zhao, Identification of acceptorstates in Li-doped p-type ZnO thin films, Appl. Phys. Lett., 89 (2006) 042106.
    
    [187] Y. J. Li, Y. W. Heo, Y. Kwon, K. Ip, S. J. Pearton, and D. P. Norton, Transport properties ofp-type phosphorus-doped (Zn,Mg)O grown by pulsed-laser deposition, Appl. Phys. Lett., 87(2005)072101.
    
    [188] A. Krtschil, A. Dadgar, N. Oleynik, J. Biasing, A. Diez, and A. Krost, Local p-typeconductivity in zinc oxide dual-doped with nitrogen and arsenic, Appl. Phys. Lett., 87 (2005)262105.
    
    [189] S. J. So, C. B. Park, Diffusion of phosphorus and arsenic using ampoule-tube method onundoped ZnO thin films and electrical and optical properties of p-type ZnO thin films, J. Cryst.Growth, 285 (2005) 606-612.
    
    [190] M. X. Qiu, Z. Z. Ye, H. P. He, Y. Z. Zhang, X. Q. Gu, L. P. Zhu, and B. H. Zhao, Effect of Mgcontent on structural, electrical, and optical properties of Li-doped Zn_(1-x)Mg_xO thin films, Appl.Phys. Lett., 90 (2007) 182116.
    
    [191] J. G. Lu, Y. Z. Zhang, Z. Z. Ye, L. P. Zhu, L. Wang, B. H. Zhao, and Q. L. Liang,Low-resistivity, stable p-type ZnO thin films realized using a Li-N dual-acceptor dopingmethod, Appl. Phys. Lett., 88 (2006) 222114.
    
    [192] Q. H. Li, Y. X. Liang, Q. Wan, and T. H. Wang, Oxygen sensing characteristics of individualZnO nanowire transistors, Appl. Phys. Lett., 85 (2004) 6389-6391.
    
    [193] Q. Wan, Q. H. Li, Y. J. Chen, T. H. Wang, X. L. He, X. G Gao, J. P. Li, Positive temperaturecoefficient resistance and humidity sensing properties of Cd-doped ZnO nanowires, Appl.Phys. Lett., 84 (2004) 3085-3087.
    
    [194] Q. Wan, Q. H. Li, Y J. Chen, T. H. Wang, X. L. He J. P. Li, C. L. Lin, Fabrication and ethanolsensing characteristics of ZnO nanowire gas sensors, Appl. Phys.Lett.,84 (2004)3654-3656.
    
    [195] J. C. Johnson, H. Yan, R. D. Schaller, L. H. Haber, R. J. Saykally, P. D. Yang, SingleNanowire Lasers, J. Phys. Chem. B, 105 (2001) 11387-11390.
    
    [196] K. Govender, D. S. Boyle, P. O. Brien, D. Binks, D. West, D. Coleman, Room-temperaturelasing observed from ZnO nanocolumns grown by aqueous solution deposition, Adv. Mater. ,14(2002)1221-1224.
    
    [197] C. Liu, J. A. Zapien, Y. Yao, X. Meng, C. S. Lee, S. Fan, Y. Lifshitz, S. Lee, High-density,ordered ultraviolet light-emitting ZnO nanowire arrays, Adv. Mater., 15 (2003) 838-841.
    
    [198] H. Yan, R. He, J. Johnson, M. Law, R. J. Saykally, P. D. Yang, Dendritic NanowireUltraviolet Laser Array, J. Am. Chem. Soc., 125 (2003) 4728-4729.
    
    [199] J. C. Johnson, K. P. Knutsen, H. Yan, M. Law, Y. Zhang, P. D. Yang, R. J. Saykally, UltrafastCarrier Dynamics in Single ZnO Nanowire and Nanoribbon Lasers, Nano Letters, 4 (2004)197-204.
    
    [200] Q. Wan, Q. H. Li, Y. J. Chen, T. H. Wang, X. L. He J. P. Li, C. L. Lin. Fabrication and ethanolsensing characteristics of ZnO nanowire gas sensors. Appl. Phys. Lett., 84 (2004) 3654-3656
    
    [201] C. J. Lee, T. J. Lee, S. C. Lyu, Y. Zhang, Field emission from well-aligned zinc oxidenanowires grown at low temperature, Appl. Phys. Lett., 81 (2002) 3648-3650.
    
    [202] F. Z. Wang, Z. Z. Ye, D. W. Ma, L. P. Zhu, F. Zhuge, "Rapid synthesis and photoluminescenceof novel ZnO nanotetrapods" Journey of Crystal Growth, 274 (2005) 447-452.
    
    [203] X. H. Xia, Z. Z. Ye, G D. Yuan, L.P. Zhu, B. H. Zhao, Q. Qian, "Rapid synthesis of novelflowerlike ZnO structures by thermolysis of zinc acetate" Applied Surface Science, 253(2006)909-914.
    
    [204] F. D. Paraguay, W. L. Estrada, D. R. N. Acosta, E. Andrade, M. Miki-Yoshida, Growth,structure and optical characterization of high quality ZnO thin films obtained by spraypyrolysis, Thin Solid Films, 350 (1999)192-202.
    
    [205] C. X. Xu, X. W. Sun, Field emission from znic oxide nanopins, App. Phy. Lett., 83 (2003)3906-3808.
    
    [206] S. H. Jo, J. Y. Lao, Z. F. Ren, Field-emission studies on thin films of zinc oxide nanowires,App. Phy. Lett., 83 (2003) 4821-4823.
    
    [207] C. X. Xu, X. W. Sun, B. J. Chen, Field emission from gallium-doped zinc oxide nanofiberarray, App. Phy. Lett., 84 (2004) 1540-1542.
    [208] Y. B. Li, Y. Bando, D. Golberg, ZnO nanoneedles with tip surface perturbations: Excellent field emitters, App. Phy. Lett., 84 (2004) 3603-3605.
    [209] S. H. Jo, D. Banerjee, Z. F. Ren, Field emission of zinc oxide nanowires grown on carbon cloth, App. Phy. Lett., 84 (2004) 1407-1409.
    [210] Q. H. Li, Q. Wan, Y. J. Chen, T. H. Wang, Stable field emssion from tetrapod like ZnO nanostructures, App. Phy. Lett., 84 (2004) 636-638.
    [211] Q. Wan, K. Yu, T. H. Wang, C. L. Lin, Low-field electron emission from tetrapod-like ZnO nanostructures synthesized by rapid evaporation, App. Phy. Lett., 83 (2003) 2253-2255.
    [212] Q. Zhao, H. Z. Zhang, Y. W. Zhu, S. Q. Feng, X. C. Sun, J. Xu, D. P. Yu, Morphological effects on the field emission of ZnO nanorod arrays, App. Phy. Lett., 86 (2005) 203115.
    [213] R. C. Wang, C. P. Liu, J. L. Huang, ZnO nanopencil: Efficient field emitters, App. Phy. Lett., 87(2005)013110.
    [214] B. P. Zhang, N. T. Binh, Y. Segawa, Y. Kashiwaba and K. Haga, Photoluminescence study of ZnO nanorods epitaxially grown on sapphire (11-20) substrates, App. Phy. Lett., 84 (2004) 586-588.
    [215] Y. W. Heo, D. P. Norton, and S. J. Pearton, Origin of green luminescence in ZnO thin film grown by molecular-beam epitaxy, J. Appl. Phys., 98 (2005) 073502.
    [216] J. B. Baxter, F. Wu, and E. S. Aydil, Growth mechanism and characterization of zinc oxide hexagonal columns, Appl. Phys. Lett., 83 (2003) 3797-3799.
    [217] D. C. Looka,, C. Co -skunc, B. Claflin, and G. C. Farlow, Electrical and optical properties of defects and impurities in ZnO, Phys. B, 340/342 (2003) 32-38.
    [218] R. C. Wang, C. P. Liu, J. L. Huang, S.-J. Chen, ZnO hexagonal arrays of nanowires grown on nanorods, Appl. Phys. Lett., 86 (2005) 251104.
    [219] F. Q. He and Y.Pu. Zhao, Growth of ZnO nanotetrapods with hexagonal crown, Appl. Phys. Lett., 88 (2006) 193113.
    [220] H. M. Lin,Y. L. Chen, J. Yang, Y. C. Liu, K. M. Yin, J. J. Kai, F. R. Chen, L. C. Chen, Y. F. Chen, C. C. Chen, Synthesis and Characterization of Core-Shell GaP @GaN and GaN @ GaP Nanowires, nano. Lett., 3 (2003) 537-541.
    [221] F. Qian,Y. Li, S. Gradec, D. Wang, C. J. Barrelet, andC. M. Lieber, Gallium Nitride Based Nanowire Radial Heterostructures for Nanophotonics, nano. Lett., 4 (2004) 1975-1979.
    [222] Park W II, Yi G C, Kim M and Pennycook S J, Quantum Confinement Observed in ZnO/ZnMgO Nanorod Heterostructures, AdV. Mater., 15 (2003) 526-529.
    [223] Park W II, Yoo J, Kim D W, Yi G C and Kim M, Fabrication and Photoluminescent Properties of Heteroepitaxial ZnO/Zn0.8Mg0.2O Coaxial Nanorod Heterostructures, J. Phys. Chem. B,110 (2006)1516-1519.
    [224] P. Bhattacharya, Rasmi R. Das, and R. S. Katiyar, Fabrication of stable wide-band-gap ZnO/MgO multilayer thin films, Appl. Phys. Lett., 83 (2003), 2010-2012.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700