用户名: 密码: 验证码:
复动力系统分形的辨识控制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
现实世界的几何体——分形是非线性科学研究中非常活跃的一个分支,它的研究对象是自然界和非线性系统中出现的不规则和不光滑的几何形体,它的应用几乎涉及自然科学的各个领域甚至于社会科学。
     动力系统中的分形集是近些年分形几何中十分活跃的一个研究领域,其中一类分形集产生于复平面上解析映射的迭代。解析映射迭代把复平面划分成两部分,一部分为朱利亚集(Julia集),另一部分为法图集(Fatou集)。人们已经发现分形集中具有重要地位的广义Mandelbrot-Julia (M-J)集深藏着精细而复杂的结构。
     在理论研究上,分形集——Julia集及其推广形式的维数、性质及动力学特征成为科学工作者们关注的一个研究方向。另外,牛顿变换的Julia集的理论和Julia集的稳定域也是科学工作者研究的热点问题。然而根据实际情况的需要,人们往往对分形集合非线性吸引域的区域大小以及集合参数有要求,因此对分形集的同步控制和参数辨识的研究是十分必要和有意义的工作。目前,关于分形同步控制的工作已有了一些成果,如非线性耦合方法、梯度控制法,以及最优控制等方法实现复系统Julia集的稳定域的控制和驱动响应系统的同步控制。
     但是遗憾的是,这些同步控制方法仅研究最基本的Julia集的同步控制和广义同步控制,并且只有在驱动系统参数已知的情况下才可行。然而,实际情况往往是驱动系统参数不可知,那么这些控制方法就无法解决驱动响应系统的同步控制问题。
     本文针对复动力系统广义Julia集、最基本Julia集和三角函数Julia集,以及一类空间Julia集,创新性地解决了复动力系统分形的辨识控制问题。我们提出了新的实现系统同步控制和参数辨识的方法。该方法能够辨识驱动系统的参数,并且成功的解决了在驱动系统参数未知的情况下,无法实现驱动响应系统同步控制的问题。具体内容如下:
     1基于非线性反馈控制器方法和差分方程稳定性理论,研究了一类相当广泛的复动力系统广义Julia集和正弦函数Julia集的参数辨识问题。设计了普遍适用的自适应同步控制器,给出了参数自适应律的解析表达式。并在理论上证明了设计的控制器可使得此类复动力系统广义Julia集、正弦函数Julia集达到同步,并且在渐近同步过程中能够辨识Julia集的未知参数。该方法也适用于最基本的Julia集。
     2基于变结构控制理论,将滑动变量零渐近的性质应用到复动力系统分形的辨识控制理论中,提出了一种新的实现驱动响应系统同步控制和参数辨识的方法。该方法成功解决了复动力系统广义Julia集和三角函数Julia集在驱动系统参数未知的情况下无法实现同步控制的问题,并且在实现渐近同步的过程中,能够辨识出驱动系统的未知参数。该方法同样适用于最基本的Julia集。
     3针对一类空间Julia集提出了一种新的实现驱动响应系统同步控制的方法,并创新性地解决了空间Julia集的参数辨识问题。该方法设计了普遍适用的自适应同步控制器,给出了参数自适应律的解析表达式,解决了在驱动系统参数未知的情况下无法实现同步控制的问题,并且在实现渐近同步的过程中能够辨识出驱动系统的未知参数。该方法是复动力系统广义Julia集辨识控制的自然推广。
     这些研究为空间Julia集和复动力系统广义Julia集更好的应用于实际提供了一定的理论基础。
Fractal is the geometric solid in the real world. And the fractal theory is much attention in the nonlinear science. Its study object is the irregular and unsmooth ge-ometric solid in nature or nonlinear systems. Its applications are involved in almost all of the natural science, and even in the social science.
     The fractal set of dynamic system is a very active research field in the fractal geometry in the past few years, and one class of them is gotten from the analytic mapping iteration on the complex plane. The complex plane is divided into two parts due to the analytic mapping iteration. One part is called Julia set, and the other part is called Fatou set. Mandelbrot-Julia set which is found to have a fine and complex structure plays an important role in fractal.
     In theoretical study, many researchers are interested in the dimensions, prop-erties, and the kinetic characteristics of the Julia sets and their generalized forms. Moreover, the properties of the Newton's transformation Julia sets and stable re-gions of Julia sets are paid much attention. However, the nonlinear attractive domain ranges and parameters of the fractal sets are demanded according to the actual sit-uations. It is very necessary and significant to study the synchronous control and parameter identification of the fractal sets. At present, some significant results of the fractal synchronous control have been reported, such as the nonlinear coupling method, the gradient control, and the optimum control, which realize the control of the stable region and synchronous control for the Julia sets of complex systems.
     It is pointed that these methods are only applied to the synchronous control and generalized synchronous control of basic Julia sets. And it is only feasible when the parameters of the drive system are obtained. The parameters are usually not derived actually, so the synchronous control in the drive-response system is not solved by the method above.
     In this paper, the identification control on fractal of the complex dynamic sys-tems which include the generalized Julia sets, basic Julia sets, trigonometric function Julia sets and one class of spatial Julia sets, is innovatively achieved. A new method to realize synchronous control and parameter identification of the drive-response system is obtained. And it is applied to synchronous control in the drive-response system when parameters of drive system are unknown, and parameters of the drive system are identified. The main content is following.
     1Based on the nonlinear feedback controller method and the stability theory in difference equations, the parameter identification on generalized Julia sets and trigonometric function Julia sets of the complex dynamic systems is studied. The generally applicable adaptive synchronous controller and parameter adaptive ana-lytic expression are designed. It is proved that the controllers make generalized Julia sets and trigonometric function Julia sets achieve the synchronization, and the un-known parameters of the Julia sets can be identified. Particularly, this method is also applied to the basic Julia sets.
     2Based on variable structure control theory, the zero asymptotic sliding vari-ables are applied to the fractal identification control for the complex dynamic sys-tems. A new method to realize drive-response system synchronous control and parameter identification is derived. And the problems of synchronous control, for generalized Julia sets and trigonometric function Julia sets of the complex dynamic systems, are solved when the drive system parameters are unknown. The unknown parameters of the drive system can be identified in the asymptotic synchronization process. Moreover, this method is also applied to the basic Julia sets.
     3A new method to realize drive-response system synchronous control for the spatial Julia sets is derived. And the parameter identification of the spatial Julia sets is innovatively solved. The widely used adaptive synchronous controller and the analytical expression of the parameter adaptive law are designed by this method. Meanwhile, the unknown parameters of the drive system can be identified in the asymptotic synchronization process. It is successful to realize the synchronization control in the case of the unknown parameters. Particularly, the method is also ap-plied to the basic Julia sets.
     These studies are provided certain theoretical bases to the spatial Julia sets and the generalized Julia sets of complex dynamic systems for better applications.
引文
[1]陈式刚,映象与混沌,北京,国防工业出版社,1992.
    [2]朱宏雄,非线性系统中的混沌和有序,自然杂志,1993(3),11-14.
    [3]欧阳碧耀等,定域场中粒子运动由周期通向混沌的道路,物理学报,1994(1),7-11.
    [4]王光瑞等,三频耦合圆映象准周期向混沌的过渡,广西师大学报,1993(2),1-7.
    [5]姜志强,分形理论应用研究若干问题及现状与前景分析,吉林大学学报,2004,22(1),57-61.
    [6]S. M. Berman, Local times and sample function, properties of stationary Gaussian processes, Trans. Amer. Math. Soc,1969,137,277-300.
    [7]B. E. Fretedt, W. E.Pruitt, Lower functions for increasing random walks and subordinators, Z. Wahrscheinlichkeitstheor. Verw. Geb,1971,18,167-182.
    [8]S. Graf, R. D. Mauldin and S. C. William, The exact Hausdorff dimension in random recursive constructions Memoirs of the Ame. Math. Socr,1988,381, 1-121.
    [9]J. E. Hutchinson, Fractals and self-similarity, Indiana Univ. Math. J,1981,30, 713-747.
    [10]J. Kigami, Harmonic calculus on P. C. F. self-similar set, Trans. Amer. Math. Soc,1993,335,721-755.
    [11]W. Krebs, A diffusion defined on a fractal, Ph.D. Thesis, Univ. California at Birkeley,1988.
    [12]R. Rammal, G. Toulouse, Random walks on fractal structures and percolation clusters, J. Physique Letters,1983,44,13-22.
    [13]S. Kusuoka, X. Y. Zhou, Dirichlet from on fractals, Resistance and Poincare constant, Prob. Th. Rel. Fields,1992,93,169-196.
    [14]B. Hambly, Brownian motion on a homogeneous random fractals, Probab. Th. Rel. Fielas,1992,94,1-38.
    [15]胡迪鹤,刘禄勤,肖益旻,吴军,赵兴球,随机分形,数学进展,1995,24(3),193-212.
    [16]B. B. Mandelbrot, Self-arlene fractals and fractal dimension, Physiea Scripta, 1985,32,257-260.
    [17]Q. Fu, Wavelet analysis of multifractal characteristics and its application to processing temperature data in Rayleigh-Benard convection, Engineering Me-chanics,2002,19(2),100-108.
    [18]Xia H., Tang G., Han K., et al. Scaling of time-fractional Edwards-Wilkinson equation, Chinese J Comput Phys,2009,26(3),449-453.
    [19]Y. Y. Liu, X. S. Luo, Q. B. Chen, et al. Application of multifractal spectrum in leaf images processing, Computer Engineering and Applications,2008, 44(28),190-192.
    [20]A. Benassi, S. C. J. Istas, Identifying the multifractional function of a Gaus-sian Proeess, Statisties& ProbabilityLetters,1998,39,337-345.
    [21]李彤,商朋见,多重分形在掌纹识别中的研究,物理学报,2007,58(8),4393-4400.
    [22]王信峰,曹占辉,李言俊,空间目标Rcs序列的多重分形分析,计算机测量与控制,2008,16(12),1934-1937.
    [23]马丽萍,石炎福,黄卫星,余华瑞,循环流化床颗粒浓度波动信号多重分形测度分析,高效化学工程学报,2002,16(05),496-501.
    [24]B. B. Mandelbrot, The Fractal Geometry of Nature, Sanfrancisco, Freeman W H,1982.
    [25]H. O. Peit Gen, D. Saupe, The Science of Fractal Images. Berlin, Spring er-Verlag,1988.
    [26]M. F. Barnsley, Fractals Everywhere, Bost on, AcademicPress Professional, 1993.
    [27]王兴元,复杂非线性系统中的混沌,北京,电子工业出版社,2003.
    [28]王兴元,广义M-J集的分形机理,大连,大连理工大学出版社,2002.
    [29]A. J. Lakhtakia, V. V. Varadan, R. Messier, et al. On the symmetries of the Julia sets for the process z=>zp+c, Journal of Physics A, Mathematical and General,1987,20,3533-3535.
    [30]U. G. Gu Jar, V. C. Bhavsar, Fractals from z←zα+c in the complex e-plane, Computers&Grephics,1991,15(3),441-449.
    [31]E. F. Glynn, The evolution of the Gingerbread Man, Computers & Graphics, 1991,15(4),579-582.
    [32]X. Y. Wang, X. D. Liu, W. Y. Zhu, et al, Analysis e-plane fractal images from z←zα+c for α< 0, Fractals,2000,8(3),307-314.
    [33]王兴元,刘向东,朱伟勇,由复映射z←zα+c for α< 0所构造的广义M集的研究,数学物理学报,1999,19(1),73-79.
    [34]C. A. Pickover, Computers Pattern Chaos and Beauty, New York, St. Martincs Press,1990.
    [35]K. J. Hooper, A note on some internal structures of the Mandelbrot set, Com-puters & Graphics,1991,15(2),295-297.
    [36]K. W. Philip, Field lines in the Mandelbrot set, Computers & Graphics,1992, 16(4),443-447.
    [37]A. Lakhtakia, Julia sets of switched processes, Computers & Graphics,1991, 15(4),597-599.
    [38]X. Y. Wang, Fractal structures of the non-boundary region of the generalized Mandelbrot set, Progress in Natural Science,2001,11(9),693-700.
    [39]X. Y. Wang, Switched processes generalized Mandelbrot sets for complex index number, Applied Mathematics and Mechanics,2003,24(1),73-81.
    [40]王兴元,骆超,一个非解析复映射的广义Mandelbrot集,大连理工大学学报,2009,49(1),128-132.
    [41]Y. Y. Sun, X. Y. Wang, Noise-perturbed quaternionic Mandelbrot sets, Inter-national Journal of Computer Mathematics,2009,86(12),2008-2028.
    [42]Y. P. Zhang, W. H. Sun, Synchronization and coupling of Mandelbrot sets, Nonlinear Dynamics,2011,64,59-63.
    [43]Zhang Y., Liu S., Gradient control and synchronization of Julia sets, Chin. Phys. B,2008,17,543-549.
    [44]H. O. Peitgen, D. Saupe, The Science of Fractal Images, Berlin, Springer-Verlag,1988,137-218.
    [45]张池平,诗云慧,计算方法,北京,科学出版社,2002,257-260.
    [46]K. Kneisl, Julia sets for the super-Newton method, Cauchy's method and Halley's method, Chaos,2001,11(2),359-370.
    [47]H. O. Peitgen, D. Saupe, F. V. Haeseler, Cayley's problem and Julia sets, Mathlntell,1984,6,11-20.
    [48]T. Wegner, M. Peterson, Fractal Creations, Mill Valley, The Waite Group Press,1991,168-231.
    [49]D. J. Walter, Computer art representing the behavior of the Newton-Raphson method, Computers & Graphics,1993,17(4),487-488.
    [50]D. J. Walter, Systemised serendipity for producing computer art, Computers & Graphics,1993,17(6),699-700.
    [51]J. H. E. Cartwright, Newton maps, fractals from Newton's method for the circle map, Computers & Graphics,1999,23(4),607-612.
    [52]W. J. Gilbert, Generalizations of Newton's method, Fractals,2001,9(3),251-262.
    [53]N. Chen, X. L. Zhu, K. W. Chang, M and J sets from Newton's transforma-tion of the transcendental mapping F(z)=ez(?)+(?) with vcps, Computers & Graphics,2002,26(3),371-383.
    [54]F. Cilingir, On infinite area for complex exponential function, Chaos Solitons and Fractals,2004,22(5),1189-1198.
    [55]X. Y. Wang, W. Liu, The Julia set of Newton's method for multiple roots, Appl Math Comput,2006,172(1),101-110.
    [56]王兴元,刘威,利用陷阱技术构造3D牛顿变换的M-J集,计算机辅助设计与图形学学报,2005,17(4),754-760.
    [57]王兴元,刘威,三阶广义牛顿变换的Julia集,工程图学学报,2005,26(2),119-127.
    [58]M. A. Motyka, C. A. Reiter, Chaos and Newton's method on systems, Com-puter& Graphics,1990,14(1),131-134.
    [59]王兴元,王婷婷,实指数幂多元牛顿变换的Julia集,大连理工大学学报,2007,47(6),897-903.
    [60]A. F. Beardon, Symmetries of Julia sets, Bull. London Math. Soc.,1990,22, 575-582.
    [61]G. Levin, Symmetries on a Julia set, Adv. in Sov. Math.,1991,3,131-141.
    [62]D. Boyd, Translation invariant Julia sets, Pro c. Amer. Math. Soc.,2000,128, 803-812.
    [63]阳卫锋,牛顿变换Julia集的对称性,纯粹数学与应用数学,2009,25(3),530-533.
    [64]W. Bergweiler, Fatou-Julia theory for non-uniformly quasiregular maps, Er-godic Theory and Dynamical Systems,2013,33,1-23.
    [65]J. Peter, Hausdorff measure of escaping and Julia sets for bounded-type func-tions of finite order, Ergodic Theory and Dynamical Systems,2013,33,284-302.
    [66]S. H. Boyd, M. J. Schulz, Geometric Limits of Mandelbrot and Julia sets under Degree Growth, International Journal of Bifurcation and Chaos,2012, 22(12),1250301.
    [67]J. Y. Gao, J. Y. Qiao, Continuity of Julia set and its Hausdorff dimension of Yang-Lee zeros, Journal of Mathematical Analysis and Applications,2011, 378(2),541-548.
    [68]Z. G. Huang, J. Wang, On the radial distribution of Julia sets of entire solu-tions of f(n)+A(z)f=0, J. Math. Anal. Appl.,2012,387(2),1106-1113.
    [69]Y. Zhai, On the dimensions of Cantor Julia sets of rational maps, J. Math. Anal. Appl.,2013,402(2),772-780.
    [70]M. B. Alexander, P. C. Clinton, G. O. Lex, Locally connected models for Julia sets, Advances in Mathematics,2011,226(2),1621-1661.
    [71]D. Romain, Fatou directions along the Julia set for endomorphisms of CPk, J. Math. Pures Appl.,2012,98(6),591-615.
    [72]S. L. Singh, S. N. Mishra, W. Sinkala, A new iterative approach to fractal models, Commun Nonlinear Sci Numer Simulat,2012,17(2),521-529.
    [73]G. Honorato, S. Plaza, N. Romero, Dynamics of a higher-order family of iterative methods, Journal of Complexity,2011,27 (2),221-229.
    [74]法尔科内著,分形几何—数学基础及其应用(第2版),曾文曲译,人民邮电出版社,2007.
    [75]张永平,分形的控制与应用,山东大学博士学位论文,2008.
    [76]朱华,姬翠翠,分形理论及其应用,北京,科学出版社,2011.
    [77]P. Montel, Lecons sru les families normales de fonctios analytiques et leurs applications, Gauthier-Villars, Paris 1927.
    [78]H. J. Stapleton, J. P. Allen, C. P. Flynn, et al. Fractal form of proteins, Physical Renew Letters,1980,45(17),1456-1459.
    [79]罗辽夏,蔡禄,核酸序列的分形维数与进化相关性,内蒙古大学学报(自然科学版),1987,18(4),717-722.
    [80]张刘衷,分形,北京,清华大学出版社,1995.
    [81]陈力,邵瑞,分形理论及其在物理学中额应用,皖西学院学报,2006,22(2),38-40.
    [82]葛世荣,粗糙表面的分形特征与分形表达研究,摩擦学学报,1997,19(1),73-80.
    [83]邓昭镜,超微粒与分形,重庆,西南师范大学出版社,1993.
    [84]郭从容,杨桂琴,王雪松等,分形理论及其在化学和化工中的应用,化学工业与工程,1999,16(1),33-38.
    [85]万荣,李如生,分形介质上的化学动力学,化学通报,1996,(7),1-6.
    [86]徐利华,先进耐磨陶瓷的冲蚀表面能的分维特性,分形理论及其应用(三),1993,317-319.
    [87]吴秋菊,吴立新,漆宗能等,高碘化度聚胺体系中的分形结构研究,Acta Polymerica Sinica,2000, (2),172-175.
    [88]穆在勤,李淑清,龙期威,材料科学进展,1990,4(3),247-250.
    [89]唐长国,朱金华,钨合金动态拉伸断口的分形维数,兵器材料科学与工程,1994,17(4),53-57.
    [90]R. Wu, Q. Liao, X. Zhu, H. Wang, A fractal model for determining oxygen effective diffusivity of gas diffusion layer under the dry and wet conditions, International Journal of Heat and Mass Transfer,2011,54,4341-4348.
    [91]K. Davey, R. Prosser, Analytical solutions for heat transfer on fractal and pre-fractal domains, Applied Mathematical Modelling,2013,37(1),554-569.
    [92]G. Xiong, S. N. Zhang, X. N. Yang, The fractal energy measurement and the singularity energy spectrum analysis, Physica A:Statistical Mechanics and its Applications,2012,391(24),6347-6361.
    [93]W. Tang, Y. Wang, Fractal characterization of impact fracture surface of steel,Applied Surface Science,2012,258(10),4777-4781.
    [94]Q. Zheng, B. M. Yu, S. F. Wang, L. Luo, A diffusivity model for gas dif-fusion through fractal porous media,Chemical Engineering Science,2012, 68(1),650-655.
    [95J Y. Wada, K. Kuwana, A numerical method to predict flame fractal dimension during gas explosion, Journal of Loss Prevention in the Process Industries, 2013,26,(2),392-395.
    [96]Q. Zheng, J. Xu, B. Yang, B. M. Yu, A fractal model for gaseous leak rates through contact surfaces under non-isothermal condition, Applied Thermal Engineering,2013,52(1),54-61.
    [97]A. Jafari, T. Babadagli, Relationship between percolation-fractal properties and permeability of 2-D fracture networks, International Journal of Rock Me-chanics and Mining Sciences,2013,60,353-362.
    [98]A. Dawar, A. Chandra, Fractal forming species and hierarchical growth in polymer electrolyte composites:Raman mapping and role of seed parti-cles,Communications in Nonlinear Science and Numerical Simulation,2013, 18(4),959-972.
    [99]R. Broderick, L. Fishman, D. Simmons, Badly approximable systems of affine forms and incompressibility on fractals, Journal of Number Theory,2013, 133(7),2186-2205.
    [100]B. Loridant, A. Messaoudi, P. Surer, et al., Tilings induced by a class of cubic Rauzy fractals, Theoretical Computer Science,2013,477,6-31.
    [101]S. Tada, M. Takahashi, K. Ueda, et al., Fractal analysis for quantification of grazing paths of cows on homogeneous pastures,Behavioural Processes,2013, 92,107-112.
    [102]R. Kant, M. Sarathbabu, S. Srivastav, Effect of uncompensated solution resis-tance on quasireversible charge transfer at rough and finite fractal electrode, Electrochimica Acta,2013,95,237-245.
    [103]H. Bayat, M. R. Neyshaburi, K. Mohammadi, et al., Combination of artifi-cial neural networks and fractal theory to predict soil water retention curve, Computers and Electronics in Agriculture,2013,92,92-103.
    [104]X. Q. Huang, Q. Zhang, W. B. Liu, A new method for image retrieval based on analyzing fractal coding characters, Journal of Visual Communication and Image Representation,2013,24(1),42-47.
    [105]于红志,基于Julia集的花型图案绘制,大连大学学报,2003,24(4),13-16.
    [106]K. Falconer, Fractals Geometry Mathematical Foundations and Applications, New York, Wiley,1990.
    [107]T. C. Halsey, M. H. Jensen, L. P. Kadanoff, et al, Fractal measures and their singularities, the characterization of strange sets, Phys. Rev. A,1986,33, 1141.
    [108]李英,孔样木,黄家寅,X分形晶格(?)Gauss模型的临界性质,物理学报,2002,51(6),1346-1349.
    [109]于会生,孙霞,罗守福,非品Ni-Cu. P合金化学沉积过程的多重分形谱研究,物理学报,2002,51(5),999-1003.
    [110]贺涛,周正欧,基于分形自仿射的混沌时间序列预测,物理学报,2007,56(2),693-699.
    [111]孙霞,吴自勤,规则表面形貌的分形和多重分形描述,物理学报,2001,50(11),2126-2131.
    [112J R. Rammal, B. Doucot, Invariant imbedding approach to localization. I. Gen-eral framework and basic equations, J. Phys.(Paris),1987,48(4),509-526.
    [113]M. Biskup, C. Borgs, J. Chayes, et al. General physics-general theory of Lee-Yang zeros in models with first-order phase transitions, Phys. Rev. Lett.,2000, 84(21),4794-4797.
    [114]王凌,郑大钟.一种基于退火策略的混沌神经网络优化算法,控制理论与应用,2000,17(1),139-142.
    [115]王兴元,孟庆业,基于Langevin问题探讨广义M-J集的物理意义,物理学报,2004,53(2),388-395.
    [116]S. Li, In:5th International conference on signal processing procceding, Bei-jing, Publing House Electronic Industry,2000,285.
    [117]Y. P. Zhang, S. T. Liu, S. L. Shen, Fractals control in particle's velocity, Chaos Solitons and Fractals,2009,39,1811-1816.
    [118]刘树堂,张永平,复系统Julia集的同步,物理学报,2008,57(2),737-741.
    [119]贾启禹,高等数学(下),北京,科学出版社,2001,199-200.
    [120]X. Y. Wang, W. Liu and X. J. Yu, Research on brownian movement based on generalized Mandelbrot-Julia sets from a class complex mapping system, Modern Physics Letters B,2007,21(20),1321-1341.
    [121]R. Mamta, N. Ashish, New julia sets for complex carotid-kundalini function, Chaos Solitons and Fractals,2008,36,226-236.
    [122]J. Y. Gao, Julia sets hausdorff dimension and phase transition, Chaos Solitons and Fractals,2011,44(10),871-877.
    [123]X. Y. Wang, Y. Y. Sun, The general quaternionic M-J sets on the mapping z←zα+c, (α∈N), Computers and Mathematics with Applications.2007, 53,1718-1732.
    [124]X. Y. Wang, Q. J. Shi, The generalized Mandelbort-Julia sets from a class of complex exponential map, Applied Mathematics and Computation,2006, 181,816-825.
    [125]X. Y. Wang, X. J. Yu, Julia sets for the standard Newton's method, Halley's method, and Schroder's method, Applied Mathematics and Computation, 2007,189(2),1186-1195.
    [126]W. F. Yang, Symmetries of the Julia sets of Newton's method for multiple root, Applied Mathematics and Computation,2010,217(6),2490-2494.
    [127]A. John, E. Theodoros, Karakasidis, Ioannis Andreadis, On the Julia set of the perturbed Mandelbrot map, Chaos Solitons and Fractals,2000,2067.
    [128]P. Liu, S. T. Liu, Control and synchronization of Julia sets in coupled map lat-tice, Communications in Nonlinear Science and Numerical Simulation,2011, 16(8),3344-3355.
    [129]Y. P. Zhang, W. H. Sun, S. T. Liu, Control of generalized Julia sets, Chaos Solitons and Fractals,2009,42,1738-1744.
    [130]K. Furuta, Sliding mode control of a discrete system, Syst. Cont. Lett.,1990, 14(2),145-152.
    [131]E. J. Davision, S. H. Wang, On pole assignment in linear multidimensional system using output feedback, IEEE Trans Auto Control,1985, AC-30(3), 280-283.
    [132]J. Ackermann, Sampled-Date Control System, Analysis and Synthesis, Ro-bust System Design, Berlin Springer-Verlag,1988.
    [133]刘树堂,2-D离散动力系统混沌控制与同步.华南理工大学博士学位论文,2002.
    [134]S. Liu, S. Wu, Y. P. Zhang, Uniformity and spatial chaos of spatial physics kinematic system, International Journal of Bifurcation and Chaos,2006, 16(9),2697-2703.
    [135]南京大学数学系计算数学专业,偏微分方程数值解,科学出版社,1979,6.
    [136]L. Collatz, The Numerical Tratment of Difference Equation,1960.
    [137]S. Liu, G.. Chen, On spatial lyapunov exponents and spatial chaos, Interna-tional Journal of Bifurcation and Chaos,2003,13 1163-1181.
    [138]隋首钢,复动力系统的空间分形Julia集,山东大学硕士学位论文.2005,70.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700