用户名: 密码: 验证码:
腺病毒介导IL-24基因对U251胶质瘤细胞的杀伤作用及相关机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
神经胶质瘤是人类最常见的脑部肿瘤,已成为15岁以下儿童肿瘤致死的第二大病因,是导致35~54岁成年男性和15~34岁女性肿瘤死亡的第四大病因。目前,恶性胶质瘤的常规治疗手段(手术加放化疗)治疗困难、远期效果差,死亡率高。对于恶性程度高的胶质瘤患者,生存期短、5年生存率小于1%。怎样改善胶质瘤的治疗效果,是临床面对的一个难题。近年来,随着分子生物学、分子遗传学的研究进展,对于肿瘤的基因治疗方面取得了长足进步,为提高恶性胶质瘤的治疗效果,增加患者的生存率开拓了新的思路。
     白细胞介素24(interleukin-24,IL-24)是细胞因子白介素10家族的新成员,由于最初在人类黑色素瘤中发现,因此也被称为黑色素瘤分化相关因子-7(melanoma differentiation-associated gene-7,mda-7)基因。研究发现,IL-24对多种肿瘤细胞(肺癌、前列腺癌、乳腺癌、卵巢癌、胰腺癌、肝癌等)均有选择性的抑制作用。此外,IL-24与化疗、放疗相结合的研究表明,将IL-24基因转染入人非小细胞肺癌的细胞后,可增强此肿瘤细胞对放射治疗的敏感性,而同时接受照射的人正常成纤维细胞则未受此放射线照射的影响。由于IL-24特有的杀伤肿瘤细胞,而对正常细胞没有损伤作用的生物学特点,现已成为基因治疗的候选基因,并成功用于1期临床研究。目前,关于IL-24对胶质瘤作用的研究报道尚少,尤其对于IL-24诱导胶质瘤细胞凋亡的分子机制尚缺乏足够的了解。
     本研究应用新型重组腺病毒载体(Ad5F35-IL24),将IL-24基因导入人胶质瘤U251细胞,应用MTT、流式细胞术、双荧光染色、Hoechst 33258荧光染色、Annexin V-FITC凋亡试剂盒和单细胞凝胶电泳(Single cell gel electrophoresis; SCGE)等技术,体外观察Ad5F35-IL24对U251细胞的杀伤作用。同时用transwell细胞侵袭实验、细胞划痕实验(Cell scratch assay)检测药物作用后肿瘤细胞侵袭、迁移能力的改变。应用Western blot印迹检测外源性IL-24基因转染U251细胞后, ERK、p-ERK、p38 MAPK和p-p38 MAPK等细胞信号转导通路蛋白的表达水平变化。同时应用MTT、流式细胞术、双荧光染色观察ERK、p38 MAPK蛋白抑制剂PD98059、SB203580作用后,对IL-24基因介导U251细胞杀伤中作用的影响。应用Western blot印迹、RT-PCR、流式细胞术、免疫细胞化学的方法检测bcl-2、caspase-3和TopoⅡα蛋白的表达变化情况。以期更深入的了解IL-24基因可能的效应途径和作用靶点,为进一步提高临床神经胶质瘤治疗效果提供研究基础。
     第一部分Ad5F35-IL24重组腺病毒载体的构建
     目的:构建重组腺病毒载体Ad5F35-IL24。
     方法:先用HindⅢ和SalⅠ双酶切ATCC质粒,得到目的条带,然后再用HindⅢ和SalⅠ双酶切pDC316质粒,得到线性化的载体条带,进行片断连接,转化,筛选得到重组的pDC316-IL24质粒。随后用PCR和酶切的方法对重组pDC316-IL24质粒进行鉴定;最后经全自动核酸分析仪上进行序列测定证实连接正确。制备感受态细胞,进行转化,大量制备质粒DNA;之后用双质粒共转染293细胞,产生重组腺病毒Ad5F35-IL24。进行病毒扩增、纯化,计算病毒滴度,按照公式:病毒滴度(PFU/mL)=GFP阳性细胞数×病毒上清稀释倍数/0.5 mL。
     结果:成功构建载有IL-24基因的重组pDC316-IL24质粒,并用PCR、酶切、序列测定和BLAST的方法进行了鉴定,证明连接正确;获得了携带IL-24基因的大肠杆菌菌株;成功构建成载有IL-24基因的增殖能力缺陷的新型重组腺病毒Ad5F35-IL24,并进行了扩增和纯化。测得病毒滴度为2.8×108 PFU/mL。
     结论:成功构建携带IL-24基因,具有增殖能力缺陷的新型重组腺病毒Ad5F35-IL24载体。
     第二部分腺病毒介导IL-24基因对U251胶质瘤细胞的侵袭、迁移及杀伤作用
     目的:观察IL-24基因对U251人胶质瘤细胞的杀伤作用,及其对肿瘤细胞侵袭、迁移能力的影响。
     方法:用MTT、流式细胞术、双荧光染色、Hoechst 33258荧光染色、Annexin V-FITC凋亡试剂盒和单细胞凝胶电泳( Single cell gel electrophoresis; SCGE)等技术,观察Ad5F35-IL24对U251细胞的杀伤作用。同时用transwell细胞侵袭实验和细胞划痕实验(Cell scratch assay),检测药物作用后对肿瘤细胞侵袭和迁移能力的影响。
     结果:与空白对照组和空载体组相比,Ad5F35-IL24能够抑制人U251细胞的增殖,诱导细胞凋亡,且随着Ad5F35-IL24药物浓度的增加,细胞杀伤率增加明显。结果表明,Ad5F35-IL24对U251细胞细胞周期进程有抑制作用,可使细胞周期被阻滞于G2/M期。同时,研究表明Ad5F35-IL24组可显著降低U251细胞的侵袭和迁移能力。
     结论:Ad5F35-IL24能够诱导人U251细胞凋亡,诱导G2/M期阻滞,降低肿瘤细胞的侵袭和迁移能力。
     第三部分腺病毒介导IL-24基因对U251胶质瘤细胞ERK和p38 MAPK信号转导通路的影响
     目的:探讨外源性IL-24基因对U251胶质瘤细胞ERK和p38 MAPK信号转导通路的影响。
     方法:IL-24基因转染U251细胞24小时后,应用Western blot印迹检测细胞信号转导通路蛋白ERK、p-ERK、p38 MAPK和p-p38 MAPK的表达水平变化。同时,应用MTT、流式细胞术、双荧光染色观察ERK、p38 MAP蛋白抑制剂PD98059、SB203580作用后,对IL-24基因介导U251细胞杀伤作用的影响,以及细胞内相关蛋白表达水平的变化。
     结果:Western Blot结果表明:外源性IL-24基因作用于胶质瘤细胞U251后,p38 MAPK和p-p38 MAPK蛋白表达(0.46±0.07, 0.60±0.07)明显增强(P<0.05)。将p38 MAPK抑制剂SB203580与Ad5F35-IL24合用后(20.83±1.34),较Ad5F35-IL24单用组(36.15±2.61)杀伤作用减弱(P<0.05)。ERK和p-ERK蛋白的与对照组相比没有显著改变(P>0.05)。ERK蛋白抑制剂PD98059与Ad5F35-IL24合用,能够提高IL-24基因对U251的杀伤作用(P<0.05)。
     结论:外源性IL-24基因对U251的选择性诱导凋亡作用,可能与其上调并激活p38 MAPK表达有关。而阻断ERK途径可进一步提高IL-24基因对肿瘤细胞的杀伤。
     第四部分腺病毒介导IL-24基因对U251胶质瘤细胞拓扑异构酶Ⅱα、bcl-2及caspase-3表达的影响
     目的:观察外源性IL-24基因对bcl-2、caspase-3以及拓扑异构酶Ⅱα表达(TopoⅡα)的影响。
     方法:应用Western blot印迹、RT-PCR、流式细胞术、免疫细胞化学的方法检测bcl-2、caspase-3和TopoⅡα蛋白的表达变化情况。
     结果:Western blot印迹结果表明,Ad5F35-IL24组TopoⅡα蛋白表达(0.48±0.03, 0.31±0.02)较对照组(1.35±0.07)和空载体VEC组(1.39±0.11, 1.26±0.06)表达减低(P<0.05)。且随IL-24基因表达浓度增高TopoⅡα表达随之减低。Ad5F35-IL24组bcl-2的表达(0.02±0.01)也较对照组(0.17±0.02)和空载体VEC组(0.18±0.01)表达减低(P<0.05)。Ad5F35-IL24组caspase-3蛋白的表达(0.71±0.09)较对照组(0.43±0.04)和空载体VEC组(0.47±0.02)表达增加(P<0.05)。
     流式细胞术检测表明,caspase-3表达增加,bcl-2表达降低(P<0.05)。Western blot印迹、RT-PCR、流式细胞术的方法观察到TopoⅡα表达降低,且与药物浓度增加成反比。免疫细胞化学检测发现TopoⅡα表达降低。
     结论:外源性IL-24基因杀伤U251细胞,TopoⅡα、bcl-2、caspase-3为其重要的作用靶点。研究结果为今后IL-24基因用于胶质瘤的临床治疗提供了实验资料。
Malignant gliomas are the most common brain tumors in humans. It has become the second death inducing factor in the group under 15 among people suffered from the diease. The results are fourth for men in 35-54 ages’group and women in 15-34 ages’group. Current treatments fail to provide long-term management of these tumors. The prognosis for patients with high-grade glioma remains poor: survival for less than 1 year, even following surgery and adjuvant therapies such as chemotherapy and radiation therapy. It clearly requires development of more effective therapeutic strategies that will improve long-term control and survival. To date, gene therapy has provided a new way to effectively therapy of glioma along with the development of molecular biology and molecular genetics in the past few years.
     Interleukin-24(IL-24) is a new member of interleukin-10 family. It is also called melanoma differentiation-associated gene-7(mda-7), since it was discovered overexpression in human melanoma during terminal differentiation. Now, several groups have demonstrated that Ad-mda7 (using Ad-mda7) induces apoptosis in a wide range of cancer cells (lung, prostate, breast, ovary, pancreas, hepatoma). In addition, there are some researches about combination of IL-24 and radiotherapy or chemotherapy. For example, it was found that IL-24 can enhance the radiosensitizing effect of non-small cell lung cancer (NSCLC) cell lines. Because of its characteristic killing cancer cell without harm normal cell, IL-24 has become candidate gene and successful carried out in Phase 1 clinic trail. But, the effects of IL-24 gene on glioma cell and its molecular events have been not clearly understood.
     In the present study, we construct a new type recombine adenovirus included IL-24 gene (Ad5F35-IL24). After transfected human glioma cell line U251 cells with this new type recombined adenovirus, we use MTT, flow cytometry, double fluorochrome stain, Hoechst 33258 fluorochrome stain, Annexin V-FITC apoptosis kit, Single cell gel electrophoresis(SCGE) assays to observe the effects of Ad5F35-IL24 on U251 cells. The transwell assay and Cell scratch assay were used to detect the invasion and migration ability of the cells after transfected by Ad5F35-IL24. And then, we use Western blot and flow cytometry to detect cell signal transduction protein ERK, p-ERK, p38 MAPK and p-p38 expression induced by Ad5F35-IL24. And also, the MTT, flow cytometry, double fluorochrome stain methods were used to detect the effect of PD98059 (inhibitor of ERK) and SB203580 (inhibitor of p38 MAPK) combined with Ad5F35-IL24 on killing U251 cells. The expression of bcl-2, caspase-3 and TopoⅡα. proteins were examined with Western blot, RT-PCR, flow cytometry, immuocytochemistry assays.
     Part 1 Construction of recombinant adenovirus Ad5F35-IL24 vector
     Objective: to construct recombinant adenovirus Ad5F35-IL24 vector.
     Methods: When plasmids of ATCC were cut by both HindⅢand SalⅠenzymes, the goal bands were obtained. Plasmids of pDC316 were cut by both HindⅢand SalⅠenzymes. Subsequently, after some fragments were connected, transformed and filtered, reorganized plasmids of pDC316 were obtained. Thereafter,it was identified with PCR and enzymes cut analysis. Then the plasmids were carried out sequence determination in whole automatic nucleic acid analyzer. Subsequently competent cells were prepared and transformed. After large-scale preparation of plasmid DNA, recombined adenoviruses Ad5F35-IL24 were generated with homologous recombination by cotransfection of 293 cells with a couple plasmids. After identified with PCR, Ad5F35-IL24 recombinant adenovirus species was amplified and purified. Then the titre was determined according to formula: PFU/mL =GFP post cell number×deliquation of virus supernatant/0.5 mL.
     Results: Reconstructed plasmids of pDC316-IL24 containing IL-24 gene was successfully constructed and identified by PCR, enzymes cut and sequence determination. Escherichia coli strains containing IL-24 gene was obtained. Reconstructed adenovirus Ad5F35-IL24 containing IL-24 gene with functional defect of proliferation was successfully constructed, amplified, purified and identified with PCR. Its titre was assayed according to formula: PFU/mL =GFP post cell number×deliquation of virus supernatant/0.5 mL, and the titer was 2.8×108 PFU/mL.
     Conclusions: Reconstructed adenovirus vector Ad5F35-IL24 was successfully constructed.
     Part 2 Ad5F35-IL24 induces apoptosis and its influence on cell invasion and migration of glioma U251 cells
     Objective: Observe the effects of Ad5F35-IL24 on the apoptosis, invasion and migration of U251 cells. Methods: MTT, flow cytometry, double fluorochrome stain, Hoechst 33258 fluorochrome stain, Annexin V-FITC apoptosis kit were used to detect Ad5F35-IL24 inducing U251 cell apoptosis, and observed its influnces on cell invasion and migration with the transwell assay and Cell scratch assay.
     Results: Ad5F35-IL24 induces growth suppression and apoptosis in human glioma cells U251 cells. The apoptosis was increased obviously along with Ad5F35-IL24 drug concertration increase. Ad5F35-IL24 could suppress U251 cell cycle; the cells were blocked at G2/M phase. Ad5F35-IL24 could effective decrese the invasion and migration of U251 cells.
     Conclusion: Ad5F35-IL24 could inhibit the growth, invasion and migration of human glioma U251 cell, and induces apoptosis.
     Part 3 The effects of Ad5F35-IL24 on expression of ERK and p38 MAPK cell signel transduction pathways
     Objective: to investigate mechanism of Ad5F35-IL24 effect on ERK and p38 MAPK protein expression.
     Methods: After administration of Ad5F35-IL24 for 24 hour. We used Western blot and flow cytometry to detect cell signal transduction protein ERK, p-ERK, p38 MAPK and p-p38 expressions. And the MTT, flow cytometry, double fluorochrome stain were also used to detect the effect of PD98059 (inhibitor of ERK) and SB203580 (inhibitor of p38 MAPK) combined with Ad5F35-IL24 on killing U251 cells.
     Results: Western Blot analyses found that IL-24 selectively induced U251 cell apoptosis by up-regulating and activating p38 MAPK and p-p38 MAPK protein expression(0.46±0.07, 0.60±0.07)(P<0.05). After combined with p38 MAPK inhibitor SB203580,it was showed that the inhibition rate was decreased(20.83±1.34)contrasted with the single Ad5F35-IL24 group(36.15±2.61)(P<0.05). On the other hand, ERK and p-ERK protein expression have not significant changed in contrast with control group(P>0.05). After blocked ERK signal transduction pathway with dministration of ERK inhibitor PD98059, the results showed that it could increase apoptosis of U251 cells(P<0.05).
     Conclusions: Ad5F35-IL24 selectively induced U251 cell apoptosis by up-regulating and activating p38 MAPK pathway. Blocking ERK pathway could increase Ad5F35-IL24 to induce cell apoptosis.
     Part 4 Ad5F35-IL24 influence of TopoⅡα、bcl-2 and caspase-3 protein expression
     Objective: To observe Ad5F35-IL24 influence of bcl-2、caspase-3 and TopoⅡαexpression
     Methods: After transfected U251 cell with Ad5F35-IL24 for 24 hours, the bcl-2, caspase-3 and TopoⅡαprotein expression were detected with Western blot, RT-PCR, immuocytochemistry assays.
     Results: After Ad5F35-IL24 transfection, the related proteins were detacted by Western blot. We found that caspase-3 significantly raised up (0.71±0.09)contrasted with that of control group(0.43±0.04), and bcl-2 expression was significantly cut down(0.02±0.01)compared to the control group(0.17±0.02)(P<0.05). TopoⅡαexpression were found significantly decreased ( 0.48±0.03, 0.31±0.02 ) in contrast with the control group(1.35±0.07)(P<0.05). Immuocytochemistry method also showed that TopoⅡαexpression was decreased down after Ad5F35-IL24 transfected(P<0.05).
     Conclusions: IL-24 could inhibit TopoⅡαand bcl-2 expression, and increase caspase-3 expression in U251 glioma cell, which provided refrences for effectively therapy of glioma in future.
引文
1 Kochanek S, Clemens PR, Mitani K, et al. A new adenoviral vector: Replacement of all viral coding sequences with 28 kb of DNA independently expressing both full-length dystrophin and beta-galactosidase. Proc Natl Acad Sci U S A. 1996, 93(12): 5731~5736
    2 Crystal RG. Transfer of genes to humans: early lessons and obstacles to success. Science, 1995, 270(5235): 404~410
    3 J萨姆布鲁克,D. W.拉塞尔.分子克隆实验指南.第三版,北京,科学出版社, 2002: 2~114
    4 Gao X, Huang L. Cationic liposome-mediated gene transfer. Gene Ther. 1995, 2(10): 710~722
    5徐敏.腺相关病毒载体的研究进展.国外医学分子生物学分册, 2002, 24(5): 388~400
    6 Satkauskas S, Bureau MF, Mahfoudi A, et al. Slow accumulation of plasmid in muscle cells: supporting evidence for a mechanism of DNA uptake by receptor-mediated endocytosis. Mol Ther. 2001, 4(4): 317~323
    7 Rosenzweig HS, Rakhmanova VA, MacDonald RC, et al. Diquaternary ammonium compounds as transfection agents. Bioconjug Chem. 2001, 12(2): 258~266
    8 Benns JM, Mahato RI, Kim SW, et al. Optimization of factors influencing the transfection efficiency of folate-PEG-folate-graft-polyethylenimine. J Control Release. 2002, 79(1-3): 255~269
    9 Zinselmeyer BH, Mackay SP, Schatzlein AG, et al. The lower-generation polypropylenimine dendrimers are effective gene-transfer agents. Pharm Res, 2002, 19(7): 960~967
    10 Liu G, Molas M, Grossmann GA, et al. Biological properties ofpoly-L-lysine-DNA complexes generated by cooperative binding of the polycation. J Biol Chem. 2001, 276(37): 34379~34387
    11 Benns JM, Choi JS, Mahato RI, et al. pH-sensitive cationic polymer gene delivery vehicle: N-Ac-poly(L-histidine)-graft-poly(L-lysine) comb shaped polymer. Bioconjug Chem. 2000, 11(5): 637~645
    12 Kumar M, Behera AK, Lockey RF, et al. Intranasal gene transfer by chitosan-DNA nanospheres protects BALB/c mice against acute respiratory syncytial virus infection. Hum Gene Ther. 2002, 13(12): 1415~1425
    13 Kichler A, Leborgne C, Coeytaux E, et al. Polyethylenimine-mediated gene delivery: a mechanistic study. J Gene Med. 2001, 3(2): 135~144
    1 Martin V, Liu D, Gomez-Manzano C. Encountering and advancing through antiangiogenesis therapy for gliomas. Curr Pharm Des, 2009, 15(4): 353~364
    2 Dietrich J, Norden AD, Wen PY. Emerging antiangiogenic treatments for gliomas - efficacy and safety issues. Curr Opin Neurol, 2008, 21(6): 736~744
    3 Omuro AM. Exploring multi-targeting strategies for the treatment of gliomas. Curr Opin Investig Drugs, 2008, 9(12): 1287~1295
    4 Mladkova N, Chakravarti A. Molecular profiling in glioblastoma: prelude to personalized treatment. Curr Oncol Rep, 2009, 11(1): 53~61
    5 Duty SM, Singh NP, Ryan L, et al. Reliability of the comet assay in cryopreserved human sperm. Oxford University Press, 2002, 17(5): 1274~1280
    6 Han SH, ZHang HJ, Yin MY, et al. Effects of mitoxantrone combined with aclarubicin on the apoptosis and topoisomeraseⅡexpression in HeLa cells. Chin J Pharmacol Toxicol, 2004, 18(2): 109~114
    7 Caroline D, Mandy JM, Daniel JC. Cytokines that regulate autoimmunity. Current Opinion in Immunology, 2008, 20: 663~668
    8 Michael R. Stratton PJ. Campbell P. Andrew Futreal. The cancer genome. Nature, 2009, 458: 719~724
    9 Mohd FU, Mohammad A. The footprints of cancer development: Cancer biomarkers. Cancer Treatment Reviews, 2009, 35: 193~200
    10 Jianghong W, Wei-Lynn W, Fereshteh K, et al. Blocking the Raf/MEK/ERK Pathway Sensitizes Acute Myelogenous Leukemia Cells to Lovastatin-Induced Apoptosis. Cancer Res, 2004, 64(18): 6461~6468
    11 Adly Y, Clint M, Andrea L, et al. Melanoma Differentiation associated 7 (Interleukin 24) Inhibits Growth and Enhances Radiosensitivity of Glioma Cells in Vitro and in Vivo. Clinical Cancer Research, 2003, (9): 3272~3281
    12 Shougang ZH, Schnellmann RG. A Death-Promoting Role for Extracellular Signal-Regulated Kinase. JPET, 2006, 319: 991~997
    13 Zao ZS, Lebedeva IV, Devanand Sarkar, et al. Melanoma differentiation associated gene-7, mda-7/IL-24, selectively induces growth suppression, apoptosis and radiosensitization in malignant gliomas in a p53-independent manner. Oncogene, 2003, 22: 1164~1180
    14 Shogo S, Rothstein JL. Interleukin 24 is induced by the RET/PTC3 oncoprotein and is an autocrine growth factor for epithelial cells. Oncogene, 2004, 23: 7571~7579
    15 Martin V, Liu D, Gomez-Manzano C. Encountering and advancing through antiangiogenesis therapy for gliomas. Curr Pharm Des, 2009, 15(4): 353~364
    16 Ohgaki H. Epidemiology of brain tumors. Methods Mol Biol, 2009, 472: 323~342
    17 Argyriou AA, Kalofonos HP. Molecularly targeted therapies for malignant gliomas. Mol Med, 2009, 15(3-4): 115~122
    18 Mladkova N, Chakravarti A. Molecular profiling in glioblastoma: prelude to personalized treatment. Curr Oncol Rep, 2009, 11(1): 53~61
    19 Chen JY, Chadas, Mhashikar A, et al. Tumor suppressor MDA-7/IL-24 selectively inhibits vascular smooth muscle cell growth and migration. Mol Ther, 2003, 8(2): 220~229
    20 Kawabe S, Nishikawa T, Munshi A, et al. Adenovirus-mediated mda-7 gene expression radiosensitizes non-small cell lung cancer cells via P53-independent mechanisms. Mol Ther, 2002, 6(5): 637~644
    21 Ramesh R, Ito I, Gopalan B, et al. Ectopic production of MDA-7/IL-24 inhibits invasion and migration of human lung cancer cells. Mol Ther, 2004, 9(4): 510~518
    22 Ramesh R, Mhashilkar AM, Tanaka F, et al. Melanoma differentiation associated gene-7/interleukin-24 is a novel ligand that regulates angiogenesis via IL-22 receptor. Cancer Res, 2003, 63(16): 5105~5113
    23 Wang D, Anderson JC, Gladson CL. The role of the extracellular matrix inangiogenesis in malignant glioma tumors. Brain Pathol, 2005, 15(4): 318~326
    24 Zamecnik J. The extracellular space and matrix of gliomas. Acta Neuropathol, 2005, 110(5): 435~442
    25 Ljubimova JY, Fujita M, Khazenzon NM, et al. Changes in laminin isoforms associated with brain tumor invasion and angiogenesis. Front Biosci, 2006, 1(11): 81~88
    26 Snuderl M, Chi SN, De Santis SM, et al. Prognostic value of tumor microinvasion and metalloproteinases expression in intracranial pediatric ependymomas. J Neuropathol Exp Neurol, 2008, 67(9): 911~920
    27 Saeki T, Mhashilkar A, Swanson X, et al. Inhibition of human lung cancer growth following adenovirus-mediated mda-7 gene expression in vivo. Oncogene, 2002, 21(29): 4558~4566
    1 Moira S, Gopalkrishnan RV, Devanand S, et al. MDA-7/IL-24: novel cancer growth suppressing and apoptosis inducing cytokine. Cytokine & Growth Factor Reviews, 2003, 14(1): 35~51
    2 Pankaj G, Su ZZ, Lebedeva IV, et al. mda-7/IL-24: Multifunctional ancer-specific apoptosis-inducing cytokine. Pharmacology &Therapeutics, 2006, 111(3): 596~628
    3 Gopalkrishnan RV, Moira S, Fisher PB, et al. Cytokine and tumor cell apoptosis inducing activity of mda-7/IL-24. International Immunopharmacology, 2004, 4(5): 635~647
    4 Jiang H, Lin JJ, Su ZZ et al. Subtraction hybridization identifies a novel melanoma differentiation associated gene, mda-7, modulated during human melanoma differentiation, growth and progression. J Oncogene, 1995, 11(12): 2477~2486
    5 Caudell EG, Mumm JB, Poindexter N, et al. The protein product of the tumor suppressor gene, melanoma differentiation associated gene-7, exhibits immuno- stimulatory activity and is designated IL-24. J Immunol, 2002, 168(12): 6041~6046
    6 Conti P, Kempuraj D, Frydas S, et al. Christodoulou and T. C. Theoharides. IL-10 subfamily members: IL-19, IL-20, IL-22, IL-24 and IL-26. Immunology Letters, 2003, 88(3): 171~174
    7 Jiang H, Su ZZ, Lin JJ, et al. The melanoma differentiation associated gene mda-7 suppresses cancer cell growth. Proc Natl Acad Sci USA, 1996, 93: 9160~9165
    8 Huang EY, Madireddi MT, Gopalkrishnan RV, et al. Genomic structure, chromosomal localization and expression profile of a novel melanoma differentiation associated (mda-7)gene with cancer specific growth suppressing and apoptosis inducing properties. Oncogene, 2001, 20(48): 7051~7063
    9 Began G, Anya L, Sikha S, et al. Activation of the Fas-FasL Signaling Pathway by MDA-7/IL-24 Kills Human Ovarian Cancer Cells. Cancer Res 2005, 65(8): 3017~3024
    10 Paster A , Vorburger SA , Barber GN , et al. Adenoviral transfer of the melanoma differentiation-associated gene 7 (mda7) induces apoptosis of lung cancer cells via up-regulation of the double stranded RNA-dependent protein kinase(PKR). Cancer Res, 2002, 62(8): 2239~2243
    11 Irina VL, Zao ZS, Devanand Sarkar, et al. Induction of reactive oxygen species renders mutant and wild-type K-ras pancreatic carcinoma cells susceptible to Ad.mda-7-induced apoptosis. Oncogene, 2005, 24(4): 585~596
    12 Sarkar D , Su ZZ , Lebedeva IV , et al. Mda-7(IL-24) mediates selective apoptosis in human melanoma cells by inducing the coordinated overexpression of the GADD family of genes by means of p38 MAPK. Proc Natl Acad Sci USA , 2002 , 99(15) : 10054~10059
    13 Li WL, Shan BE, Yan YL, et al. Effect of IL-24 gene expression on the growth of glioma cells in vitro and in vivo. Chin J Oncol, 2005, 27(3): 141~144
    14 Wang YH, Zhao WQ, Li WL, et al. Interleukin 24 suppresses the growth of ma lignant glioma cells in vitro and in vivo. J Third Mil Med Univ, 2008, 30(3): 229~232
    15 Han SH, Li WL, Zhao JX, et al. Adenovirus-mediated IL-24 gene effect the expression of p38 MAPK and bcl-2 in U251 glioma cells. J Fourth MilMed Univ, 2009, 30(3): 240~243
    16 Han SH, Zhang HJ, Yin MY, et al. Effects of mitoxantrone combined with aclarubicin on the apoptosis and topoisomeraseⅡexpression in HeLa cells. Chin J Pharmacol Toxicol, 2004, 18(2): 109~114
    17 Mrugala MM, Kesari S, Ramakrishna N, et al. Therapy for recurrent malignant glioma in adults. Expert Rev Anticancer Ther, 2004, 4(5): 759~782
    18 Stupp R, Pica A, Mirimanoff RO, et al. A practical guide for the management of gliomas. Bull Cancer, 2007, 94(9): 817~822
    19 Furnari FB, Fenton T, Bachoo RM, et al. Malignant astrocytic glioma: genetics, biology, and paths to treatment. Genes Dev. 2007, 21(21): 2683~2710
    20 Terzis AJ, Niclou SP, Rajcevic U, et al. Cell therapies for glioblastoma. Expert Opin Biol Ther, 2006, 6(8): 739~749
    21 Cai H, Ken J, Michael DS. MAP kinases and cell migration. J Cell Sci, 2004, 117(20): 4619~4628
    22 Blüthgen N, Legewie S. Systems analysis of MAPK signal transduction. Essays Biochem, 2008, 45: 95~107
    23 Dreesen O, Brivanlou AH. Signaling pathways in cancer and embryonic stem cells. Stem Cell Rev, 2007, 3(1): 7~17
    24 Fecher LA, Amaravadi RK, Flaherty KT. The MAPK pathway in melanoma. Curr Opin Oncol, 2008, 20(2): 183~189
    25 Paul RM, Salvador JM, Fornace AJ, et al. Activating p38 MAPK: new tricks for an old kinase. Cell Cyc, 2005, 4(9): 1189~1192
    26 Vera Y, Erkkil? K, Wang C, et al. Involvement of p38 mitogen-activated protein kinase and inducible nitric oxide synthase in apoptotic signaling of murine and human male germ cells after hormone deprivation. Mol Endocrinol, 2006, 20(7): 1597~609
    27 Maria T, Chiara GD, Lucia N, et al. Nerve growth factor inhibits apoptosis in memory B lymphocytes via inactivation of p38 MAPK, prevention of Bcl-2 phosphorylation, and cytochrome c release. J Bio Chem, 2001,42(10): 39027~39036
    28 Wang WX, Kong BH, Li P, et al. Effect of extracellular signal regulated kinase signal pathway on apoptosis induced by MG262 in ovarian cancer cells. Zhonghua Fu Chan Ke Za Zhi, 2008, 43(9): 690~694
    29 Zhang YJ, Fang JY, Sun DF, et al. Synergistic effect of rapamycin (RPM) and PD98059 on cell cycle and mTOR signal transduction in human colorectal cancer cells. Zhonghua Zhong Liu Za Zhi, 2007, 29(12): 889~893
    30 Seo TB, Oh MJ, You BG, et al. ERK1/2-mediated Schwann cell proliferation in the regenerating sciatic nerves by treadmill training. J Neurotrauma, 2009, Mar 3, [Epub ahead of print]
    31 Dong OM, Cheol P, Moon SH, et al. PD98059 triggers G1 arrest and apoptosis in human leukemic U937 cells through downregulation of Akt signal pathway. International Immuno pharmacology, 2007, 7: 36~45
    32 Loesch M, Chen G. The p38 MAPK stress pathway as a tumor suppressor or more? Front Biosci, 2008, 13(1): 3581~3593
    33 Katsanakis KD, Owen C, Zoumpourlis V. JNK and ERK signaling pathways in multistage mouse carcinogenesis: studies in the inhibition of signaling cascades as a means to understand their in vivo biological role. Anticancer Res, 2002, 22(2A): 755~759
    34 Keyse SM. Dual-specificity MAP kinase phosphatases (MKPs) and cancer. Cancer Metastasis Rev, 2008, 27(2): 253~261
    35 Junttila MR, Li SP, Westermarck J. Phosphatase-mediated crosstalk between MAPK signaling pathways in the regulation of cell survival. FASEB J, 2008, 22(4): 954~965
    36 Wu GS. Role of mitogen-activated protein kinase phosphatases (MKPs) in cancer. Cancer Metastasis Rev, 2007, 26(3-4): 579~585
    1 Mrugala MM, Kesari S, Ramakrishna N, et al. Therapy for recurrent malignant glioma in adults. Expert Rev Anticancer Ther, 2004, 4(5): 759~782
    2 Stupp R, Pica A, Mirimanoff RO, et al. A practical guide for the management of gliomas. Bull Cancer, 2007, 94(9): 817~822
    3 Furnari FB, Fenton T, Bachoo RM, et al. Malignant astrocytic glioma: genetics, biology, and paths to treatment. Genes Dev. 2007, 21(21): 2683~2710
    4 Terzis AJ, Niclou SP, Rajcevic U, et al. Cell therapies for glioblastoma. Expert Opin Biol Ther, 2006, 6(8): 739~749
    5 Fisher PB, Sarkar D, Lebedeva IV, et al. Melanoma differentiation associated gene-7/interleukin-24 (mda-7/IL-24):Novel gene therapeutic for metastatic melanoma. Toxicol Pharmacol, 2006, 10(7): 1016~1023
    6 Shinohara S, Rothstein JL. Interleukin 24 is induced by the RET/PTC3 oncoprotein and is an autocrine growth factor for epithelial cells. Oncogene, 2004, 23(8): 7571~7579
    7 Su ZZ, Lebedeva IV, Sarkar D, et al. Melanoma differentiation associated gene-7, mda-7/IL-24, selectively induces growth suppression, apoptosis and radiosensitization in malignant gliomas in a p53-independent manner. Oncogene, 2003, 22(11): 1164~1180
    8 Sergei VK. The family of IL10 related cytokines and their receptors: Related, but to what extent? Cytokine & Growth Factor Reviews, 2002, 13: 223~240
    9 Kerry AS, Abner MM, Alexis S, et al. The Tumor Suppressor Activity of MDA-7/IL-24 Is Mediated by Intracellular Protein Expression in NSCLC Cells. MLoecular Therapy, 2004, 9(3): 355~367
    10 Yuji S, Ryo M, Began G, et al. Selective induction of cell cycle arrest and apoptosis in human prostate cancer cells through adenoviral transfer of the melanoma differentiation associated 7(mda-7)/interleukin 24(IL-24) gene. Cancer Gene Therapy, 2005, 12(3): 238~247
    11 Li WL, Shan BE, Yan YL, et al. Effect of IL-24 gene expression on the growth of glioma cells in vitro and in vivo. Chin J Oncol, 2005, 27(3): 141~144
    12 Wang YH, Zhao WQ, Li WL, et al. Interleukin 24 suppresses the growth of ma lignant glioma cells in vitro and in vivo. J Third Mil Med Univ, 2008, 30(3): 229~232
    13 Han SH, Li WL, Zhao JX, et al. Adenovirus-mediated IL-24 gene effect the expression of p38 MAPK and bcl-2 in U251 glioma cells. J Fourth Mil Med Univ, 2009, 30(3): 240~243
    14 Lu C, Shervington A. Chemoresistance in gliomas. Mol Cell Biochem, 2008, 312(1-2): 71~80
    15 Faria MH, GoncaLves BP, do Patrocinio RM, et al. Expression of Ki-67, topoisomeraseⅡalpha and c-MYC in astrocytic tumors: correlation with the histopathological grade and proliferative status. Neurophology, 2006, 26(6): 519~527
    16 Mdluli K, Ma Z. Mycobacterium tuberculosis DNA gyrase as a target for drug discovery. Infect Disord Drug Targets, 2007, 7(2): 159~168
    17 Seiter K. Toxicity of the topoisomerase II inhibitors. Expert Opin Drug Saf, 2005, 4(2): 219~234
    18 Kaina B. DNA damage-triggered apoptosis: critical role of DNA repair, double-strand breaks, cell proliferation and signaling. Biochem Pharmacol, 2003, 66(8): 1547~1554
    19 Zhao HY, Cai WS, Liu YH, et al. Expression of DNA topoisomeraseⅡαand PCNA in astrocytoma neoplasms of central nervous system and thecorrelation with patient survival. China J Modern Med, 2007, 14(1): 21~24
    20 Wang B, Liang WB, Wang HD, et al. Expression of Ki267、TopoⅡαin human bra in glioma. J Clin Neurosurg, 2007, 4(2): 52~54
    21 Bredel C, Lassmann S, Pollack IF, et al. DNA topoisomeraseⅡalpha and Her-2/neu gene dosages in pediatric malignant gliomas. Int J Oncol, 2005, 26(5): 1187~1192
    22 Faria MH, GoncaLves BP, do Patrocinio RM, et al. Expression of Ki-67, topoisomeraseⅡalpha and c-MYC in astrocytic tumors: correlation with the histopathological grade and proliferative status. Neurophology, 2006, 26(6): 519~527
    23 Xia WM, Gong DSH, Chen TY. A study on relationship between expression of topoisomeraseⅡalpha and malignant proliferation of glioma. Tumor. 2004, 24(3): 283~285
    24 Kizaki H, Onishi Y. TopoisomeraseⅡinhibitor-induced apoptosis in thymocytes and lymphoma cells. Advan Enzyme Regul, 1997, 37: 403~423
    25 J?rvinen TA, Liu ET. Simultaneous amplification of HER-2 (ERBB2) and topoisomerase IIalpha (TOP2A) genes--molecular basis for combination chemotherapy in cancer. Curr Cancer Drug Targets, 2006, 6(7): 579~602
    26 J?rvinen TA, Liu ET. TopoisomeraseⅡalpha gene (TOP2A) amplification and deletion in cancer--more common than anticipated. Cytopathology, 2003, 14(6): 309~313
    27 Chesler L, Goldenberg DD, Collins R, et al. Chemotherapy-induced apoptosis in a transgenic model of neuroblastoma proceeds through p53 induction. Neoplasia, 2008, 10(11): 1268~1274
    28 Zarnescu O, Brehar FM, Chivu M, et al. Immunohistochemical localization of caspase-3, caspase-9 and Bax in U87 glioblastoma xenografts. J Mol Histol, 2008, 39(6): 561~569
    29 Purkayastha S, Berliner A, Fernando SS, et al. Curcumin Blocks Brain Tumor Formation. Brain Res, 2009 Feb 10. [Epub ahead of print]
    30 Rogers D, Nylander KD, Mi Z, et al. Molecular predictors of humannervous system cancer responsiveness to enediyne chemotherapy. Cancer Chemother Pharmacol, 2008, 62(4): 699~706
    31 Brunelle JK, Letai A. Control of mitochondrial apoptosis by the Bcl-2 family. J Cell Sci, 2009, 122(4): 437~441
    32 Yip KW, Reed JC. Bcl-2 family proteins and cancer. Oncogene, 2008, 27(50): 6398~6406
    33 Colin J, Gaumer S, Guenal I, et al. Mitochondria, Bcl-2 family proteins and apoptosomes: of worms, flies and men. Front Biosci, 2009, 14: 4127~4137
    1 Moira S, Gopalkrishnan RV, Devanand S, et al. MDA-7/IL-24: novel cancer growth suppressing and apoptosis inducing cytokine. Cytokine & Growth Factor Reviews, 2003, 14(1): 35~51
    2 Pankaj G, Su ZZ, Lebedeva IV, et al. mda-7/IL-24: Multifunctional ancer-specific apoptosis-inducing cytokine. Pharmacology &Therapeutics, 2006, 111(3): 596~628
    3 Gopalkrishnan RV, Moira S, Fisher PB, et al. Cytokine and tumor cell apoptosis inducing activity of mda-7/IL-24. International Immunopharmacology, 2004, 4(5): 635~647
    4 Jiang H, Lin JJ, Su ZZ et al. Subtraction hybridization identifies a novel melanoma differentiation associated gene, mda-7, modulated duringhuman melanoma differentiation, growth and progression. J Oncogene, 1995, 11(12): 2477~2486
    5 Caudell EG, Mumm JB, Poindexter N, et al. The protein product of the tumor suppressor gene, melanoma differentiation associated gene-7, exhibits immuno- stimulatory activity and is designated IL-24. J Immunol, 2002, 168(12): 6041~6046
    6 Conti P, Kempuraj D, Frydas S, et al. Christodoulou and T. C. Theoharides. IL-10 subfamily members: IL-19, IL-20, IL-22, IL-24 and IL-26. Immunology Letters, 2003, 88(3): 171~174
    7 Jiang H, Su ZZ, Lin JJ, et al. The melanoma differentiation associated gene mda-7 suppresses cancer cell growth. Proc Natl Acad Sci USA, 1996, 93: 9160~9165
    8 Huang EY, Madireddi MT, Gopalkrishnan RV, et al. Genomic structure, chromosomal localization and expression profile of a novel melanoma differentiation associated(mda-7)gene with cancer specific growth suppressing and apoptosis inducing properties. Oncogene, 2001, 20(48): 7051~7063
    9 Blumberg H, Conklin D, Xu WF, et al. Interleukin 20: discovery, recaptor identification, and role in epidermal function Cell, 2001, 104(1): 9~19
    10 Gallagher G, Dickensheets H, Eskdale J, et al. Cloning, expression and initial characterization of interleukin 19(IL- 19), a novel homologue of human interleukin 10(IL-10). Genes Immun, 2000, 1(7): 442~450
    11 MhashIL KAM, Schrock RD, Hindi M, et al. Melanoma differentia tion associated gene 7(MDA-7): a novel anti tumor gene for cancer gene therapy. Mol Med, 2001, 7(4): 271~282
    12 Soo C, Shaw WW, Freymiller E, et al. Cutaneous rat wounds express C49a, a novel gene with homology to the human melanoma differentiation associated gene, MDA-7. J Cell Biochem, 1999, 74(1): 1~10
    13 Schaefer G, Venkataraman C, Schindler U,et al. Cutting edge: FISP (IL- 4 induced secreted protein), a novel cytokine like molecule secreted by Th-2 cells. J Immunol, 2001, 166(10): 5859~5863
    14 Wang M, Tan Z, Zhang R, et al. Interleukin-24 (MDA-7/MOB-5) signals through two heterodimeric receptors, IL-22R1/IL-20R2 and IL-20R1/IL-20R2. J Biol Chem, 2002, 277: 7341~7347
    15 Sauane M, Lebedeva IV, Su ZZ, et al. Melanoma differentiation associated gene-7/interleukin-24 promotes tumor cell-specific apoptosis through both secretory and nonsecretory pathways. Cancer Res, 2004, 64(9): 2988~2993
    16 Holger G, Ansgar S, Veronika G, et al. IL-24 is expressed by Rat and Human Macrophages. Immunobiology, 2002, 205(3): 321~334
    17 Shinohara, Shogo, Rothstein, et al. Interleukin 24 is induced by the RET/PTC3 oncoprotein and is an autocrine growth factor for epithelial cells. Oncogene, 2004, 23(45): 7571~7579
    18 Chaiken IM, Williams WV. Identifying structure-function relationships in four-helix bundle cytokines:towards de novo mimetics design. Trends Biotechnol, 1996, 14: 369~75
    19 Xie MH, Aggarwa lS, Ho WH, et al. Interleukin (IL)-22, a novel human cytokine that signals through the interferon receptor-related proteins CRF2-4 and IL-22R. J Biol Chem, 2000, 275(40): 31335~31339
    20 Zheng M, Bocangel D, Doneske B, et al. Human interleukin 24 (MDA-7/IL-24) protein kills breast cancer cells via the IL-20 receptor and is antagonized by IL-10. Cancer Immunol Immunother, 2007, 56(2): 205~215
    21 Chada S, Sutton RB, Ekmekcioglu S, et al. MDA-7/IL-24 is a unique cytokine tumor suppressor in the IL-10 Family Int Immunopharmacol, 2004, 4(5): 649~667
    22 Lebedeva IV, Su ZZ, Chang Y, et al. The cancer growth suppressing gene mda-7 induces apoptosis selectively in human melanoma cells. Oncogene, 2002, 21(5): 708~718
    23 Madireddi MT, Su ZZ, Young CS, et al. Mda-7, a novel melanoma differentiation associated gene with promise for cancer gene therapy. Adv Exp Med Biol, 2000, 465: 239~261
    24 Saeki T, Mhashilker A, Chada S, et al. Tumor suppressive effects by adenovirus mediated mda-7 gene transfer in non small cell lung can cer cell in vivo Gene Ther, 2000, 7(23): 2051~2057
    25 Sauane M, Lebedeva IV, Su ZZ, et al. Melanoma differentiation as sociated gene-7/interleukin-24 promote tumor cell specific apoptosis through both sectetory and nonsecretory pathways. Cancer Res, 2004, 64(9): 2988~2993
    26 Lebedeva IV, Sarkar D, Su ZZ, et al Bcl-2 and Bcl-x(L) differen tially protect human prostate cancer cells from induction of apoptosis by melanoma differentiation associated gene-7, mda-7/IL-24 Oncogene, 2003, 22(54): 8758~8773
    27 Ramesh R, Ito I, Gopalan B, et al. Ectopic production of MDA-7/IL-24 inhibits invasion and migration of human lung cancer cells. Mol Ther, 2004, 9(4): 510~518
    28 Wang M, Tan Z, Thomas EK, et al. Conservation of the genomic structure and receptor-mediated signaling between human and rat IL-24. Genes Immun, 2004, 5(5): 363~370
    29 Kawabe S, Nishikawa T, Munshi A, et al. Adenovirus-mediated mda-7 gene expression radiosensitizes non-small cell lung cancer cells via P53-independent mechanisms. Mol Ther, 2002, 6(5): 637~644
    30 Su ZZ, Lebedeva IV, Sarkar D, et al. Melanoma differentiation associated gene-7, mda-7/IL-24, selectively induces growth suppression, apoptosis and radiosensitization in malignant gliomas in a p53-independent manner. Oncogene, 2003, 22 (8): 1164~1180
    31 Yacoub A, Mitchell C, Lister A, et al. Melanoma differentiation associated gene-7(interleukin-24) inhibits growth and enhances radiosensitivity of glioma cells in vitro and in vivo. Clin Cancer Res, 2003, 9(9): 3272~3281
    32 Yacoub A, Mitchell C, Lebedva IV, et al. mda-7/IL-24 inhibits growth and enhances radiosensitivity of glioma cells in vitro via JNK signaling Cancer Biol Ther, 2003, 2(4): 347~353
    33 Chada S, Mhashilkar AM, Liu Y, et al. mda-7 gene transfer sensitizesbreast carcinoma cells to chemotherapy, biologic therapies and radiotherapy: correlation with expression of bcl-2 family members. 2006, Cancer Gene Therapy, 13(5): 490~502
    34温莹浩,殷正丰,康晓燕,等.腺病毒介导IL-24联合化疗药物增强对肝癌细胞PLC/PRF/5增殖的抑制.中国肿瘤生物治疗杂志,2007, 14 (4) : 338~341
    35石华,杨俊霞,袁成福,等. HPV-16 E6 siRNA与hIL-24基因联合诱导人宫颈癌Ca Ski细胞的凋亡.肿瘤,2007,27(5): 348~351
    36 Ekmekcioglu S, Ellerhorst J, Mhashilkar AM, et al. Down-regulated melanoma differentiation associated gene (mda-7) expression in human melanomas. Int J Cancer 2001, 94: 54~59
    37 Ellerhorst JA, Prieto VG, Ekmekcioglu S, et al. Loss of MDA-7 expression with progression of melanoma. J Clin Oncol, 2002, 20: 1069~1074
    38 Dumoutier L, Leemans C, et al. STAT activation by IL-19, IL-20 and mda-7 through IL-20 receptor complexes of two types. J Immunol. 2001, 167(7): 3545~3549
    39 Wolk K, Kunz S, Asadullah K et al. Cutting edge: immune cells as sources and targets of the IL-10 family members. J Immunol, 2002, 168 (11): 5397~5402
    40 Jiang H, Su ZZ, Boyd J, et al. Gene expression changes associated with reversible growth suppression and the induction of terminal differentiation in human melanoma cells. Mol Cell Differ, 1993, 1(3): 41~66
    41 Zheng M, Bocangel D, Doneske B, et al. Human interleukin 24 (MDA-7/IL-24) protein kills breast cancer cells via the IL-20 receptor and is antagonized by IL-10. Cancer Immunology, Immunotherapy. 2007, 56(2): 205~215
    42 Chen GY, Lu L, Jiang YM, et al. Interleukin-24 Promote Dendritic Cell Activation and Maturation. Journal of Immunotherapy, 2006, 29(6): 638~646
    43 Su ZZ, Madireddi MT, Lin J et al. The cancer growth suppressor genemda-7 selectively induces apoptosis in human breast cancer cells and inhibits tumor growth in nude mice. Proc Natl Acad Sci U S A. 1998, 95(24): 14400~14405
    44 Lebedeva IV, Su ZZ, Sarkar D, et al. Melanoma differentiation associated gene-7, mda-7/interleukin-24, induces apoptosis in prostate cancer cells by promoting mitochondrial dysfunction and inducing reactive oxygen species. Cancer Research. 2003, 63(23): 8138~8144
    45 Sergei V. Kotenko. The family of IL-10-related cytokines and their receptors: Related, but to what extent? Cytokine &Growth Factor Reviews, 2002, 13: 223~240
    46 Patare A, Vorburger SA, Barber GN, et al. Adenoviral transfer of the melanoma differentiation-associated gene7(mda7) induces apoptosis of lung cancer cells via up-regulation of the double-stranded RNA-dependent protein kinase(PKR). Cancer Res, 2002, 62: 2239~2243
    47 Emdad L, Lebedeva IV, Su ZZ, et al. Combinatorial Treatment of Non-Small-Cell Lung Cancers With Gefitinib and Ad.mda-7 Enhances Apoptosis-Induction and Reverses Resistance to a Single Therapy. J Cell Physiol, 2007, 210(2): 549~559
    48 Jiang H, Su ZZ, Lin JJ, et al. The melanoma differentiation associated gene mda-7 suppresses cancer cell growth. Proc Natl Acad Sci US A, 1996, 93:9160~9165
    49 Chen JY, Chadas, Mhashikar A, et al. Tumor suppressor MDA-7/IL-24 selectively inhibits vascular smooth muscle cell growth and migration. Mol Ther, 2003, 8(2): 220~229
    50 Saeki T, Mhashilkar A, Swanson X, et al. Inhibition of human lung cancer growth following adenovirus-mediated mda-7 gene expression in vivo. Oncogene, 2002, 21(29):4558~4566
    51 Ramesh R, Mhashilkar AM, Tanaka F, et al. Melanoma differentiation associated gene-7/interleukin-24 is a novel ligand that regulates angiogenesis via IL-22 receptor. Cancer Res, 2003, 63(16): 5105~5113
    52 Lebedeva IV, Su ZZ, Emdad L, et al. Targeting inhibition of K-rasenhances Ad.mda-7-induced growth suppression and apoptosis in mutant K-ras colorectal cancer cells. Oncogene, 2007, 26(5): 733~744
    53 Lebedeva IV, Washington I, Sarkar D, et al. Strategy for reversing resistance to a single anticancer agent in human prostate and pancreatic carcinomas. Proc Natl Acad Sci USA, 2007, 104(9): 3484~3489
    54 Pataer A, Bocangel D, Chada S, et al. Enhancement of adenoviral MDA-7-mediated cell killing in human lung cancer cells by geldanamycin and its 17-allyl- amino-17-demethoxy analogue. Cancer Gene Ther, 2007, 14(1): 12~18
    55 Gopalan B, Shanker M, Scott A, et al. MDA-7/IL-24, a novel tumor suppressor/cytokine is ubiquitinated and regulated by the ubiquitin-proteasome system, and inhibition of MDA-7/IL-24 degradation enhances the antitumor activity. Cancer Gene Ther, 2008, 15(1): 1~8
    56 Su Z, Lebedeva IV, Gopalkrishnan RV, et al. A combinatorial approach for selectively inducing programmed cell death in human pancreatic cancer cells. Proc Natl Acad Sci USA, 2001, 98: 10332~10337
    57 Lebedeva IV, Sauane M, Gopalkrishnan RV, et al. mda-7/IL-24: exploiting cancer’s Achilles’heel. Mol. Ther, 2005, 11(1): 4~18
    1 Dwarakanath BS, Khaitan D, Mathur R. Inhibitors of topoisomerases as anticancer drugs: problems and prospects. Indian J Exp Biol, 2004, 42(7): 649~659
    2 Denny WA. Emerging DNA topisomerase inhibitors as anticancer drugs. Expert Opin Emerg Drugs, 2004, 9(1): 105~133
    3 Tian L, Claeboe CD, Hecht SM, et al. Guarding the genome: Electrostatic repulsion of water by DNA suppresses a potent nuclease activity of topoisomeraseⅠ. Mol Cell, 2003, 12(1): 199~208
    4 Christiansen K, Westerjaard O. Characterization of Intra and Intermolecular DNA Ligation Mediated by Eukaryotic TopoisomeraseⅠ. J Biol Chem, 1994, 269(1): 721~729
    5 Strahs D, Zhu CX, Cheng B. Experimental and computational investigations of Ser10 and Lys13 in the binding and cleavage of DNA substrates by Escherichia coli DNA topoisomeraseⅠ. Nucleic Acids Res, 2006, 34(6): 1785~1797
    6 Froelich ASJ, Gale KC, Osheroff N, et al. Site specific cleavage of a DNA Hairpin by TopoⅡ. J Biol Chem, 1994, 269(10): 7719~7725
    7 Boege F, Gieseler F, Biersack H, et al. Different functional states of topoisomeraseⅡcan be discriminated by orthovanadate sensitivity in multi drug resistant human leukemic cells. Leuk Lymphoma, 1993, 9(45):381~383
    8 Porter AC, Farr CJ. TopoisomeraseⅡ: untangling its contribution at the centromere. Chromosome Res, 2004, 12(6): 569~583
    9 Drake FH, Zimmerman JP, McCabe FL, et al. Purification of topoisomerase II from amsacrine-resistant P388 leukemia cells. Evidence for two forms of the enzyme. J. Biol. Chem, 1987, 262: 16739~16747
    10 Tsai PM, Liu LF, Liu AA, et al. Cloning and sequencing of cDNA encoding human DNA topoisomerase II and localization of the gene to chromosome region 17q21-22. PNAS, 1988, 85: 7177~7181
    11 Jenkins JR, Ayton P, Jones T, et al. Isolation of cDNA clones encoding the beta isozyme of human DNA topoisomerase II and localisation of the gene to chromosome 3p24. Nucleic. Acids. Res, 1992, 20: 5587~5592
    12 Austin CA, Sng JH, Patel S, Fisher LM. Novel HeLa topoisomerase II is the II beta isoform: complete coding sequence and homology with other type II topoisomerases. Biochim. Biophys. Acta, 1993, 1172, 283~291
    13 Austin CA, Marsh KL, Wasserman RA, et al. Expression, domain structure, and enzymatic properties of an active recombinant human DNA topoisomerase II beta. J Biol Chem, 1995, 270: 15739~15746
    14 Wang Y, Thyssen A, Westergaard O, et al. Position-specific effect of ribonucleotides on the cleavage activity of human topoisomerase II. Nucl. Acids. Res. 2000, 28: 4815~4821
    15 Barthelmes HU, Grue P, Feineis S, et al. Active DNA topoisomerase IIalpha is a component of the salt-stable centrosome core. Biol Chem, 2000, 275: 38823~38830
    16 Tsutsui K, Tsutsui K, Sano K, et al. Involvement of DNA topoisomerase IIbeta in neuronal differentiation. J Biol Chem, 2001, 276:5769~5778
    17 Yang X, Li W, Prescott ED, et al. DNA topoisomerase IIbeta and neural development. Science, 2000, 287: 131~134
    18 Biersack H, Jensen S, Gromova I, et al. Active heterodimers are formed from human DNA topoisomerase II alpha and II beta isoforms. PNAS, 1996, 93: 8288~8293
    19 Nakopoulou L, Lazaris AC, Kavantzas N, et al. DNA topoisomerase II-alpha immunoreactivity as a marker of tumor aggressiveness in invasive breast cancer. Pathobiology, 2000, 68: 137~143
    20 Willman JH, Holden JA. Immunohistochemical staining for DNA topoisomerase II-alpha in benign, premalignant, and malignant lesions of the prostate. Prostate, 2000, 42: 280~286
    21 Stathopoulos GP, Kapranos N, Manolopoulos L, et al. Topoisomerase II alpha expression in squamous cell carcinomas of the head and neck. Anticancer Res, 2000, 20: 177~178
    22 Mirski SE, Voskoglou-Nomikos T, Young LC, et al. Simultaneous quantitation of topoisomerase II alpha and beta isoform mRNAs in lung tumor cells and normal and malignant lung tissue. Lab Invest, 2000, 80: 787~795
    23 Dingemans AC, Witlox MA, Stallaert RA, et al. Expression of DNA topoisomeraseⅡalpha and topoisomeraseⅡbeta genes predicts survival and response to chemotherapy in patients with small cell lung cancer. Clin Cancer Res, 1999, 5(8): 2048~2058
    24 Goswami PC, Sheren J, Albee LD, et al. Cell cycle-coupled variation in topoisomeraseⅡalpha mRNA is regulated by the 3'-untranslated region. Possible role of redox-sensitive protein binding in mRNA accumulation. J Biol Chem, 2000, 275(49): 38384~38392
    25 Escargueil AE, Plisov SY, Skladanowski A, et al. Recruitment of cdc2 kinase by DNA topoisomeraseⅡis coupled to chromatin remodeling. FASEB J, 2001, 15(12): 2288~2290
    26 Escargueil AE, Plisov SY, Filhol O, et al. Mitotic phosphorylation of DNA topoisomeraseⅡalpha by protein kinase CK2 creates the MPM-2 phosphoepitope on Ser-1469. J Biol Chem, 2000, 275(44): 34710~34718
    27 Chen G, Templeton D, Suttle DP, et al. Ras stimulates DNA topoisomerase II alpha through MEK: a link between oncogenic signaling and a therapeutic target. Oncogene, 1999, 18(50): 7149~7160
    28 Beck J, Bohnet B, Brügger D, et al. Multiple gene expression analysisreveals distinct differences between G2 and G3 stage breast cancers, and correlations of PKC eta with MDR1, MRP and LRP gene expression. Br J Cancer, 1998, 77(1): 87~91
    29 Falck J, Jensen PB, Sehested M. Evidence for repressional role of an inverted CCAAT box in cell cycle-dependent transcription of the human DNA topoisomeraseⅡalpha gene. J Biol Chem, 1999, 274(26): 18753~18758
    30 Bhat UG, Raychaudhuri P, Beck WT. Functional interaction between human topoisomeraseⅡalpha and retinoblastoma protein. PNAS, 1999, 96: 7859~7864
    31 Kwon Y, Shin BS, Chung IK. The p53 tumor suppressor stimulates the catalytic activity of human topoisomeraseⅡalpha by enhancing the rate of ATP hydrolysis. J Biol Chem, 2000, 75: 18503~189510
    32 Morgan SE, Beck WT. Role of an inverted CCAAT element in human topoisomeraseⅡalpha gene expression in ICRF-187-sensitive and -resistant CEM leukemic cells. Mol. Pharmacol, 2001, 59: 203~211
    33 Huang TT, Wuerzberger-Davis SM, Seufzer BJ, et al. NF-kappaB activation by camptothecin. A linkage between nuclear DNA damage and cytoplasmic signaling events. J. Biol. Chem, 2000, 275: 4435~4444
    34 Mao Y, Desai SD, Ting CY, et al. 26 S proteasome-mediated degradation of topoisomeraseⅡcleavable complexes. J. Biol. Chem, 2001, 276: 40652~40658
    35 Tolner B, Hartley JA, Hochhauser D. Transcriptional regulation of topoisomeraseⅡalpha at confluence and pharmacological modulation of expression by bis-benzimidazole drugs. Mol. Pharmacol, 2001, 59: 699~706
    36 Morgan SE, Beck WT. Role of an inverted CCAAT element in human topoisomerase IIalpha gene expression in ICRF-187-sensitive and -resistant CEM leukemic cells. Mol. Pharmacol, 2001, 60: 559~567
    37 Hofland K, Petersen BO, Falck J, et al. Differential cytotoxic pathways of topoisomerase I and II anticancer agents after overexpression of theE2F-1/DP-1 transcription factor complex. Clin. Cancer Res, 2000, 6: 1488~1497
    38 Harris LN, Yang L, Liotcheva V, et al. Induction of topoisomerase II activity after ErbB2 activation is associated with a differential response to breast cancer chemotherapy. Clin. Cancer Res, 2001, 7: 1497~1504
    39 Okada Y, Tosaka A, Nimura Y, et al. Atypical multidrug resistance may be associated with catalytically active mutants of human DNA topoisomeraseⅡalpha. Gene, 2001, 272(1-2): 141~148
    40 Mirski SE, Sparks KE, Yu Q, et al. A truncated cytoplasmic topoisomeraseⅡalpha in a drug-resistant lung cancer cell line is encoded by a TOP2A allele with a partial deletion of exon 34. Int J Cancer, 2000, 85(4): 534~539
    41 Wessel I, Jensen LH, Renodon-Corniere A, et al. Human small cell lung cancer NYH cells resistant to the bisdioxopiperazine ICRF-187 exhibit a functional dominant Tyr165Ser mutation in the Walker A ATP binding site of topoisomeraseⅡalpha. FEBS Lett, 2002, 520(1-3): 161~166
    42 Wessel I, Jensen LH, Jensen PB, et al. Human small cell lung cancer NYH cells selected for resistance to the bisdioxopiperazine topoisomeraseⅡcatalytic inhibitor ICRF-187 demonstrate a functional R162Q mutation in the Walker A consensus ATP binding domain of the alpha isoform. Cancer Res, 1999, 59(14): 3442~3450
    43 Le Mee S, Chaminade F, Delaporte C, et al. Cellular resistance to the antitumor DNA topoisomeraseⅡinhibitor S16020-2: importance of the N-[2(Dimethylamino)ethyl]carbamoyl side chain. Mol Pharmacol, 2000, 58(14): 709~718
    44 Lage H, Dietel M. Multiple mechanisms confer different drug-resistant phenotypes in pancreatic carcinoma cells. J Cancer Res Clin Oncol, 2002, 128(7): 349~357
    45 Webb CD. Latham MD. Lock RB, et al. Attenuated topoisomeraseⅡcontent directly correlates with low level of drug resistance in a Chinese hamster ovary cell line. Cancer Res, 1991, 51(24): 6543~6550
    46 Collins TR, Hammes GG, Hsieh TS. Analysis of the eukaryotic topoisomerase II DNA gate: a single-molecule FRET and structural perspective. Nucleic Acids Res, 2009, 37(3): 712~720
    47 Wyles JP, Wu Z, Mirski SE, Cole SP. Nuclear interactions of topoisomerase II alpha and beta with phospholipid scramblase 1. Nucleic Acids Res, 2007, 35(12): 4076~4085
    48 Ding Z, Parchment RE, LoRusso PM, Zhou JY, Li J, Lawrence TS, Sun Y, Wu GS. The investigational new drug XK469 induces G(2)-M cell cycle arrest by p53-dependent and -independent pathways. Cancer Res, 2001, 7: 3336~3342
    49 Stacey DW, Hitomi M, Chen G. Influence of cell cycle and oncogene activity upon topoisomeraseⅡalpha expression and drug toxicity. MCB, 2000, 20: 9127~9137
    50 Patel S, Keller BA, Fisher LM. Mutations at arg486 and glu571 in human topoisomeraseⅡalpha confer resistance to amsacrine: relevance for antitumor drug resistance in human cells. Mol Pharmacol, 2000, 57: 784~791
    51 Oloumi A, MacPhail SH, Johnston PJ, et al. Changes in subcellular distribution of topoisomeraseⅡalpha correlate with etoposide resistance in multicell spheroids and xenograft tumors. Cancer Res, 2000, 60: 5747~5753
    52 Huang CP, Fang WH, Lin LI, et al. Anticancer activity of botanical alkyl hydroquinones attributed to topoisomerase II poisoning. Toxicol Appl Pharmacol, 2008, 227(3): 331~338
    53 Errington F, Willmore E, Tilby MJ, et al. Murine transgenic cells lacking DNA topoisomerase IIbeta are resistant to acridines and mitoxantrone: analysis of cytotoxicity and cleavable complex formation. Mol. Pharmacol, 1999, 56: 1309~1316
    54 Matsumoto Y, Kunishio K, Nagao S.et al. Increased phosphorylation of DNA topoisomeraseⅡin etoposide resistant mutants of human glioma cell line. J Neurooncol, 1999, 45(1): 37~46
    55 Takano H. Kohno K. Ono M, et al. Increased phosphorylation of DNA topoisomeraseⅡin etoposide-resistant mutants of human cancer KB cells. Cancer Res, 1991, 51(15): 3951~3956
    56 Schneider E, Horton J, Yang CH, et al. Multidrug resistence-associated protein gene overexpression and reduced drug sensitivity of topoisomeraseⅡin a human breast carcinoma MCF7 cell line selected for etoposide resistance. Cancer Res, 1994, 54(1): 152~158
    57 Matsumoto Y, Takano H, Fojo T. Cell adaptation to drug exposure : Evolution of the drug-resistant phenotype. Cancer Res, 1997, 57(15): 5086~5092

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700