用户名: 密码: 验证码:
半导体光放大器超快动态特性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着光通信系统中单信道容量的迅猛增长,对光信号处理中关键器件性能的要求越来越高。半导体光放大器(SOA)作为广泛应用在光网络节点上的非线性器件,其动态特性直接影响了整个通信网的性能。特别是其应用在超高速的波长转换、复用/解复用以及信号再生等领域中,SOA的载流子恢复时间,反映为增益恢复速度是影响整个系统性能至关重要的因素。
     近年来随着SOA工艺与理论的发展,各种低维结构的SOA器件实现了增益偏振无关,高增益/微分增益系数以及超快的增益恢复速度。一方面对低维SOA器件的结构设计能从根本上缩短SOA的载流子恢复时间从而提高器件的超快动态性能;另一方面对一个给定的SOA,在应用中对其增益恢复速度进行优化,也能改善器件在高速通信系统中的表现。概括全文的研究成果和贡献,有如下几个方面:
     (1)全面分析比较了不同物理层面描述SOA动态特性的理论模型。理论研究了SOA在不同量级脉宽的光脉冲入射下其内部各种物理过程以及其产生机理。并进一步分析了不同脉宽的光脉冲作用下在误差允许范围内各模型的适用性。在此基础上提出模型选择的原则应该是从需求出发,需要同时满足时效性与精确性两方面的要求。
     (2)提出了一种带载流子库的不对称多量子阱结构的SOA。通过采用多量子阱结构的载流子传输模型,数值模拟了这种结构的SOA的超快动态特性。模拟结果表明此种结构设计能有效加速SOA的增益恢复速度。
     (3)通过分段模型,理论推导了基于SOA中交叉增益调制效应的波长转换中小信号频率响应的解析表达式。通过此模型理论分析了SOA各参数,包括腔长、偏置电流、腔内损耗对频谱响应曲线的影响。同时结果还表明,由于长腔长中SOA更接近饱和,增益色散对小信号调制特性的影响在长腔长波导中比短腔长更为明显。最后模拟结果和实验中测量的小信号频率响应特性曲线进行了比较。
     (4)首次理论推导了有源增益腔内考虑端面反射时放大的自发辐射噪声(ASE)的频谱特性的解析公式。通过分段模型与频谱切割,数值模拟了ASE在腔内传播的纵向相关的光强分布与有源腔前后端面出射的ASE的频谱特性。以此公式建立的宽带模型采用牛顿迭代与并行计算控制收敛速度,实现了高效的数值模拟。通过此模型,我们理论分析了透明波长辅助光注入和一定端面反射设计对SOA中增益恢复的加速作用。并分别评估了两种方案中与SOA静态特性和动态特性相关的参数。模拟结果表明,两种方案都能有效加速SOA中的增益恢复,并对基于交叉增益调制效应和交叉相位调制效应的波长转换系统中输出信号的质量有明显改善作用。在基于端面反射的设计中,我们提出一种半反射的结构。理论研究表明这种结构的SOA在基于交叉增益调制效应的波长转换方案中采用向下波长转换,而在基于交叉相位调制效应的波长转换方案中采用向上波长转换能得到更好的结果。
     (5)采用非绝热模型理论分析了脉冲宽度在SOA载流子温度弛豫特征时间量级时,基于SOA和失谐滤波器的瞬态交叉相位调制效应的波长转换中输出波形的非线性码型效应。提出一种采用增益带内的保持光注入的方案来抑制输出波形的非线性码型效应,从而改善输出信号质量。通过数值模拟分析了不同波长的探测光在增益峰值处的泵浦超短光脉冲入射SOA时的增益和SOA载流子温度的超快动态特性。并通过Kramers-Kronig积分关系数值计算了探测光相位的超快动态特性。通过数值计算比较了没有辅助光和辅助光以正向和逆向传播时输出探测光波形的非线性码型效应。理论证实了辅助光入射能有效抑制输出信号的非线性码型效应。同时提出了在向上的波长转换方案中,辅助光逆向传播时,对输出信号的非线性码型效应的抑制最为明显。
     (6)提出一种基于级联SOA和电吸收调制器(EAM)的波长转换器来降低波长转换输出信号的码型效应。通过采用考虑增益压缩的绝热模型理论分析了此种半导体波导在不同EAM长度时都能通过调整EAM的偏置电压和延时线来优化输出信号质量。同时通过对接收机电路的模拟,理论证明了当调整EAM的偏置电压以改变EAM中的载流子扫除时间时能获得级联SOA-EAM的输出信号相对于单个SOA的最优功率代价。通过对不同速率的波长转换系统的模拟,得出在更高速传输系统中,此波长转换器在理想情况下输出眼图质量仅受限于SOA的超快响应特征时间,一般为1~2个皮秒。实验通过10GHz重复频率的锁模超短脉冲入射,证实了此方案的有效性。同时对此波长转换器使用归零码(RZ)泵浦信号输入,能得到合并了交叉增益调制和交叉吸收调制的超宽带高斯单边信号(Monocycle)和高斯双边信号(Doublet)波形输出。输出波形可以通过调整可调谐延迟器的延时量和EAM的反偏电压来灵活调整。输出信号被调制在单路波长上,并且在C波段内可调。实验测量的信号对应的射频谱完全满足美国联邦通信委员会定义的规范。
The demands for key devices with high performance for optical signal processing increase rapidly with the increase of the speed in one wavelength channel in optical networks. The dynamic characteristics of semiconductor optical amplifiers (SOAs) which are extensively used in nodes of optical networks as nonlinear devices determine the performance of the entire optical communication systems directly. The recovery time of the carrier density in SOAs, reflecting the gain recovery speed is a critical parameter to the performance of the entire system, especially for ultra-high speed wavelength conversion, multiplexing/demultiplexing and signal regeneration.
     With the development of both theory and fabrication technology of SOA, gain polarization independence, high gain as well as differential gain coefficient and ultrafast gain recovery speed are realized in low-dimensional SOAs. On the one hand, the designs of low-dimensional structures are essential to reduce the carrier lifetime in SOAs, so that the improvement of ultrafast dynamics in SOAs can be achieved. On the other hand, optimization for acceleration of gain recovery for a given SOA in its related applications can improve the performance of the device in high speed optical communication system. The activities and contributions of this thesis can be summarized as follows:
     (1) Several theoretical models for describing dynamic characteristics in SOAs at different physical levels are analyzed and compared. For incidence of optical pulses with pulse width at different time scale level, some kinds of ultrafast physical phenomenon and mechanisms in SOAs are theoretically investigated. Furthermore, for interaction with optical pulses with pulse width at different time scale, the applicabilities of models have been analyzed within the error tolerance. Starting from this principle, the rules for choosing a proper model should be based on the studied objective and satisfy with both the efficiency and accuracy.
     (2) A type of asymmetry multiple-quantum well (MQW) SOA with carrier reservoir is proposed. A carrier transport model for MQW SOAs is used to numerically simulate the ultrafast dynamic characteristics of this asymmetry MQW SOA. The simulated results show that this structural design can effectively accelerate gain recovery.
     (3) An analytic form solution is derived by using multisection model to demonstrate small signal frequency response (SSFR) of wavelength conversion based on cross-gain modulation (XGM) in SOAs. The influence of parameters including length of the active region, current injection and cavity loss on the characteristics of SSFR is theoretically analyzed. Also, the results manifest that gain dispersion affects the SSFR more evidently in long SOAs than short ones as a result of deeper saturation in the formers. Finally, the measured SSFR is compared with the simulated results.
     (4) The analytic form solution for spectral characteristics of amplified spontaneous emission (ASE) noise in consideration of facet reflection of active cavity with gain is derived for the first time. Utilizing multisection model and slicing frequency spectrum, the longitudinal dependence of the optical power distribution of ASE propagating in the cavity and the ASE spectral characteristics emitting from the front and rear facets of the active cavity are numerically simulated. The Newton method and parallel computational algorithm are used to control the convergence speed based on this wideband model. And high efficiency is achieved in the numerical simulation. The acceleration of gain recovery in SOA by injection of assist light near transparency and design of certain reflectivities on two facets are theoretically analyzed using this model. Key parameters related to both static and dynamic characteristics of SOAs are theoretically estimated for the two schemes. Simulated results show that gain recovery can be effectively accelerated by both two schemes. Also the quality of the output signals in wavelength conversion based on cross-gain modulation (XGM) and cross-phase modulation (XPM) can be greatly improved. A half-reflection structure is suggested based on the design of facet reflection. Theoretical investigation manifests that improvement in both wavelength down-conversion based on XGM and wavelength up-conversion based on XPM can be achieved by this design.
     (5) Nonlinear patterning effect (NLP) of the output waveform in wavelength conversion based on transient XPM by using a single SOA and a detuned optical bandpass filter (OBF) is estimated by using a non-adiabatic model while the pulse width is comparable to the characteristics time of the temperature relaxation of carriers in SOAs. A scheme of incidence of an assist light near the gain peak to reduce the NLP of the output waveform in wavelength conversion and improve the quality of the output signal is proposed. The ultrafast dynamics of the gain of the probe light with different wavelengths and the carrier temperature in the SOA are estimated while the pump light emitted near the gain peak composed of ultrashort pulses is incident into the SOA. Also the ultrafast phase dynamics of the probe light is numerically calculated by Kramers-Kronig integration relation. The NLP of the output probe waveforms in the schemes of without assist light injection, with assist light co-propagating and with assist light counter-propagating is estimated and compared, respectively. Results show that NLP can be effectively reduced in the proposed scheme by using assist light injection. Furthermore, the improvement of NLP of output waveform is most evident in wavelength up-conversion and assist light present in counter-propagating scheme.
     (6) A wavelength converter based on a cascaded SOA and electroabsorption modulator (EAM) is proposed to mitigate patterning effect in wavelength conversion. An adiabatic model in consideration of the gain compression is used to analyze this semiconductor waveguide. Simulated results show that the optimization of the quality of the output signal can be always achieved for different length of the EAM by changing the reverse voltage applied on the EAM and regulating the time-delay line. It is further theoretically proved that by simulating the receiver electronics, the optimized power penalty estimated at the output attributed to a concatenated SOA-EAM compared to a single SOA can be achieved by changing the sweep-out time of the EAM practically realized by adjusting the reveres bias applied on the EAM. By simulating the wavelength conversion system at different bitrate, it's demonstrated that for the ideal situation, the quality of the eye-diagram of the output probe signal in even high speed transmission system is only limited by the ultrafast response in SOAs, the time of which is approximate 1~2ps. This scheme is further experimentally proved by incidence of ultrashort optical pulses emitted from a mode locked laser with a repetition of 10GHz. Furthermore, photonic generation of ultrawideband (UWB) monocycle and doublet pulses is experimentally demonstrated by exploiting of XGM in SOA and XAM in EAM by incidence of return-to-zero pump signal into this wavelength converter. The polarities and shapes of UWB monocycle and doublet pulses can be simply controlled by regulating the time-delay line and the reverse voltage applied on the EAM. Also the output signal is carried on one single wavelength which is supposed to be tunable within the whole C band. The corresponding measured radio-frequency (RF) spectra meet the UWB criteria defined by federal communications commission (FCC).
引文
[1] O'Mahony M J. Semiconductor laser optical amplifiers for use in future fiber systems. J. Lightwave Technol., 1988, 6(4):531-544
    [2] Marshall I W, O'Mahony M J, Constantine P D. Optical System with two packaged 1.5 μm semiconductor laser amplifier repeaters. Electron. Lett., 1986, 22(5):253-255
    [3] Saitoh T, Mukai T. 1.5 μm GaInAsP traveling-wave semiconductor laser amplifier. IEEE J. Quantum Electron., 1987, 23(6): 1010-1020
    [4] Mukai T, Yamamoto Y, Kimura T. S/N and error rate performance in AlGaAs semiconductor laser preamplifier and linear repeater systems. IEEE J. Quantum Electron., 1982,18(10):1560-1568
    [5] O'Mahony M J, Marshall I W, Westlake H J, et al. A 200-km 1.5μm optical transmission experiment using a semiconductor laser amplifier repeater, in: Proceedings of Optical Fiber Communication, OFC 1986. Optical Society of America, 1986. WE5-1-WE5-3
    [6] Giles C R, Desurvire E, Talman J R, et al. 2-Gbit/s signal amplification at λ=1.53μm in an erbium-doped single-mode fiber amplifier. J. Lightwave Technol., 1989, 7(4):651-656
    [7] Giles C R, Desurvire E, Zyskind J L, et al. Noise performance of erbium-doped fiber amplifier pumped at 1.49 μm and application to signal preamplification at 1.8 Gbit/s. IEEE Photon. Technol. Lett., 1989, 1(11):367-369
    [8] Hagimoto K, Iwatsuki K, Takada A, et al. A 212 km non-repeated transmission experiment at 1.8 Gb/s using LD pumped Er3+-doped fiber amplifiers in an IM/DIRECT-detection repeater system. in: Proceedings of Optical Fiber Communication Conference, OFC 1989. Optical Society of America, 1989. PD15-1-PD15-3
    [9] Mears R J, Reekie L, Jauncey I M, et al. High-gain rare-earth-doped fiber amplifier at 1.54 μm. in: Proceedings of Optical Fiber Communication, OFC 1987. Optical Society of America, 1987. WI2-1-WI2-3
    [10] Desurvire E, Giles C R, Simpson J R. Gain saturation effects in high-speed, multichannel erbium-doped fiber amplifiers at λ=1.53 μm. J. Lightwave Technol., 1989, 7(12):2095-2104
    [11] Desurvire E, Simpson J R, Becker P C. High-gain erbium-doped traveling-wave fiber amplifier. Opt. Lett., 1987, 12(11):888-890
    [12] Lu Z G, Liu J R, Raymond S, et al. Ultra-broadband quantum-dot semiconductor optical amplifier and its applications. in: Proceedings of Optical Fiber Communication and the National Fiber Optic Engineers Conference, OFC/NFOEC 2007. Optical Society of America, 2007. JThA33-l-JThA33-3 .
    [13] Sugawara M, Akiyama T, Hatori N, et al. Recent progress of self-assembled quantum-dot optical devices for optical telecommunication: temperature-insensitive 10 Gb/s directly modulated lasers and 40 Gb/s signal-regenerative amplifiers. in: Proceedings of Optical Fiber Communication and the National Fiber Optic Engineers Conference, OFC/NFOEC 2006. Optical Society of America, 2006. OTuD6-1-OTuD6-3
    [14] Akiyama T, Sugawara M. Recent progress in quantum-dot semiconductor optical amplifiers. in: Proceedings of the SPIE - The International Society for Optical Engineering, San Diego, CA, United States, 2006. 63080R-1-63080R-13
    [15] Akiyama T, Ekawa M, Sugawara M, et al. Quantum dots for semiconductor optical amplifiers. in: Proceedings of Optical Fiber Communication and the National Fiber Optic Engineers Conference. OFC/NFOEC 2005. Optical Society of America, 2005. OWM2-1-OWM2-3
    [16] Akiyama T, Ekawa M, Sugawara M, et al. An ultrawide-band (120 nm) semiconductor optical amplifier having an extremely-high penalty-free output power of 23 dBm realized with quantum-dot active layers. in: Proceedings of Optical Fiber Communication Conference, OFC 2004. Optical Society of America, 2004. PD12-1-PD12-3
    [17] Borri P, Schneider S, Langbein W, et al. Ultrafast carrier dynamics and dephasing in InAs quantum-dot amplifiers emitting near 1.3-μm-wavelength at room temperature. Appl. Phys. Lett., 2001,79(16):2633-2635
    [18] Sugawara M. Quantum-dot semiconductor optical amplifiers (invited paper). in: Proceedings of Optical Fiber Communications Conference, OFC 2003. Optical Society of America, 2003. 537-538
    [19] Durhuus T, Mikkelsen B, Joergensen C, et al. All-optical wavelength conversion by semiconductor optical amplifiers (Invited Paper). J. Lightwave Technol., 1996, 14(6):942-954
    [20] Matsuura M, Kishi N, Miki T. Ultrawideband Wavelength Conversion Using Cascaded SOA-Based Wavelength Converters. J. Lightwave Technol., 2007, 25(1):38-45
    [21] Chen J J, Choa F S, Cho P S, et al. The gain decompression effect and its applications to very fast wavelength conversions. IEEE Photon. Technol. Lett., 1997, 9(6):755-757
    [22] Stephens M F C, Penty R V, White I H. All-optical regeneration and wavelength conversion in an integrated semiconductor optical amplifier/distributed-feedback laser. IEEE Photon. Technol. Lett., 1999,11(8):979-981
    [23] Andre P S, Teixeira A J, Pinto J L, et al. Performance analysis of wavelength conversion based on cross-gain modulation in reflective semiconductor optical amplifiers. in: Proceedings of SBMO/IEEE MTT-S International Microwave and Optoelectronics Conference, 2001. 119-122
    [24] Qasaimeh O. Characteristics of cross-gain (XG) wavelength conversion in quantum dot semiconductor optical amplifiers. IEEE Photon. Technol. Lett., 2004, 16(2):542- 544
    [25] Manning R J, Yang X, Webb R P, et al. The "turbo-switch" - a novel technique to increase the high-speed response of SOAs for wavelength conversion. in: Proceedings of Optical Fiber Communication and the National Fiber Optic Engineers Conference, OFC/NFOEC 2006. Optical Society of America, 2006. OWS8-1-OWS8-3
    [26] Ellis A D, Kelly A E, Nesset D, et al. Error free 100 Gbit/s wavelength conversion using grating assisted cross-gain modulation in 2 mm long semiconductor amplifier. Electron. Lett., 1998, 34(20): 1958-1959
    [27] Chayet H, Ezra S B, Shachar N, et al. Regenerative all-optical wavelength converter based on semiconductor optical amplifier and sharp frequency response filter. in: Proceedings of Optical Fiber Communication Conference, OFC 2004. Optical Society of America, 2004. ThS2-1-ThS2-3
    [28]Turkiewicz J P,Vegas-Olmos J J,Khoe G D,et al.1310-nm to 1550-nm wavelength conversion by utilizing nonlinear polarization rotation in a semiconductor optical amplifier.in:Proceedings of Optical Fiber Communication and the National Fiber Optic Engineers Conference,OFC/NFOEC 2005.Optical Society of America,2005.OME48-1-OME48-3
    [29]Patrick D M,Manning R J.20 Gbit/s wavelength conversion using semiconductor nonlinearity.Electron.Lett.,1994,30(3):252-253
    [30]Tsuchida H,Simoyama T,Ishikawa H,et al.Cross-phase-modulation-based wavelength conversion using intersubband transition in InGaAs/AlAs/AlAsSb coupled quantum wells.Opt.Lett.,2007,32(7):751-753
    [31]Song H J,Lee J S,Song J I.Linearity performance of a signal up-conversion by using cross-phase-modulation in all-optical SOA-MZI wavelength converter.in:Proceedings of the 16th AnnualMeeting of the IEEE Lasers and Electro-Optics Society,LEOS 2003,2003.1007-1008
    [32]Song H J,Lee J S,Song J I.Signal up-conversion by using a cross-phase-modulation in all-optical SOA-MZI wavelength converter.IEEE Photon.Technol.Lett.,2004,16(2):593-595
    [33]Shin S M,Han S K.Probe signal dependence of XPM wavelength converters.in:Proceedings of Lasers and Electro-Optics-Pacific Rim,CLEO/Pacific Rim 1999,1999.1034-1035
    [34]Ratovelomanana F,Vodjdani N,Enard A,et al.An all-optical wavelength-converter with semiconductor optical amplifiers monolithically integrated in an asymmetric passive Mach-Zehnder interferometer.IEEE Photon.Technol.Lett.,1995,7(9):992-994
    [35]董建绩,张新亮,付松年.基于半导体光放大器瞬态交叉相位调制效应的高速反相和同相波长转换的研究.物理学报,2007,56:2250-2255
    [36]Jamai Z,Menif M,Erasme D.Study of all-optical wavelength conversion based on semiconductor optical amplifiers.in:Proceedings of the 12th IEEE International Conference on Electronics,Circuits and Systems,ICECS 2005,2005.1-4
    [37]Kelly A E.Ultra high-speed wavelength conversion and regeneration using semiconductor optical amplifiers.in:Proceedings of Optical Fiber Communication Conference,OFC 2001.Optical Society of America,2001.MB1-1-MB1-3
    [38] Syvridis D. All optical wavelength converters based on semiconductor optical amplifiers. in: Proceedings of the 23rd Edition International Semiconductor Conference, CAS 2000, 2000. 65-71
    [39] Jeon M Y, Lim D S, Lee H K, et al. All-optical wavelength conversion scheme based on 20 Gb/s RZ data. in: Proceedings of Conference on Lasers and Electro-Optics, CLEO 2000, 2000. 278-279
    [40] Bilenca A, Alizon R, Dahan D, et al. MultiTHz wavelength conversion by four wave mixing and cross gain modulation in an InAs/InP quantum dash semiconductor optical amplifier operating at 1550 nm. in: Proceedings of Optical Fiber Communications Conference, OFC 2003. Optical Society of America, 2003. 536-537
    [41] Scholz C J, Dubertrand L, Blumenthal D J. Demonstration of two simultaneous independently controlled wavelength conversions using a novel dual-pump/dual-probe four wave mixing configuration in a semiconductor optical amplifier. in: Proceedings of the 10th Annual Meeting of IEEE Lasers and Electro-Optics Society, LEOS 1997, 1997. 90-91
    [42] Schnabel R, Hilbk U, Hermes T, et al. Polarization insensitive frequency conversion of a 10-channel OFDM signal using four-wave-mixing in a semiconductor laser amplifier. IEEE Photon. Technol. Lett., 1994, 6(l):56-58
    [43] Diez S, Schmidt C, Ludwig R, et al. Four-wave mixing in semiconductor optical amplifiers for frequency conversion and fast optical switching (Invited Paper). Selected Topics in IEEE J. Quantum Electron., 1997, 3(5): 1131-1145
    [44] Stephens M F C, Nesset D, Penty R V, et al. Wavelength conversion at 40 Gbit/s via four wave mixing in semiconductor optical amplifier with integrated pump laser. Electron. Lett., 1999, 35(5):420-421
    [45] Wu C, Fan H, Dutta N K, et al. Four wave mixing in semiconductor optical amplifier. in: Proceedings of Conference on Lasers and Electro-Optics, CLEO 1999,1999. 267- 268
    [46] Iannone E, Sabella R. Performance evaluation of an optical multi-carrier network using wavelength converters based on FWM in semiconductor optical amplifiers. J. Lightwave Technol., 1995, 13(2):312-324
    [47] Kelly A E, Ellis A D, Nesset D, et al. 100 Gbit/s wavelength conversion using FWM in an MQW semiconductor optical amplifier. Electron. Lett., 1998, 34(20): 1955-1956
    [48] Paiella R, Hunziker G, Zhou J, et al. Using tensor properties of four wave mixing in semiconductor optical amplifiers for polarization independent wavelength conversion or pump suppression, in: Proceedings of Conference on Lasers and Electro-Optics,CLEO 1996,1996. 504-505
    [49] Nielsen D, Chuang S L, Kim N J, et al. High-speed wavelength conversion in quantum dot and quantum well semiconductor optical amplifiers. Appl. Phys. Lett., 2008, 92(21):211101-211103
    [50] Lin L Y, Wiesenfeld J M, Perino J S. Polarization-insensitive wavelength conversion up to 10 Gb/s using four-wave mixing in a semiconductor optical amplifier, in: Proceedings of the 10th Annual Meeting of IEEE Lasers and Electro-Optics Society, LEOS 1997,1997. 96-97
    [51] Politi C, Klonidis D, O'Mahony M J. Waveband converters based on four-wave mixing in SOAs. J. Lightwave Technol, 2006, 24(3): 1203-1217
    [52] Dong Y, Li Z, Mo J, et al. Cascade of all-optical wavelength conversion for RZ-DPSK format using four wave mixing in SOA. in: Proceedings of Optical Fiber Communication Conference, OFC 2004. Optical Society of America, 2004
    [53] Nielsen M L, Lavigne B, Dagens B. Polarity-preserving SOA-based wavelength conversion at 40 Gbit/s using bandpass filtering. Electron. Lett., 2003, 39(18): 1334-1335
    [54] Nielsen M L, M0rk J, Suzuki R, et al. Experimental and theoretical investigation of the impact of ultra-fast carrier dynamics on high-speed SOA-based all-optical switches.Opt. Express, 2006,14(l):331-347
    [55] Dong J, Fu S, Zhang X, et al. Analytical solution for SOA-based all-optical wavelength conversion using transient cross-phase modulation. IEEE Photon. Technol. Lett., 2006,18(24):2554-2556
    [56] Fu S, Dong J, Shum P, et al. Experimental demonstration of both inverted and non-inverted wavelength conversion based on transient cross phase modulation of SOA.Opt. Express, 2006, 14(17):7587-7593
    [57] Liu Y, Tangdiongga E, Li Z, et al. Error-free all-optical wavelength conversion at 160 gb/s using a semiconductor optical amplifier and an optical bandpass filter. J. Lightwave Technol., 2006, 24(l):230-236
    [58] Liu Y, Tangdiongga E, Li Z, et al. Error-free 320 Gb/s SOA-based Wavelength Conversion using Optical Filtering. in: Proceedings of Optical Fiber Communication and the National Fiber Optic Engineers Conference, OFC/NFOEC 2006. Optical Society of America, 2006. 1-3
    [59] Liu Y, Tangdiongga E, Li Z, et al. Error-Free 320-Gb/s All-Optical Wavelength Conversion Using a Single Semiconductor Optical Amplifier. J. Lightwave Technol., 2007, 25(l):103-108
    [60] Toptchiyski G, Randel S, Petermann K, et al. Analysis of switching windows in a gain-transparent-SLALOM configuration. J. Lightwave Technol., 2000, 18(12):2188-2195
    [61] Kawanishi S. High-speed optical transmission technology using all-optical signal processing. in: Proceedings of the SPIE - The International Society for Optical Engineering, Gwangju, South Korea, 2006. 63511N-1-63511N-8
    [62] Tangdiongga E, Liu Y, Waardt H, et al. Demultiplexing 160/320 Gb/s to 40 Gb/s using a single SOA assisted by an optical filter. in: Proceedings of Optical Fiber Communication and the National Fiber Optic Engineers Conference, OFC/NFOEC 2006. Optical Society of America, 2006. OTuB5-1-OTuB5-3
    [63] Tangdiongga E, Liu Y, Waardt H d, et al. 320-to-40-gb/s demultiplexing using a single SOA assisted by an optical filter. IEEE Photon. Technol. Lett., 2006, 18(8):908-910
    [64] Tangdiongga E, Liu Y, Waardt H d, et al. All-optical demultiplexing of 640 to 40 Gbits/s using filtered chirp of a semiconductor optical amplifier. Opt. Lett., 2007, 32(7):835-837
    [65] Tomkos I, Zacharopoulos I, Syvridis D, et al. All-optical demultiplexing/shifting of 40-Gb/s OTDM optical signal using dual-pump wave mixing in bulk semiconductor optical amplifier. IEEE Photon. Technol. Lett., 1999, 11(11): 1464-1466
    [66] Stefano C, Claudio C. All-optical Ultrafast OTDM Demultiplexing By Using an Unbiased Semiconductor Optical Amplifier. in: Proceedings of Optical Amplifiers and Their Applications/Coherent Optical Technologies and Applications. Optical Society of America, 2006. JWB2-1-JWB2-3
    [67] Uchiyama K, Kawanishi S, Saruwatari M. 100-Gb/s multiple-channel output all-optical OTDM demultiplexing using multichannel four-wave mixing in a semiconductor optical amplifier. IEEE Photon. Technol. Lett., 1998, 10(6):890-892
    [68] Ellis A D, Patrick D M, Flannery D, et al. Ultra-high-speed OTDM networks using semiconductor amplifier-based processing nodes (Invited Paper). J. Lightwave Technol., 1995, 13(5):761-770
    [69] Porzi C, Poti L, Bogoni A. Novel time domain add/drop multiplexer based on double-pumped four-wave-mixing and cross-phase-modulation induced spectral shift in a semiconductor optical amplifier. in: Proceedings of Optical Fiber Communication and the National Fiber Optic Engineers Conference, OFC/NFOEC 2005. Optical Society of America, 2005. OThN1-1-OThN1-3
    [70] Ludwig R, Raybon G. All-optical demultiplexing using ultrafast four-wave mixing in a semiconductor laser amplifier at 20 Gbit/s. in: Proceedings of the 19th European Conference on Optical Communication, ECOC 1993,1993. 57-60
    [71] Morioka T, Takara H, Kawanishi S, et al. Polarisation-independent all-optical demultiplexing up to 200 Gbit/s using four-wave mixing in a semiconductor laser amplifier. Electron. Lett., 1996, 32(9):840-842
    [72] Gay M, Bramerie L, Simon J C, et al. Cascadability and wavelength tunability assessment of a 2R regeneration device based on saturable absorber and semiconductor optical amplifier. in: Proceedings of Optical Fiber Communication and the National Fiber Optic Engineers Conference, OFC/NFOEC 2006. Optical Society of America, 2006. OThB1-1-OThB1-3
    [73] Chang Y C, Hung C M, Yu K C, et al. Optimization on cross-gain-modulating power and wavelength for pulsed data-pattern reshaping in optical-clock controlled semiconductor optical amplifier. in: Proceedings of Optical Fiber Communication and the National Fiber Optic Engineers Conference, OFC/NFOEC 2006. Optical Society of America, 2006. 57-59
    [74] Zhu Z, Funabashi M, Pan Z, et al. High-Performance Optical 3R Regeneration for Scalable Fiber Transmission System Applications. J. Lightwave Technol., 2007, 25(2):504-511
    [75] Leclerc O, Lavigne B, Balmefrezol E, et al. Optical regeneration at 40 Gb/s and beyond (invited paper). J. Lightwave Technol., 2003, 21(11):2779-2790
    [76] Bruno L, Guerber P, Janz C, et al. Full validation of an optical 3R regenerator at 20 Gbit/s. in: Proceedings of Optical Fiber Communication Conference, OFC 2000. Optical Society of America, 2000. ThF7-1-ThF7-3
    [77] Lavigne B, Guerber P, Brindel P, et al. Cascade of 100 optical 3R regenerators at 40 Gbit/s based on all-active Mach Zehnder interferometers. in: Proceedings of the 27th European Conference on Optical Communication, ECOC 2001, 2001. 290-291
    [78] Vivero T, Calabretta N, Monroy I T, et al. 10 Gb/s-NRZ Optical 2R-Regeneration in Two-Section SOA-EA Chip. in: Proceedings of the 20th Annual Meeting of the IEEE Lasers and Electro-Optics Society, LEOS 2007, 2007. 806-807
    [79] Vivero T, Calabretta N, Tafur Monroy I, et al. 2R-Regeneration in a monolithically integrated four-section SOA-EA chip. Opt. Commun., 2009, 282(1): 117-121
    [80] (?)hman F, M(?)rk J. Modeling of bit error rate in cascaded 2R regenerators. J. Lightwave Technol., 2006, 24(2): 1057-1063
    [81] (?)hman F, Kjaer R, Christiansen L J, et al. Steep and adjustable transfer functions of monolithic SOA-EA 2R regenerators. IEEE Photon. Technol. Lett., 2006,18(9): 1067- 1069
    [82] (?)hman F, Bischoff S, Tromborg B, et al. Noise properties and cascadability of SOA- EA regenerators. in: Proceedings of the 15th Annual Meeting of the IEEE Lasers and Electro-Optics Society, LEOS 2002, 2002. 895-896
    [83] Dorren H J S, Xuelin Y, Mishra A K, et al. All-optical logic based on ultrafast gain and index dynamics in a semiconductor optical amplifier (Invited Paper). Selected Topics in IEEE J. Quantum Electron., 2004, 10(5): 1079-1092
    [84] Sun H, Wang Q, Dong H, et al. All-optical logic performance of quantum-dot semiconductor amplifier-based devices. Microwave and Optical Technology Letters, 2006, 48(l):29-35
    [85] Ning D, Kit C, Chun-Kit C, et al. An all-optical XOR logic gate for high-speed RZ-DPSK signals by FWM in semiconductor optical amplifier. Selected Topics in IEEE J. Quantum Electron., 2006, 12(4):702-707
    [86] Choi K S, Jhon Y M, Woo D H, et al. All-Optical OR and NOR Logic Gates in Single Format by Using Semiconductor Optical Amplifiers. in: Proceedings of Conference on Lasers and Electro-Optics - Pacific Rim, CLEO/Pacific Rim 2007, 2007. 1365-1366
    [87] Chang Wan S, Sang Hun K, Young Min J, et al. Design of All-Optical Multi-functional Logic Gate in Single Format by Using Semiconductor Optical Amplifiers. in: Proceedings of 6th International Conference On Numerical Simulation of Optoelectronic Devices, NUSOD 2006, 2006. 71-72
    [88] Kim J Y, Kang J M, Kim T Y, et al. All-optical multiple logic gates with XOR, NOR, OR, and NAND functions using parallel SOA-MZI structures: theory and experiment. J. Lightwave Technol., 2006, 24(9):3392-3399
    [89] Li Z, Guifang L. Ultrahigh-speed reconfigurable logic gates based on four-wave mixing in a semiconductor optical amplifier. IEEE Photon. Technol. Lett., 2006, 18(12):1341-1343
    [90] Xu J, Zhang X, Dong J, et al. Ultrafast all-optical AND gate based on cascaded SOAs with assistance of optical filters. Electron. Lett., 2007, 43(10):585-586
    [91] Stubkjaer K E. Semiconductor optical amplifier-based all-optical gates for high-speed optical processing (Invited Paper). Selected Topics in IEEE J. Quantum Electron., 2000, 6(6): 1428-1435
    [92] Silveira T G, Teixeira A, Beleffi G T, et al. All-Optical Conversion From RZ to NRZ Using Gain-Clamped SOA. IEEE Photon. Technol. Lett., 2007,19(6):357-359
    [93] Dong J, Zhang X, Xu J, et al. 40 Gb/s all-optical NRZ to RZ format conversion using single SOA assisted by optical bandpass filter. Opt. Express, 2007, 15(6):2907-2914
    [94] Lin G R, Yu K C, Chang Y C. 10 Gbit/s all-optical non-return to zero-return-to-zero data format conversion based on a backward dark-optical-comb injected semiconductor optical amplifier. Opt. Lett., 2006, 31(10):1376-1378
    [95] Hung C M, Yu K C, Chang Y C, et al. 10 Gbit/s All-Optical NRZ-to-RZ Data Format Conversion in a Dark-Optical-Comb Injected Semiconductor Optical Amplifier. in: Proceedings of Optical Fiber Communication and the National Fiber Optic Engineers Conference, OFC/NFOEC 2006. Optical Society of America, 2006. JThB33-1-JThB33-3
    [96] Ku P C, Chang-Hasnain C J, Kim J, et al. Slow-light in nonuniform quantum dot waveguide. in: Proceedings of the 16th Annual Meeting of the IEEE Lasers and Electro-Optics Society, LEOS 2003., 2003. 441-442
    [97] Su H, Chuang S L. Room-temperature slow light with semiconductor quantum-dot devices. Opt. Lett., 2006, 31(2):271-273
    [98] Ku P C, Sedgwick F, Chang-Hasnain C J, et al. Slow light in semiconductor quantum wells. Opt. Lett., 2004, 29(19):2291-2293
    [99] Matsudaira A, Lee D, Kondratko P, et al. Electrically tunable slow and fast lights in a quantum-dot semiconductor optical amplifier near 1.55μm. Opt. Lett., 2007, 32(19):2894-2896
    [100] M(?)rk J, Kj(?)r R, Poel M, et al. Slow light in a semiconductor waveguide at gigahertz frequencies. Opt. Express, 2005, 13(20):8136-8145
    [101] (?)hman F, Yvind K, M(?)rk J. Voltage-controlled slow light in an integrated semiconductor structure with net gain. Opt. Express, 2006,14(21):9955-9962
    [102] Xue W, (?)hman F, Chen Y, et al. Experimental Demonstration of Strongly Enhanced Light Slow-Down in Semiconductor Optical Amplifiers by Optical Filtering. in: Proceedings of Slow and Fast Light, SL 2008. Optical Society of America, 2008. STuA5-1-STuA5-3
    [103] Vallaitis T, Koos C, Bonk R, et al. Slow and fast dynamics of gain and phase in a quantum dot semiconductor optical amplifier. Opt. Express, 2008, 16(1): 170-178
    [104] Wang Q, Zeng F, Blais S, et al. Optical ultrawideband monocycle pulse generation based on cross-gain modulation in a semiconductor optical amplifier. Opt. Lett., 2006, 31(21):3083-3085
    [105] Dong J, Zhang X, Xu J, et al. Filter-free ultrawideband generation based on semiconductor optical amplifier nonlinearities. Opt. Commun., 2008, 281(4):808-813
    [106] Yao J, Zeng F, Wang Q. Photonic Generation of Ultrawideband Signals (Invited paper). J. Lightwave Technol., 2007, 25(11):3219-3235
    [107] Akiyama T, Ekawa M, Sugawara M, et al. An ultrawide-band semiconductor optical amplifier having an extremely high penalty-free output power of 23 dBm achieved with quantum dots. IEEE Photon. Technol. Lett., 2005, 17(8):1614-1616
    [108] Dong J, Zhang X, Xu J, et al. Ultrawideband monocycle generation using cross-phase modulation in a semiconductor optical amplifier. Opt. Lett., 2007, 32(10): 1223-1225
    [109] Yu Y, Fei Z, Qing W, et al. Photonic Microwave Filter with Negative Coefficients Based on Cross Polarization Modulation in a Semiconductor Optical Amplifier. in: Proceedings of Optical Fiber Communication and the National Fiber Optic Engineers Conference, OFC/NFOEC 2007. Optical Society of America, 2007. OWU6-1-OWU6-3
    [110] Vazquez J M, Li Z, Liu Y, et al. Optimization of optical band-pass filters for all-optical wavelength conversion using genetic algorithms. IEEE J. Quantum Electron., 2007, 43(l):57-64
    [111] Dong J, Fu S, Zhang X, et al. Single SOA based all-optical adder assisted by optical bandpass filter: Theoretical analysis and performance optimization. Opt. Commun., 2007, 270(2):238-246
    [112] Nielsen M, M(?)rk J. Bandwidth enhancement of SOA-based switches using optical filtering: theory and experimental verification. Opt. Express, 2006, 14(3): 1260-1265
    [113] Nielsen M L, M(?)rk J. Increasing the modulation bandwidth of semiconductor-optical-amplifier-based switches by using optical filtering. J. Opt. Soc. Am. B, 2004, 21(9):1606-1619
    [114] Healey P, Townsend P, Ford C, et al. Spectral slicing WDM-PON using wavelength-seeded reflective SOAs. Electron. Lett., 2001, 37(19): 1181-1182
    [115] Arellano C, Polo V, Bock C, et al. Bidirectional single fiber transmission based on a RSOA ONU for FTTH using FSK-EVI modulation formats. in: Proceedings of Optical Fiber Communication and the National Fiber Optic Engineers Conference, OFC/NFOEC 2005. Optical Society of America, 2005. JWA46-1-JWA46-3
    [116] Won Y Y, Lee S H, Kang J M, et al. Optical beat interference suppression using semiconductor optical amplifier in reflective semiconductor optical amplifier based WDM/SCM-passive optical network. in: Proceedings of Optical Fiber Communication and the National Fiber Optic Engineers Conference, OFC/NFOEC 2006. Optical Society of America, 2006. JThB69-1-JThB69-3
    [117]Eisenstein G.Do Quantum Dots or Quantum Wire Based Devices Offer a Practical Advantage in Producing Semiconductor Optical Amplifiers over Conventional 2-D Active Media.in:Proceedings of Optical Fiber Communication and the National Fiber Optic Engineers Conference,OFC/NFOEC 2007.Optical Society of America,2007.OWP5-1-OWP5-2
    [118]Cai W,Marchetti M C,Lax M.Nonequilibrium electron-phonon scattering in semiconductor heterojunctions.Phys.Rev.B,1986,34(12):8573-8580
    [119]Zielinski E,Schweizer H,Hausser S,et al.Systematics of laser operation in GaAs/AlGaAs multiquantum well heterostructures.IEEE J.Quantum Electron.,1987,23(6):969-976
    [120]Bimberg D,Grundmann M,Ledentsov N N.Quantum Dot Heterostructures.New York:Wiley,1999.1-19
    [121]Jones G,O'Reilly E P.Improved performance of long-wavelength strained bulk-like semiconductor lasers.IEEE J.Quantum Electron.,1993,29(5):1344-1354
    [122]Mamijoh T,Horikawa H,Matsui Y,et al.Improved operation characteristics of longwavelength lasers using strained MQW active layers (Invited paper).IEEE J.Quantum Electron.,1994,30(2):524-532
    [123]Huang L,Huang D,Chen J,et al.Analysis of a semiconductor optical amplifier with polarization-insensitive gain and polarization-insensitive phase modulation.Semiconductor Science and Technology,2006,21(12):1643-1650
    [124]黄永箴,胡永红,于丽娟.1550nm偏振不灵敏半导体光放大器的研制.光电子·激光,2006,17(10):1157-1160
    [125]Itoh M,Shibata Y,Kakitsuka T,et al.Amplifying characteristics of 1.55μm polarization-insensitive SOAs with MQW and strained-bulk active layers for device application.Journal of Lightwave Technology,2006,24(3):1478-1485
    [126]Michie C,Kelly A E,McGeough J,et al.Polarization-insensitive SOAs using strained bulk active regions.Journal of Lightwave Technology,2006,24(11):3920-3927
    [127]Prasanth R,Haverkort J E M,Wolter J H.InAsP/InGaAs composite quantum well for separate TE and TM gain.Appl.Phys.Lett.,2006,88(6):062108-1-062108-3
    [128] Ji G, Huang D, Reddy U K, et al. Optical investigation of highly strained InGaAs-GaAs multiple quantum wells. Journal of Applied Physics, 1987, 62(8):3366-3373
    [129] Jogai B. Valence-band offset in strained GaAs-In_xGa_(1-x)As superlattices. Appl. Phys. Lett., 1991, 59(11):1329-1331
    [130] Nido M, Naniwae K i, Terakado T, et al. Band-gap discontinuity control for InGaAs/InGaAsP multiquantum-well structures by tensile-strained barriers. Appl. Phys. Lett., 1993, 62(21):2716-2718
    [131] Yablonovitch E, Kane E O. Band structure engineering of semiconductor lasers for optical communications. J. Lightwave Technol, 1988, 6(8): 1292-1299
    [132] Adams A R. Band-structure engineering for low-threshold high-efficiency semiconductor lasers. Electron. Lett., 1986, 22(5):249-250
    [133] Thijs P J A, Tiemeijer L F, Binsma J J M, et al. Progress in long-wavelength strained-layer InGaAs(P) quantum-well semiconductor lasers and amplifiers (Invited paper). IEEE J. Quantum Electron., 1994, 30(2):477-499
    [134] Cho Y S, Choi W Y. Analysis and optimization of polarization-insensitive semiconductor optical amplifiers with delta-strained quantum wells. IEEE J. Quantum Electron., 2001, 37(4):574-579
    [135] Thijs P J A, Van Dongen T. High quantum efficiency, high power, modulation doped GaInAs strained-layer quantum well laser diodes emitting at 1.5μm. Electron. Lett., 1989, 25(25):1735-1737
    [136] Akiyama T, Shimoyama T, Kuwatsuka H, et al. Gain nonlinearity and ultrafast carrier dynamics in quantum dot optical amplifiers. in: Proceedings of the 25th European Conference on Optical Communication, ECOC 1999,1999. 76-77
    [137] Romstad F, Borri P, Bischoff S, et al. Sub-picosecond pulse distortion in an InGaAsP optical amplifier. in: Proceedings of the 25th European Conference on Optical Communication, ECOC 1999, Nice, France, 1999. 28-29
    [138] Sugawara M, Hatori N, Ishida M, et al. Recent progress in self-assembled quantum-dot optical devices for optical telecommunication: Temperature-insensitive 10 Gb/s directly modulated lasers and 40 Gb/s signal-regenerative amplifiers. Journal of Physics D: Applied Physics, 2005, 38(13):2126-2134
    [139] Dagens B, Lelarge F, Accard A, et al. Recent advances in quantum dot based lasers and amplifiers at 1.55μm. in: Proceedings of the SPIE-The International Society for Optical Engineering, Stockholm, Sweden, 2006. 63500N-1-63500N-8
    [140] Poel M v d, Mork J, Somers A, et al. Ultrafast gain and index dynamics of quantum dash structures emitting at 1.55μm. Appl. Phys. Lett., 2006, 89(8):081102-1-081102-3
    [141] Franois L, Batrice D, Jeremie R, et al. Recent Advances on InAs/InP Quantum Dash Based Semiconductor Lasers and Optical Amplifiers Operating at 1.55μm (Invited Paper). Selected Topics in IEEE J. Quantum Electron., 2007,13(1): 111-124
    [142] Bilenca A, Alizon R, Mikhelashvili V, et al. InAs/InP 1550 nm quantum dash semiconductor optical amplifiers. Electron. Lett., 2002, 38(22): 1350-1351
    [143] Coldren L A, Corzine S W. Diode Lasers and Photonic Integrated Circuits. Wiley, 1995. 392-411
    [144] Asada M, Miyamoto Y, Suematsu Y. Gain and the threshold of three-dimensional quantum-box lasers. IEEE J. Quantum Electron., 1986, 22(9): 1915-1921
    [145] Zhukov A E, Kovsh A R, Mikhrin S S, et al. High external differential efficiency and high optical gain of long-wavelength quantum dot diode laser. Physica E: Low-dimensional Systems and Nanostructures, 2003, 17:589-592
    [146] Asryan L V, Grundmann M, Ledentsov N N, et al. Maximum modal gain of a self-assembled InAs/GaAs quantum-dot laser. Journal of Applied Physics, 2001, 90(3): 1666-1668
    [147] Nambu Y, Tomita A, Saito H, et al. Effects of Spectral Broadening and Cross Relaxation on the Gain Saturation Characteristics of Quantum Dot Laser Amplifiers. Japanese Journal of Applied Physics, 1999, 38(Part 1, 9A):5087-5095
    [148] Bhattacharya P, Ghosh S, Pradhan S, et al. Carrier dynamics and high-speed modulation properties of tunnel injection InGaAs-GaAs quantum-dot lasers. IEEE J. Quantum Electron., 2003, 39(8):952-962
    [149] Dommers S, Temnov V V, Woggon U, et al. Complete ground state gain recovery after ultrashort double pulses in quantum dot based semiconductor optical amplifier. Appl. Phys. Lett., 2007, 90(3):033508-l-033508-3
    [150] Saruwatari M. All-optical signal processing for terabit/second optical transmission (Invited Paper). Selected Topics in IEEE J. Quantum Electron., 2000,6(6): 1363-1374
    [151] Preisel M, M(?)rk J. Phonon-mediated carrier capture in quantum well lasers. Journal of Applied Physics, 1994, 76(3): 1691-1696
    [152] Tsai C Y, Eastman L F, Lo Y H, et al. Carrier capture and escape in multisubband quantum well lasers. IEEE Photon. Technol. Lett., 1994, 6(9): 1088-1090
    [153] Markussen T, Kristensen P, Tromborg B, et al. Influence of wetting-layer wave functions on phonon-mediated carrier capture into self-assembled quantum dots. Phys. Rev. B, 2006, 74(19): 195342-19538
    [154] Akiyama T, Kuwatsuka H, Simoyama T, et al. Nonlinear gain dynamics in quantum-dot optical amplifiers and its application to optical communication devices. IEEE J. Quantum Electron., 2001, 37(8): 1059-1065
    [155] Urayama J, Norris T B, Singh J, et al. Observation of Phonon Bottleneck in Quantum Dot Electronic Relaxation. Phys. Rev. Lett., 2001, 86(21):4930-4932
    [156] Magnusdottir I, Uskov A V, Bischoff S, et al. One- and two-phonon capture processes in quantum dots. Journal of Applied Physics, 2002, 92(10):5982-5990
    [157] Sun H, Wang Q, Dong H, et al. Gain dynamics and saturation property of a semiconductor optical amplifier with a carrier reservoir. IEEE Photon. Technol. Lett., 2006, 18(1):196-198
    [158] Lysak V V, Kawaguchi H, Sukhoivanov I A, et al. Ultrafast gain dynamics in asymmetrical multiple quantum-well semiconductor optical amplifiers. IEEE J. Quantum Electron., 2005, 41(6):797-807
    [159] Inohara R, Nishimura K, Tsurusawa M, et al. Experimental analysis of cross-phase modulation and cross-gain modulation in SOA-injecting CW assist light. IEEE Photon. Technol. Lett., 2003,15(9): 1192-1194
    [160] Hui W, Jian W, Jintong L. Spectral characteristics of optical pulse amplification in SOA under assist light injection. J. Lightwave Technol., 2005, 23(9):2761-2771
    [161] Yin L, Liu G, Wu J, et al. Reduction of pattern effect for clock recovery based on semiconductor optical amplifier using cw assist light. Optical Engineering, 2006, 45(4):45001-1-45001-8
    [162] Hwan S C, Inohara R, Nishimura K, et al. Effect of copropagating and counterpropa-gating directions on a semiconductor optical amplifier - Mach-Zehnder interferometer based wavelength converter using a continuous-wave assist light. Opt. Lett., 2005, 30(13):1716-1718
    [163] Morthier G, Moeyersoon B. Improvement of the direct modulation behavior of semiconductor lasers by using a holding beam. IEEE Photon. Technol. Lett., 2004, 16(7):1616-1618
    [164] Talli G, Adams M. Gain recovery acceleration in semiconductor optical amplifiers employing a holding beam. Opt. Commun., 2005, 245(l-6):363-370
    [165] Giuliani G, D'Alessandro D. Noise analysis of conventional and gain-clamped semiconductor optical amplifiers. J. Lightwave Technol., 2000, 18(9): 1256-1263
    [166] Park J, Li X, Huang W P. Performance simulation and design optimization of gain-clamped semiconductor optical amplifiers based on distributed Bragg reflectors. IEEE J. Quantum Electron., 2003, 39(11): 1415-1423
    [167] Ahn J T, Lee J M, Kim K H. Gain-clamped semiconductor optical amplifier based on compensating light generated from amplified spontaneous emission. Electron. Lett., 2003, 39(15): 1140-1141
    [168] Lee H H, Oh J M, Lee D, et al. A variable gain optical amplifier for metro WDM networks with mixed span losses: a gain-clamped semiconductor optical amplifier combined with a Raman fiber amplifier. in: Proceedings of Optical Fiber Communication and the National Fiber Optic Engineers Conference, OFC/NFOEC 2005. Optical Society of America, 2005. OME44-1-OME44-3
    [169] Chen G X, Li W, Xu C L, et al. Time and spectral domain properties of distributed-feedback-type gain-clamped semiconductor optical amplifiers. IEEE Photon. Technol.Lett., 2006, 18(8):932-934
    [170] Jia X H. Theoretical investigation of gain-clamped semiconductor optical amplifiers using the amplified spontaneous emission compensating effect. J. Opt. Soc. Am. B, 2006, 23(12):2503-2510
    [171] Jia X H, Wu Z M, Xia G Q. Gain-clamped semiconductor optical amplifiers based on compensating light: Theoretical model and performance analysis. Opt. Commun., 2006, 268(1):138-145
    [172] Li X, Park J. Time-domain simulation of channel crosstalk and inter-modulation distortion in gain-clamped semiconductor optical amplifiers. Opt. Commun., 2006, 263(2):219-228
    [173] Oh J M, Lee D. Effective gain clamping of semiconductor optical amplifiers by injecting broad-band self-generated amplified spontaneous emission. in: Proceedings of Optical Fiber Communication and the National Fiber Optic Engineers Conference, OFC/NFOEC 2007. Optical Society of America, 2007. JWA34-1-JWA34-3
    [174] Matsumoto A, Nishimura K, Utaka K, et al. Operational design on high-speed semiconductor optical amplifier with assist light for application to wavelength converters using cross-phase modulation. IEEE J. Quantum Electron., 2006,42(3):313-323
    [175] Dupertuis M A, Pleumeekers J L, Hessler T P, et al. Extremely fast high-gain and low-current SOA by optical speed-up at transparency. IEEE Photon. Technol. Lett., 2000, 12(11): 1453-1455
    [176] Pleumeekers J L, Kauer M, Dreyer K, et al. Acceleration of gain recovery in semiconductor optical amplifiers by optical injection near transparency wavelength. IEEE Photon. Technol. Lett., 2002, 14(1): 12-14
    [177] Salleras F, Hessler T P, Collin S, et al. Acceleration of a gain-clamped semiconductor optical amplifier by the optical speed-up at transparency scheme. IEEE Photon. Technol. Lett., 2004,16(5): 1262-1264
    [178] Crottini A, Salleras F, Moreno P, et al. Noise figure improvement in semiconductor optical amplifiers by holding beam at transparency scheme. IEEE Photon. Technol. Lett., 2005,17(5):977-979
    [179] Amaya M, Sharaiha A, Le Bihan J. SOA performances in presence of an assist light at gain transparency wavelength in co- and in counter-propagative direction. in: Proceedings of International Conference on Information and Communication Technologies: From Theory to Applications, ICTTA 2004, 2004. 181-182
    [180] Mohammad A, Ammar S, Thierry R. Influence on SOA dynamic behaviors in presence of assist light at gain transparency. in: Proceedings of Microwave and Optical Technology 2003, 2004. 144-147
    [181] Amaya M, Sharaiha A. Crosstalk pattern penalty reduction at 2.5 Gb/s in an SOA employing an assist light around gain transparency wavelength. Opt. Commun., 2006, 261(2):240-244
    [182] Frdric G, Mohammad A, Ammar S. Semiconductor Optical Amplifier Studies Under Optical Injection at the Transparency Wavelength in Copropagative Configuration. J. Lightwave Technol., 2007, 25(3):840-849
    [183] Zhou E, Zhang X, Huang D. Evaluating characteristics of semiconductor optical amplifiers using optical pumping near the transparency. J. Opt. Soc. Am. B, 2007, 24(10):2647-2657
    [184] Yablonovitch E, Kane E. Reduction of lasing threshold current density by the lowering of valence band effective mass. J. Lightwave Technol., 1986,4(5):504-506
    [185] Mecozzi A, M(?)rk J. Saturation induced by picosecond pulses in semiconductor optical amplifiers. J. Opt. Soc. Am. B, 1997, 14(4):761-770
    [186] Mark J, M(?)rk J. Subpicosecond gain dynamics in InGaAsP optical amplifiers: Experiment and theory. Appl. Phys. Lett., 1992, 61(19):2281-2283
    [187] Jian W, Schweizer H C. A quantitative comparison of the classical rate-equation model with the carrier heating model on dynamics of the quantum-well laser: the role of carrier energy relaxation, electron-hole interaction, and Auger effect. IEEE J. Quantum Electron., 1997, 33(8): 1350-1359
    [188] M(?)rk J. nonlinear and ultrafast dynamics in semiconduct lasers and optical amplifiers: [PhD Dissertation]. Technical University of Denmark, 2002
    [189] M(?)rk J, Mark J. Time-resolved spectroscopy of semiconductor laser devices: experiments and modeling (Invited paper). in: Proceedings of the SPIE - The International Society for Optical Engineering, 1995. 146-159
    [190] Asada M, Suematsu Y. Density-matrix theory of semiconductor lasers with relaxation broadening model-gain and gain-suppression in semiconductor lasers. IEEE J. Quantum Electron., 1985, 21(5):434-442
    [191] Willatzen M, Uskov A, M(?)rk J, et al. Nonlinear gain suppression in semiconductor lasers due to carrier heating. IEEE Photon. Technol. Lett., 1991, 3(7):606-609
    [192] Tan P W, Ghafouri-Shiraz H. Sub-picosecond gain dynamic in highly index-guided tapered-waveguide laser diode optical amplifiers. 1999. 83-88
    [193] Zhou E, Zhang X, Yu Y, et al. Suppression of nonlinear patterning effect in wavelength conversion based on the transient cross-phase modulation in SOA assisted with a detuning filter. Chin. Phys. Lett., 2009, 26(3):034213-1-034213-4
    [194] Connelly M J. Wideband semiconductor optical amplifier steady-state numerical model. IEEE J. Quantum Electron., 2001, 37(3):439-447
    [195] Connelly M J. Wide-band steady-state numerical model and parameter extraction of a tensile-strained bulk semiconductor optical amplifier. IEEE J. Quantum Electron., 2007,43(l):47-56
    [196] Zhou E, Zhang X, Huang D. Analysis on dynamic characteristics of semiconductor optical amplifiers with certain facet reflection based on detailed wideband model. Opt. Express, 2007, 15(14):9096-9106
    [197] Agrawal G P, Olsson N A. Self-phase modulation and spectral broadening of optical pulses in semiconductor laser amplifiers. IEEE J. Quantum Electron., 1989, 25(11):2297-2306
    [198] Tang J M, Spencer P S, Rees P, et al. Pump-power dependence of transparency characteristics in semiconductor optical amplifiers. IEEE J. Quantum Electron., 2000, 36(12): 1462-1467
    [199] Annetts J, Asghari M, White I H. The effect of carrier transport on the dynamic performance of gain-saturation wavelength conversion in MQW semiconductor optical amplifiers. Selected Topics in IEEE J. Quantum Electron., 1997, 3(2):320-329
    [200] Lysak V V, Sukhoivanov I A, Shulika O V, et al. Carrier tunneling in complex asymmetrical multiple-quantum-well semiconductor optical amplifiers. IEEE Photon. Technol. Lett., 2006,18(12):1362-1364
    [201] Reale A, Di Carlo A, Campi D, et al. Study of gain compression mechanisms in multiple-quantum-well In_(1-x)Ga_xAs semiconductor optical amplifiers. IEEE J. Quantum Electron., 1999, 35(11): 1697-1703
    [202]Ababneh J I,Qasaimeh O.Simple model for quantum-dot semiconductor optical amplifiers using artificial neural networks.IEEE Transactions on Electron Devices,2006,53(7):1543-1550
    [203]Kim J,Laemmlin M,Meuer C,et al.Static Gain Saturation Model of Quantum-Dot Semiconductor Optical Amplifiers.IEEE J.Quantum Electron.,2008,44(7):658-666
    [204]Qasaimeh O.Novel Closed-Form Model for Multiple-State Quantum-Dot Semiconductor Optical Amplifiers.IEEE J.Quantum Electron.,2008,44(7):652-657
    [205]Olshansky R,Su C,Manning J,et al.Measurement of radiative and nonradiative recombination rates in InGaAsP and AlGaAs light sources.IEEE J.Quantum Electron.,1984,20(8):838-854
    [206]Grinberg A A.Approximate dependence of the spontaneous emission rate on electron and hole concentrations.IEEE J.Quantum Electron.,1994,30(5):1151-1155
    [207]Sugimura A.Band-to-band Auger recombination effect on InGaAsP laser threshold.IEEE J.Quantum Electron.,1981,17(5):627-635
    [208]Sugimura A.Band-to-band Auger recombination in InGaAsPlasers.Appl.Phys.Lett.,1981,39(1):21-23
    [209]M(?)rk J,Mark J.Carrier heating in InGaAsP laser amplifiers due to two-photon absorption.Appl.Phys.Lett.,1994,64(17):2206-2208
    [210]Nakamura K,Shimizu A,Fujii K,et al.Numerical analysis of the absorption and the refractive index change in arbitrary semiconductor quantum-well structures.IEEE J.Quantum Electron.,1992,28(7):1670-1677
    [211]Nagarajan R,Ishikawa M,Fukushima T,et al.High speed quantum-well lasers and carrier transport effects.IEEE J.Quantum Electron.,1992,28(10):1990-2008
    [212]Tessler N,Nagar R,Eisenstein G.Structure dependent modulation responses in quantum-well lasers.IEEE J.Quantum Electron.,1992,28(10):2242-2250
    [213]Tessler N,Eistenstein G.On carrier injection and gain dynamics in quantum well lasers.IEEE J.Quantum Electron.,1993,29(6):1586-1595
    [214]M(?)rk J,Mecozzi A,Eisenstein G.The modulation response of a semiconductor laser amplifier.Selected Topics in IEEE J.Quantum Electron.,1999,5(3):851-860
    [215] M0rk J, Mecozzi A. Theory of the ultrafast optical response of active semiconductor waveguides. J. Opt. Soc. Am. B, 1996, 13(8): 1803-1816
    [216] Davies D A O. Small-signal analysis of wavelength conversion in semiconductor laser amplifiers via gain saturation. IEEE Photon. Technol. Lett., 1995, 7(6):617-619
    [217] Mecozzi A. Small-signal theory of wavelength converters based on cross-gain modulation in semiconductor optical amplifiers. IEEE Photon. Technol. Lett., 1996, 8(11):1471-1473
    [218] Marcenac D, Mecozzi A. Switches and frequency converters based on cross-gain modulation in semiconductor optical amplifiers. IEEE Photon. Technol. Lett., 1997, 9(6):749-751
    [219] Zhou E, Zhang X, Huang D. Analytic approach to the small-signal frequency response of saturated semiconductor optical amplifiers using multisection model. Chin. Phys. B, 2007,16(10):2998-3003
    [220] Nielsen M L, Blumenthal D J, Jesper M. A transfer function approach to the small-signal response of saturated semiconductor optical amplifiers. J. Lightwave Technol., 2000, 18(12):2151-2157
    [221] Yariv A. Optical electronics in modern communications,5th ed. New York: Oxford University, 1997. 566-567
    [222] Boucher Y, Sharaiha A. Spectral properties of amplified spontaneous emission in semiconductor optical amplifiers. IEEE J. Quantum Electron., 2000, 36(6):708-720
    [223] Petermann K. Calculated spontaneous emission factor for double-heterostructure injection lasers with gain-induced waveguiding. IEEE J. Quantum Electron., 1979, 15(7):566-570
    [224] Yamamoto Y, Inoue K. Noise in amplifiers (Invited paper). J. Lightwave Technol., 2003, 21(11):2895-2915
    [225] Lee S L, Gong P M, Yang C T. Performance enhancement on SOA-based four-wave-mixing wavelength conversion using an assisted beam. IEEE Photon. Technol. Lett., 2002,14(12):1713-1715
    [226] Inoue K, Yoshino M. Gain dynamics of a saturated semiconductor laser amplifier with 1.47μm LD pumping. IEEE Photon. Technol. Lett., 1996, 8(4):506-508
    [227] Yoshino M, Inoue K. Improvement of saturation output power in a semiconductor laser amplifier through pumping light injection. IEEE Photon. Technol. Lett., 1996, 8(l):58-59
    [228] Talli G, Adams M J. Gain dynamics of semiconductor optical amplifiers and three-wavelength devices. IEEE J. Quantum Electron., 2003, 39(10): 1305-1313
    [229] Chuang S L. Physics of optoelectronic devices. New York: Wiley, 1995. 337-377
    [230] Dailey J M, Koch T L. Impact of Carrier Heating on SOA Transmission Dynamics for Wavelength Conversion. IEEE Photon. Technol. Lett., 2007, 19(14): 1078-1080
    [231] Nielsen M L, M(?)rk J. Increasing the modulation bandwidth of semiconductor-optical-amplifier-based switches by using optical filtering. J. Opt. Soc. Am. B, 2004, 21(9):1606-1619
    [232] Jin W, Marculescu A, Jingshi L, et al. Pattern Effect Removal Technique for Semiconductor-Optical-Amplifier-Based Wavelength Conversion. IEEE Photon. Technol. Lett., 2007, 19(24): 1955-1957
    [233] Gomatam B N, DeFonzo A P. Theory of hot carrier effects on nonlinear gain in GaAs-GaAlAs lasers and amplifiers. IEEE J. Quantum Electron., 1990, 26(10): 1689-1704
    [234] Henry C H, Logan R A, Bertness K A. Spectral dependence of the change in refractive index due to carrier injection in GaAs lasers. Journal of Applied Physics, 1981, 52(7):4457-4461
    [235] Bennett B R, Soref R A, Del Alamo J A. Carrier-induced change in refractive index of InP, GaAs and InGaAsP. IEEE J. Quantum Electron., 1990, 26(1): 113-122
    [236] Franz W. Einfluβ eines elektrischen Feldes auf eine optische Absorptionskante. Zeitschrift Naturforschung Teil A, 1958, 13:484-489
    [237] Keldysh L. The effect of a strong electric field on the optical properties of insulating crystals. Soviet Physics JETP, 1958,34:788-790
    [238] Miller D A B, Chemla D S, Damen T C, et al. Band-Edge Electroabsorption in Quantum Well Structures: The Quantum-Confined Stark Effect. Phys. Rev. Lett., 1984, 53(22):2173-2176
    [239] Miller D A B, Chemla D S, Damen T C, et al. Electric field dependence of optical absorption near the band gap of quantum-well structures. Phys. Rev. B, 1985, 32(2): 1043-1060
    [240] Miller D A B, Chemla D S, Schmitt-Rink S. Relation between electroabsorption in bulk semiconductors and in quantum wells: The quantum-confined Franz-Keldysh effect. Phys. Rev. B, 1986, 33(10):6976-6982
    [241] Moss D J, Ido T, Sano H. Calculation of photogenerated carrier escape rates from GaAs/Al_xGa_(1-x)As quantum wells. IEEE J. Quantum Electron., 1994, 30(4): 1015- 1026
    [242] Karin J R, Helkey R J, Derickson D J, et al. Ultrafast dynamics in field-enhanced saturable absorbers. Appl. Phys. Lett., 1994,64(6):676-678
    [243] Heck M J R, Bente A J M, Barbarin Y, et al. Monolithic Semiconductor Waveguide Device Concept for Picosecond Pulse Amplification, Isolation, and Spectral Shaping. IEEE J. Quantum Electron., 2007, 43(10):910-922
    [244] Heck M J R, Bente E A J M, Barbarin Y, et al. Characterization of a Monolithic Concatenated SOA/SA Waveguide Device for Picosecond Pulse Amplification and Shaping. IEEE J. Quantum Electron., 2008,44(4):360-369
    [245] Dahdah N E, Coquille R, Charbonnier B, et al. All-optical wavelength conversion by EAM with shifted bandpass filter for high bit-rate networks. IEEE Photon. Technol. Lett., 2006,18(l):61-63
    [246] Zhou E, (?)hman F, Cheng C, et al. Reduction of patterning effects in SOA-based wavelength converters by combining cross-gain and cross-absorption modulation. Opt. Express, 2008,16(26):21522-21528
    [247] Uskov A, M(?)rk J, Mark J. Theory of short-pulse gain saturation in semiconductor laser amplifiers. IEEE Photon. Technol. Lett., 1992, 4(5):443-446
    [248] Romstad F. Absorption and refractive index dunamics in waveguide semiconductor electroabsorbers: [PhD Dissertation]. Technical University od Denmark, 2002
    [249] H(?)jfeldt S, Bischoff S, M(?)rk J. All-optical wavelength conversion and signal regeneration using an electroabsorption modulator. J. Lightwave Technol., 2000,18(8):1121-1127
    [250] H(?)jfeldt S. Modeling of carrier dynamics in electroabsorption modulators: [PhD Dissertation]. Technical University of Denmark, 2002
    [251] Winzer P J, Kalmar A. Sensitivity enhancement of optical receivers by impulsive coding. J. Lightwave Technol., 1999, 17(2): 171-177
    [252] Pauer M, Winter P J, Leeb W R. Bit error probability reduction in direct detection optical receivers using RZ coding. J. Lightwave Technol., 2001, 19(9): 1255-1262
    [253] Ghavami M, Michael L, Kohno R. Ultra Wideband Signals and Systems in Communication Engineering. West Sussex, U.K.: Wiley, 2004. 1-7
    [254] Siwiak K, McKeown D. Ultra-Wideband Radio Technology. Chichester, U.K.: Wiley, 2004. 39-52
    [255] Aiello G R, Rogerson G D. Ultra-wideband wireless systems. IEEE Microw. Mag., 2003, 4(2):36-47
    [256] Lei Z, Sheng S, Menzel W. Ultra-wideband (UWB) bandpass filters using multiple-mode resonator. IEEE Microw. Wirel. Compon., 2005,15(11):796-798
    [257] Gerrits J F M, Farserotu J R. Wavelet generation circuit for UWB impulse radio applications. Electron. Lett., 2002, 38(25): 1737-1738
    [258] Choi Y H. Gated UWB pulse signal generation. in: Proceedings of International Workshop on Ultra Wideband Systems Joint with Conference on Ultra Wideband Systems and Technologies, Joint UWBST & IWUWBS 2004, 2004. 122-124
    [259] Torres-Company V, Prince K, Monroy I T. Fiber transmission and generation of ultrawideband pulses by direct current modulation of semiconductor lasers and chirp-to-intensity conversion. Opt. Lett., 2008, 33(3):222-224
    [260] Li J, Fu S, Xu K, et al. Photonic ultrawideband monocycle pulse generation using a single electro-optic modulator. Opt. Lett., 2008, 33(3):288-290
    [261] Zhou E, Zhang X, Yu X, et al. Photonic Generation of UWB Monocycle Pulses Using a Cascaded Semiconductor Optical Amplifier and Electroabsorption Modulator. in: Proceedings of Optical Fiber Communication and the National Fiber Optic Engineers Conference, OFC/NFOEC 2009. Optical Society of America, 2009. JWA-1-JWA-3
    [262] Zhou E, Yu X, Zhang X, et al. Photonic generation of UWB monocycle and doublet pulses by using SOA-based wavelength converter. Opt. Lett., 2009, 34(9): 1336-1338

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700