用户名: 密码: 验证码:
中华绒螯蟹(Eriocheir Sinensis)cDNA文库的构建、EST分析及其酚氧化酶系统关键基因的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
中华绒螯蟹(Eriocheir sinensis)是我国的特色物种,具有重要的经济和科研价值。酚氧化酶系统作为节肢动物特有的免疫机制,在中华绒螯蟹的免疫反应中发挥重要作用。本研究构建了一个中华绒螯蟹的cDNA文库,利用表达序列标签(Expressed Sequence Tag,EST)技术,对中华绒螯蟹表达序列进行了大规模测序分析,并利用cDNA末端快速扩增(rapid amplification of cDNA ends,RACE)、实时定量PCR、原核重组和RNAi等技术研究了其酚氧化酶免疫系统的分子基础及其相应功能。
     用鳗弧菌和金黄色葡萄球菌同时感染中华绒螯蟹,提取血细胞的RNA构建了一个库容为3.3×106克隆cDNA文库。随机测序后获得7535条高质量的EST序列,其中在GenBank数据库中未发现同源序列的为4593条,而具有较高同源性2942条可以分为20个功能类别,参与了23个生物学反应。进一步分析发现,969条(32.9% )EST与免疫相关,可拼接成221个免疫基因。这个比例高于其它任何一个已公布的甲壳动物cDNA文库。在免疫相关EST中,抗菌肽比例最高,约占总数的20.1%(195条EST)。免疫基因的高比例和抗菌肽的高表达,证明细菌刺激是提高cDNA文库中免疫基因丰度的有效方法。EST序列的获得和免疫基因的富集,丰富了中华绒螯蟹的基因组信息,初步了解了中华绒螯蟹固有免疫系统的概况,为进一步克隆和研究中华绒螯蟹免疫防御功能基因提供了序列基础。
     本研究在EST分析的基础上,克隆获得了中华绒螯蟹酚氧化酶系统10个基因的cDNA全长序列,它们分别是前酚氧化酶(EsproPO),丝氨酸蛋白酶同源物(EsSPH),丝氨酸蛋白酶抑制剂pacifastin, serpin, PAPII (EsPLC, Es serpin, EsPAPII),模式识别丝氨酸蛋白酶(EsPRSP),peroxinectin (Esperoxinectin)和3个前酚氧化酶激活酶(EsPAP1, 2, 3)。它们与相近物种的酚氧化酶系统相应基因均具有较高同源性,并含有胰酶催化结构域,CLIP结构域,PLD结构域,KAZAL结构域,Serpin结构域以及酚氧化酶结构域等酚氧化酶系统相应基因典型的特征结构域。分析发现,PAPs的CLIP结构域和PRSP,Pacifastin,Proxinectin,proPO基因是节肢动物特有的,是酚氧化酶系统作为节肢动物特有免疫机制的分子基础。本研究从多个基因的3′UTR区发现了调控元件,如15-LOX-DICE,K-box和Brd-Box。在所推断的蛋白中,EsPAP3和EsPAPII的等电点呈碱性,Esperoxinetin的为中性,而EsPRSP,EsSPH,EsproPO, EsPAPII, Esserpin,EsPAP1的等电点在酸性区间。健康中华绒螯蟹EsPAP1,EsPAP2,EsPAPII基因在肌肉中的表达量最高,而在血细胞中的表达量相对较低;EsPAP3,EsproPO,EsPLC基因在血细胞中表达量较高,在肌肉中的表达量最低。其中,EsPAP3在血细胞中的表达量是其在肌肉组织中表达量的526.35倍。调控元件和多种激活酶与抑制剂的存在、组织分布和等电点的差异,说明中华绒螯蟹酚氧化酶系统在转录、翻译、激活等多个层次上受到了调控。在中华绒螯蟹受到鳗弧菌刺激后,EsPAP1,EsPAP2,EsPAP3,EsPLC和EsPAPII基因的表达量呈上升或下降的趋势,但表达量的极限值均出现在2小时和12小时,这一规律与EsproPO应激后的mRNA表达和酶比活力的变化特点相吻合,说明中华绒螯蟹酚氧化酶系统各因子相互协调共同参与中华绒螯蟹对入侵细菌的防御反应。同时EsPAP2,EsPAP3,EsproPO,EsPAPII,EsPLC在中华绒螯蟹受到鳗弧菌刺激后的表达呈现反复多次上升,表明酚氧化酶系统可能参与了多种免疫反应。研究还发现EsPAP1参与中华绒螯蟹血液凝集过程,而EsPAP3是蟹血细胞中的有效的前酚氧化酶激活因子。研究结果初步揭示了中华绒螯蟹酚氧化酶系统的分子基础、对微生物的响应机制及其调控机制和演化趋势,为节肢动物固有免疫系统研究奠定了良好基础。
Chinese mitten crab Eriocheir sinensis (Henri Milne Edwards 1854) is one important aquaculture species in China, possessing striking economic and scientific value. The prophenoloxidase activating system (proPO system), playing key roles in the immune defense response of Chinese mitten crab, is the unique immune component of arthropod innate immunity. In the present study, a cDNA library was constructed and sequenced. The resultant ESTs (Expressed Sequence Tags) were analyzed with bioinformatics tools. RACE (rapid amplification of cDNA ends), real time RT-PCR, protein recombinant and RNAi techeniques were adopted to investigate the cDNA characteristic, mRNA expression and molecular function of key genes of E. sinensis proPO system.
     In the present study, a high quality cDNA library of Chinese mitten crab haemocytes challenged by bateria was constructed with its capacity up to 3.3×106. After random sequencing, 7535 ESTs were obtained and submitted to the GenBank database. Among them, 4593 ESTs having no significant matches to any protein sequences in the public database were identified as novel genes, and the other 2942 were identified as matched genes. Based on the Gene Ontology (GO) classification system, matched genes were classed into 20 GO classifications in terms of molecular functions or 23 GO groups in terms of biological processes. After EST analysis, 32.9% (969 out of 2942) ESTs were identified as immune genes, which were assembled into 221 unigenes. This percentage was significant higher than that of previous reported crustacean cDNA libraries. In addition, antimicrobial peptides (AMPs) taken up 20.1% (195 ESTs) of the 969 ESTs. The high percentage of immune genes 7535 ESTs and the high expression of AMPs indicated that bacteria stimulation was a useful method for improving the proportion of immune genes in cDNA library. The results mentioned above greatly enriched the genomic information of Chinese mitten crab, laid the first step for the elucidation of crab immune system, and for the first time made the full-scale study of the molecular mechanism under various biological processes of crab possible.
     In the present study, interests were focused on the molecular characteristic, tissue distribution, temproral expression profiles of ten proPO system members of Chinese mitten crab as well as the regulation machnism and evolution trend of E. sinensis proPO system. Ten full-length cDNAs were obtained from E. sinensis based on EST analysis and RACE (rapid amplification of cDNA ends) technique, including the PRSP (EsPRSP), PAP1 (EsPAP1), PAP2 (EsPAP2), PAP3 (EsPAP3), SPH (EsSPH), proPO (EsproPO), PAPII (EsPAPII), serpin (Esserpin), pacifastin (EsPLC), peroxinectin (Esperoxinectin). Blast analysis and multiple sequence alignment indicated that all these genes were members of the proPO system. Furthe study indicated that the CLIP domain of PAPs, the genes of PRSP, pacifastin, proxinectin and proPO could only be identified in arthropod, which might be the molecular basis for the uniqueness of the proPO system in arthropod. Some regulation elements, such as 15-LOX-DICE, K-box and Brd-box, were identified in the 3′UTR of proPO system genes. The PIs of crab proPO system factors presented significant differences. The mRNA transcripts of these genes were detected in the haemocytes, heart, gill, gonad, muscle, and hepatopancreas. The mRNA of EsPAP1, EsPAP2, EsPAPII were predominately expressed in muscle and lower expressed in haemocytes; Mealwhile, the expression of EsPAP3, EsproPO and EsPLC was highest in haemocytes and lower in muscle. It was notable that the expression level of EsPAP3 in haemocytes was 526.35-fold to that in muscle. The existence of regulation elements in the 3′UTR of proPO system genes and the presentce of more than one proPO activating proteases as well as protease inhibitors, the difference of PIs and mRNAs expression in tissue distribution collectively implied that the proPO system of E. sinensis was regulated at least on the transcription, translation, enzyme activation, and signal pathway levels. The temporal expression profiles of proPO system members in the crabs challenged with Listonella anguillarum were obtained with the Realtime PCR technique. Though some genes was found increase the mRNA expression while the others decrease, the expression levels of EsPAP1, EsPAP2, EsPAP3, EsPLC and EsPAPII reached the extremum at same schedule (2h, 12h). This expression characteristic was similar to that of the mRNA expression and specific activity of EsproPO after L. anguillarum challenge, which implied that EsPAP1, EsPAP2, EsPAP3, EsPLC, EsPAPII might cooperate together with EsproPO to play roles in the immune process of Chinese mitten crab. In addition, the expression of EsPAP2, EsPAP3, EsproPO, EsPAPII and EsPLC increased twice after the bacteria challenge. This multiple up-regulation revealed that the proPO system probably functioned in several immune processes during the interaction between the host and bacteria. Using RNAi method, EsPAP3 was further proved to be an effective proPO activating factor in haemocytes, and EsPAP1 played roles in the coagulation of Chinese mitten crab. Taken together, the present study identified the molecular basis for the uniqueness of the proPO system in arthropod, obtained the mRNA expression characteristic of proPO system members of Chinese mitten crab and provided new insights into the regulation machnism of E. sinensis proPO system.
引文
1. LeBlanc GA. Crustacean endocrine toxicology: a review. Ecotoxicology and Environmental Safety. 2007 16:61–81.
    2. Ding JL, Tan KC, Thangamani S, Kusuma N, Seow WK, Bui THH, Wang J, Ho B. Spatial and temporal coordination of expression of immune response genes during pseudomonas infection of horseshoe crab, carcinoscorpius rotundicauda. Genes and immunity. 2005 6:1-18.
    3.陈星。两种植物多糖的提取及对中华绒鳌蟹免疫功能影响的研究。硕士学位论文。苏州大学。2007。
    4. FAO. The state of world fisheries and aquaculture 2008. Rome: FAO. 2009:16-22.
    5.李义。中华绒鳌蟹新型免疫调节剂及其酚氧化酶的纯化和性质研究。博士学位论文。南京农业大学。2007。
    6. Dong C, Zhao J, Song L, Wang L, Qiu L, Zheng P, et al. The immune responses in Chinese mitten crab Eriocheir sinensis challenged with double-stranded RNA. Fish & Shellfish Immunology. In Press.
    7. Li P, Zha J, Sun H, Song D, Zhou K. Molecular cloning, mRNA expression, and characterization of HSP90 gene from Chinese mitten crab Eriocheir japonica sinensis. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology. In Press.
    8. Qiu GF, Liu P. On the role of Cdc2 kinase during meiotic maturation of oocyte in the Chinese mitten crab, Eriocheir sinensis. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology. 2009 152:243-8.
    9. Zhao D, Song S, Wang Q, Zhang X, Hu S, Chen L. Discovery of immune-related genes in Chinese mitten crab (Eriocheir sinensis) by expressed sequence tag analysis of haemocytes. Aquaculture. 2009 287:297-303.
    10. Mu C, Zhao J, Wang L, Song L, Zhang H, Li C, et al. Molecular cloning and characterization of peroxiredoxin 6 from Chinese mitten crab Eriocheir sinensis. Fish & Shellfish Immunology. In Press.
    11. Gai Y, Zhao J, Song L, Wang L, Qiu L, Ning X, et al. Two thymosin-repeated molecules with structural and functional diversity coexist in Chinese mitten crab Eriocheir sinensis. Developmental & Comparative Immunology. In Press.
    12. Zhou X, Guo Q, Dai H. Identification of differentially expressed immune-relevant genes in Chinese soft-shelled turtle (Trionyx sinensis) infected with Aeromonas hydrophila. Veterinary Immunology and Immunopathology. 2008 125:82-91.
    13. Crowhurst RN, Gleave AP, MacRae EA, Ampomah-Dwamena C, Atkinson RG, Beuning LL, et al. Analysis of expressed sequence tags from Actinidia: Applications of a cross species EST database for gene discovery in the areas of flavor, health, color and ripening. BMC Genomics. 2008 9.
    14.沈瑶青。中国对虾表达序列标签(ESTs)数据的分析及管理。硕士学位论文。中国科学院海洋研究所。2003。
    15. Coyne RS, Mathangi Thiagarajan M, Kristie M Jones, Jennifer R Wortman, Luke J Tallon, Brian J Haas. Refined annotation and assembly of the Tetrahymena thermophila genome sequence through EST analysis, comparative. BMC Genomics 2008 9:562.
    16. Salminen A, Huuskonen J, Ojala J, Kauppinen A, Kaarniranta K, Suuronen T. Activation of innate immunity system during aging: NF-kB signaling is the molecular culprit of inflamm-aging. Ageing Research Reviews. 2008 7:83-105.
    17. Abdel-latief M, Hilker M. Innate immunity: Eggs of Manduca sexta are able to respond to parasitism by Trichogramma evanescens. Insect Biochem Mol Biol. 2008 38:136-45.
    18. Hoffmann JA, Kafatos FC, Janeway CA, Ezekowitz RAB. Phylogenetic perspectives in innate immunity. Science. 1999 284:1313-8.
    19. Janeway CA, Medzhitov R. Innate immune recognition. Annual Review of Immunology. 2002 20:197-216.
    20.刘逸尘。中国明对虾体内凝结作用相关免疫基因的克隆与表达研究。博士学位论文。中国科学院海洋研究所。2005。
    21. Hultmark D. Drosophila immunity: paths and patterns. Curr Opin Immunol. 2003 15:12-9.
    22. Connor MA, Jaso-Friedmann L, Leary Iii JH, Evans DL. Role of nonspecific cytotoxic cells in bacterial resistance: Expression of a novel pattern recognition receptor with antimicrobial activity. Molecular Immunology. 2009 46:953-61.
    23. Jeannin P, Jaillon S, Delneste Y. Pattern recognition receptors in the immune response against dying cells. Curr Opin Immunol. 2008 20:530-7.
    24. Wang Y, Jiang H. Reconstitution of a branch of the Manduca sexta prophenoloxidase activation cascade in vitro: snake-like hemolymph proteinase 21 (HP21) cleaved by HP14 activates prophenoloxidase-activating proteinase-2 precursor. Insect Biochem Mol Biol. 2007 37:1015-25.
    25. Simonet G, Claeys I, Broeck JV. Structural and functional properties of a novel serine protease inhibiting peptide family in arthropods. Comp Biochem Physiol B Biochem Mol Biol. 2002 132:247-55.
    26. Muta T, Iwanaqa S. Clotting and immune defense in Limulidae. Prog Mol Subcell Biol. 1996 15:154-89.
    27. Shah PK, Tripathi LP, Jensen LJ, Gahnim M, Mason C, Furlong EE, et al. Enhanced function annotations for Drosophila serine proteases: A case study for systematic annotation of multi-member gene families. Gene. 2008 407:199-215.
    28. Jenkins KA, Mansell A. TIR-containing adaptors in Toll-like receptor signalling. Cytokine. In Press.
    29. Hu Y, Li T, Wang Ym, Guo L, Shan X, Li J, et al. IL-1R I/MyD88-TIR mimic AS-1 inhibits the activation of MyD88-dependent signaling pathway induced by IL-1βin vitro. Journal of Nanjing Medical University. 2007 21:354-8.
    30. Zhao JG, Zhou L, Jin JY, Zhao Z, Lan J, Zhang YB, et al. Antimicrobial activity-specific to Gram-negative bacteria and immune modulation-mediated NF-κB and Sp1 of a medakaβ-defensin. Developmental & Comparative Immunology. 2009 33:624-37.
    31. Wiklund ML, Steinert S, Junell A, Hultmark D, Stoen S. The N-terminal half of theDrosophila Rel/NF-κB factor Relish, REL-68, constitutively activates transcription of specific Relish target genes. Developmental & Comparative Immunology. 2009 33:690-6.
    32. Botella JA, Baines IA, Williams DD, Goberdhan DCI, Proud CG, Wilson C. The Drosophila cell shape regulator c-Jun N-terminal kinase also functions as a stress-activated protein kinase. Insect Biochemistry and Molecular Biology. 2001 31:839-47.
    33. Lemaitre B, Hoffmann J. The host defense of Drosophila melanogaster. Annu Rev Immunol. 2007 25:697-743.
    34. Liu CH, Yeh SP, Hsu PY, Cheng W. Peroxinectin gene transcription of the giant freshwater prawn Macrobrachium rosenbergii under intrinsic, immunostimulant, and chemotherapeutant influences. Fish & Shellfish Immunology. 2007 22:408-17.
    35. Reed DA, Luhring KA, Stafford CA, Hansen AK, Millar JG, Hanks LM, et al. Host defensive response against an egg parasitoid involves cellular encapsulation and melanization. Biological Control. 2007 41:214-22.
    36. Dubovskiy IM, Krukova NA, Glupov VV. Phagocytic activity and encapsulation rate of Galleria mellonella larval haemocytes during bacterial infection by Bacillus thuringiensis. Journal of Invertebrate Pathology. 2008 98:360-2.
    37. Theopold U, Schmidt O, Soerhall K, Dushay MS. Coagulation in arthropods: defence, wound closure and healing. Trends in Immunology. 2004 25:289-94.
    38. Chen MY, Hu KY, Huang CC, Song YL. More than one type of transglutaminase in invertebrates? A second type of transglutaminase is involved in shrimp coagulation. Developmental & Comparative Immunology. 2005 29:1003-16.
    39. Kawabata S, Tokunaga F, Kugi Y, Motoyama S, Miura Y, Hirata M, et al. Limulus factor D, a 43-kDa protein isolated from horseshoe crab hemocytes, is a serine protease homologue with antimicrobial activity. FEBS Letters. 1996 398:146-50.
    40. Castillo MG, Goodson MS, McFall-Ngai M. Identification and molecular characterization of a complement C3 molecule in a lophotrochozoan, the Hawaiian bobtail squid Euprymna scolopes. Developmental & Comparative Immunology. 2009 33:69-76.
    41. Robert J. Evolution of heat shock protein and immunity. Developmental and Comparative Immunology. 2003 27:449-64.
    42. Shim JK, Aye TT, Kim DW, Kwon YJ, Kwon JH, Lee KY. Gamma irradiation effects on the induction of three heat shock protein genes (piac25, hsc70 and hsp90) in the Indian meal moth, Plodia interpunctella. Journal of Stored Products Research. In Press.
    43. Shrimali RK, Weaver JA, Miller GF, Starost MF, Carlson BA, Novoselov SV, et al. Selenoprotein expression is essential in endothelial cell development and cardiac muscle function. Neuromuscular Disorders. 2007 17:135-42.
    44. Carvalho AP, Fernandes PA, Ramos MJ. Similarities and differences in the thioredoxin superfamily. Progress in Biophysics & Molecular Biology. 2006 91:229-48.
    45. Arner ES, Holmgren A. The thioredoxin system in cancer. Seminars in Cancer Biology. 2006 16:420-6.
    46. Wang PH, Gu ZH, Huang XD, Liu BD, Deng X, Ai HS, et al. An immune deficiencyhomolog from the white shrimp, Litopenaeus vannamei, activates antimicrobial peptide genes. Molecular Immunology. In Press.
    47. de Lorgeril J, Gueguen Y, Goarant C, Goyard E, Mugnier C, Fievet J, et al. A relationship between antimicrobial peptide gene expression and capacity of a selected shrimp line to survive a Vibrio infection. Molecular Immunology. 2008 45:3438-45.
    48. de la Vega E, O'Leary NA, Shockey JE, Robalino J, Payne C, Browdy CL, et al. Anti-lipopolysaccharide factor in Litopenaeus vannamei (LvALF): A broad spectrum antimicrobial peptide essential for shrimp immunity against bacterial and fungal infection. Molecular Immunology. 2008 45:1916-25.
    49. Amparyup P, Kondo H, Hirono I, Aoki T, Tassanakajon A. Molecular cloning, genomic organization and recombinant expression of a crustin-like antimicrobial peptide from black tiger shrimp Penaeus monodon. Molecular Immunology. 2008 45:1085-93.
    50. Yao CL, Wu CG, Xiang JH, Li F, Wang ZY, Han X. The lysosome and lysozyme response in Chinese shrimp Fenneropenaeus chinensis to Vibrio anguillarum and laminarin stimulation. Journal of Experimental Marine Biology and Ecology. 2008 363:124-9.
    51. Ursic-Bedoya RJ, Nazzari H, Cooper D, Triana O, Wolff M, Lowenberger C. Identification and characterization of two novel lysozymes from Rhodnius prolixus, a vector of Chagas disease. Journal of Insect Physiology. 2008 54:593-603.
    52. Itoh N, Takahashi KG. A novel peptidoglycan recognition protein containing a goose-type lysozyme domain from the Pacific oyster, Crassostrea gigas. Molecular Immunology. In Press.
    53. Ong ST, Ho Shan, Ho B, Ding JL. Iron-withholding strategy in innate immunity. Immunobiology. 2006 211:295-314.
    54. Cerenius L, Lee BL, Soderhall K. The proPO-system: pros and cons for its role in invertebrate immunity. Trends in Immunology. 2008 29:6.
    55. Decleir W, Vercauteren RE. Phenoloxidase in the leucocyte of Cancer pagurus. Arch Int Physiol Biochim. 1966 74:313-4.
    56. Funatsu M. Variations in enzyme activity during the metamorphosis of insects with special reference to phenoloxidase system in the fly. Tanpakushitsu Kakusan Koso. 1966 11:220-7.
    57. Taylor RL. A suggested role for the polyphenol-phenoloxidase system in invertebrate immunity. J Invertebr Pathol. 1969 14:427-8.
    58. Savagaon KA, Sreenivasan A. Purification and properties of pre-phenoloxidase activating enzyme in lobster (Panulirus homarus Linn.). Indian J Biochem Biophys. 1975 12:89-93.
    59. Bai G, Johnston LA, Watson CO, TP. Y. Phenoloxidase activity in the reproductive system of Biomphalaria glabrata: role in egg production and effect of schistosome infection. J Parasitol. 1997 83:852-8.
    60. Belokon' EM, Chernik IaI, Bobak IaP, Pisotskaia DE. Phenoloxidase in the ontogeny of Drosophila melanogaster. Ontogenez. 1990 21:274-9.
    61. Aspán A, Huang TS, Cerenius L, Soderhall K. cDNA cloning of prophenoloxidase from the freshwater crayfish Pacifastacus leniusculus and its activation. Proc Natl AcadSci U S A. 1995 92:939-43.
    62. Gai Y, Zhao J, Song L, Li C, Zheng P, Qiu L, et al. A prophenoloxidase from the Chinese mitten crab Eriocheir sinensis: Gene cloning, expression and activity analysis. Fish & Shellfish Immunology. 2008 24:156-67.
    63. Sritunyalucksana K Cerenius L, S?derh?ll K. Molecular cloning and characterization of prophenoloxidase in the black tiger shrimp, Penaeus monodon. Dev Comp Immunol. 1999 23:179-86.
    64. Hall M, Scott T, Sugumaran M, Soderhall K, Law JH. Proenzyme of Manduca sexta phenol oxidase: purification, activation, substrate specificity of the active enzyme, and molecular cloning. Proc Natl Acad Sci U S A. 1995 92:7764-8.
    65. Cho WL, Liu, HS, Lee, CH, Kuo, CC, Chang, TY, Liu, CT, Chen CC. Molecular cloning, characterization and tissue expression of prophenoloxidase cDNA from the mosquito Armigeres subalbatus inoculated with Dirofilaria immitis micro-filariae. Insect Mol Biol. 1998 7:31-40.
    66. Park DS, Woon Shin S, Kim MG, Park SS, Lee WJ, Brey PT, et al. Isolation and Characterization of the cDNA Encoding the Prophenoloxidase of Fall Webworm, Hyphantria cunea. Insect Biochem Mol Biol. 1998 27:983-92.
    67. Lee HS, Cho MY, Lee KM, Kwon TH, Homma K, Natori S, et al. The pro-phenoloxidase of coleopteran insect, Tenebrio molitor, larvae was activated during cell clump/cell adhesion of insect cellular defense reactions. FEBS Letters. 1999 444:255-9.
    68. Decker H, Rimke T. Tarantula hemocyanin shows phenoloxidase activity. J Biol Chem. 1998 273:25889-92.
    69. Lai SC, Chen CC, RF. H. Immunolocalization of prophenoloxidase in the process of wound healing in the mosquito Armigeres subalbatus (Diptera: Culicidae). J Med Entomol. 2002 39:266-74.
    70. Leone P, Roussel A, Kellenberger C. Structure of Locusta migratoria protease inhibitor 3 (LMPI-3) in complex with Fusarium oxysporum trypsin. Acta Crystallographica Section D-Biological Crystallography. 2008 64:1165-71.
    71. Franssens V, Simonet G, Breugelmans B, Van Soest S, Van Hoef V, Broeck JV. The role of hemocytes, serine protease inhibitors and pathogen-associated patterns in prophenoloxidase activation in the desert locust, Schistocerca gregaria. Luang Prabang, LAOS; 2008, p. 235-41.
    72. Wang Y, Jiang H. Reconstitution of a branch of the Manduca sexta prophenoloxidase activation cascade in vitro: Snake-like hemolymph proteinase 21 (HP21) cleaved by HP14 activates prophenol oxidase-activating proteinase-2 precursor. Insect Biochem Mol Biol. 2007 37:1015-25.
    73. Breugelmans B, Simonet G, van Hoef V, Claeys I, Van Soest S, Broeck JV. Quantitative RT-PCR analysis of pacifastin-related precursor transcripts during the reproductive cycle of solitarious and gregarious desert locusts. Insect Mol Biol. 2008 17:137-45.
    74. Cerenius L, Lee BL, Soderhall K. The proPO-system: pros and cons for its role in invertebrate immunity. Trends Immunol. 2008 29:263-71.
    75. Figueiredo MB, Genta FA, Garcia ES, Azambuja P. Lipid mediators and vector infection: Trypanosoma rangeli inhibits Rhodnius prolixus hemocyte phagocytosis bymodulation of phospholipase A(2) and PAF-acetylhydrolase activities. Journal of Insect Physiology. 2008 54:1528-37.
    76. Piao SF, Kim S, Kim JH, Park JW, Lee BL, Ha NC. Crystal structure of the serine protease domain of prophenoloxidase activating factor-I. Journal of Biological Chemistry. 2007 282:10783-91.
    77. Breugelmans B, Simonet G, de Velde SV, Van Soest S, Smagghe G, Broeck JV. Cloning, recombinant production and activity of pacifastin-like peptides. Journal of Insect Science. 2007 7.
    78. Bao YY, Yamano Y, Morishima I. beta-1,3-Glucan inducible expression of prophenoloxidase-activating proteinase from eri-silkwonn, Samia cynthia ricini. Comparative Biochemistry and Physiology B-Biochemistry & Molecular Biology. 2007 147:45-8.
    79. Zufelato MS, Louren?o AP, Sim?es ZL, Jorge JA, Bitondi MM. Phenoloxidase activity in Apis mellifera honey bee pupae, and ecdysteroid-dependent expression of the prophenoloxidase mRNA. Insect Biochem Mol Biol. 2004 34:1257-68.
    80. Labb P, Little TJ. ProPhenolOxidase in Daphnia magna: cDNA sequencing and expression in relation to resistance to pathogens. Developmental & Comparative Immunology. 2009 33:674-80..
    81. Pang QX, Zhang SC, Wang CF, Shi XD, Sun YN. Presence of prophenoloxidase in the humoral fluid of amphioxus Branchiostoma belcheri tsingtauense. Fish & Shellfish Immunology. 2004 17:477-87.
    82. Azariah J. Studies on cephalochordates of madras coast. 14. polyphenols and phenoloxidase system in the amphioxus system in amphioxus branchiostoma-lanceolatum. Acta Histochemica. 1973 45:91-7.
    83. Sachez-Ferrer A, Neptuno Rodriuez-Loez J, Garci-Caovas F, Garcia-Carmona F. Tyrosinase: a comprehensive review of its mechanism. Biochimica et Biophysica Acta (BBA) - Protein Structure and Molecular Enzymology. 1995 1247:1-11.
    84. Terwilliger NB, Ryan MC. Functional and Phylogenetic Analyses of Phenoloxidases from Brachyuran (Cancer magister) and Branchiopod (Artemia franciscana, Triops longicaudatus) Crustaceans. biolbull. 2006 210:38-50.
    85. Decker H, Jaenicke E. Recent findings on phenoloxidase activity and antimicrobial activity of hemocyanins. Developmental & Comparative Immunology. 2004 28:673-87.
    86. Burmester T. Molecular evolution of the arthropod hemocyanin superfamily. Molecular Biology and Evolution. 2001 18:184-95.
    87. van Holde KE, Miller KI, Decker H. Hemocyanins and invertebrate evolution. Journal of Biological Chemistry. 2001 276:15563-6.
    88. Padhi A, Verghese B, Vaid A, Otta SK. Pattern of nucleotide substitution and divergence of prophenoloxidase in decapods. Fish & Shellfish Immunology. 2007 22:628-40.
    89. Burmester T. Origin and evolution of arthropod hemocyanins and related proteins. Journal of Comparative Physiology B-Biochemical Systemic and Environmental Physiology. 2002 172:95-107.
    90. Bitondi MMG, Nascimento AM, Cunha AD, Guidugli KR, Nunes FMF, Simoes ZLP.Characterization and expression of the Hex 110 gene encoding a glutamine-rich hexamerin in the honey bee, Apis mellifera. Archives of Insect Biochemistry and Physiology. 2006 63:57-72.
    91. Tsao IY, Lin US, Christensen BM, Chen CC. Armigeres subalbatus prophenoloxidase III: Cloning, characterization and potential role in morphogenesis. Insect Biochemistry and Molecular Biology. 2008:1-9.
    92. Cerenius L, Soderhall K. The prophenoloxidase-activating system in invertebrates. Immunol Rev. 2004 198:116-26.
    93. Sritunyalucksana K, Soderhall K. The proPO and clotting system in crustaceans. Aquaculture. 2000 191 53-69.
    94. Maillet F, Bischoff V, Vignal C, Hoffmann J, Royet J. The Drosophila Peptidoglycan Recognition ProteinPGRP-LF Blocks PGRP-LC and IMD/JNK Pathway Activation. Cell Host & Microbe. 2008 3:293-303.
    95. Lang MF, Schneider A, Kruer C, Schmid R, Dziarski R, Schwaninger M. Peptidoglycan recognition protein-S (PGRP-S) is upregulated by NF-κB. Neuroscience Letters. 2008 430:138-41.
    96. Leone P, Bischoff V, Kellenberger C, Hetru C, Royet J, Roussel A. Crystal structure of Drosophila PGRP-SD suggests binding to DAP-type but not lysine-type peptidoglycan. Molecular Immunology. 2008 45:2521-30.
    97. Cheng W, Liu C-H, Tsai C-H, Chen J-C. Molecular cloning and characterisation of a pattern recognition molecule, lipopolysaccharide- andβ-1,3-glucan binding protein (LGBP) from the white shrimp Litopenaeus vannamei. Fish & Shellfish Immunology. 2005 18:297-310.
    98. Vargas-Albores F, Yepiz-Plascencia G. Beta glucan binding protein and its role in shrimp immune response. Aquaculture. 2000 191:13-21.
    99. Lee SY, Soderhall K. Characterization of a pattern recognition protein, a masquerade-like protein, in the freshwater crayfish Pacifastacus leniusculus. J Immunol. 2001 166:7319-26.
    100. Le Saux A, Ng PML, Koh JJY, Low DHP, Leong GEL, Ho B, et al. The Macromolecular Assembly of Pathogen-Recognition Receptors is Impelled by Serine Proteases, via Their Complement Control Protein Modules. Journal of Molecular Biology. 2008 377:902-13.
    101. Szabo R, Bugge TH. Type II transmembrane serine proteases in development and disease. The International Journal of Biochemistry & Cell Biology. 2008 40:1297-316.
    102. Ross J, Jiang H, Kanost MR, Wang Y. Serine proteases and their homologs in the Drosophila melanogaster genome: an initial analysis of sequence conservation and phylogenetic relationships. Gene. 2003 304:117-31.
    103. Prabhakar S, Chen MS, Elpidina EN, Vinokurov KS, Smith CM, Marshall J, Oppert B. Sequence analysis and molecular characterization of larval midgut cDNA transcripts encoding peptidases from the yellow mealworm, Tenebrio molitor. Insect Molecular Biology. 2007 16:455-68.
    104. Puente XS, López-Otín1 C. A Genomic Analysis of Rat Proteases and Protease Inhibitors Genome Res. 2004 14:609-22.
    105. Jiang H, Wang Y, Gu Y, Guo X, Zou Z, Scholz F, et al. Molecular identification ofa bevy of serine proteinases in Manduca sexta hemolymph. Insect Biochemistry and Molecular Biology. 2005 35:931-43.
    106. Jimenez-Vega F, Vargas-Albores F, Soderhall K. Characterisation of a serine proteinase from Penaeus vannamei haemocytes. Fish & Shellfish Immunology. 2005 18:101-8.
    107. Rawlings RD, AJ. B. Evolutionary families of peptidases. Biochem J 1993 290:205–18.
    108. Krem MM, Cera ED. Evolution of enzyme cascades from embryonic development to blood coagulation. Trends in Biochemical Sciences. 2002 27:67-74.
    109. Laskowski Jr M, Kato I. Protein inhibitors of proteinases. Annu. Rev. Biochem. 1980 49:593–626.
    110. Bennett B, Ratnoff OD. The normal coagulation mechanism. Med Clin North Am 1972 56:95-104.
    111. Lu Z, Beck MH, Wang Y, Jiang H, Strand MR. The viral protein Egf1.0 is a dual activity inhibitor of prophenoloxidase-activating proteinases 1 and 3 from Manduca sexta. Journal of Biological Chemistry. 2008 283:21325-33.
    112. Zou Z, Wang Y, Jiang HB. Manduca sexta prophenoloxidase activating proteinase-1 (PAP-1) gene: Organization, expression, and regulation by immune and hormonal signals. Insect Biochem Mol Biol. 2005 35:627-36.
    113. Zou Z, Jiang H. Gene structure and expression profile of Manduca sexta prophenoloxidase-activating proteinase-3 (PAP-3), an immune protein containing two clip domains. Insect Mol Biol. 2005 14:433-42.
    114. Lee SY, Kwon TH, Hyun JH, Choi JS, Kawabata S, Iwanaga S, et al. In vitro activation of pro-phenol-oxidase by two kinds of pro-phenol-oxidase-activating factors isolated from hemolymph of coleopteran, Holotrichia diomphalia larvae. European Journal of Biochemistry. 1998 254:50-7.
    115. Cerenius L, Henttonen P, Lindqvist OV, Soderhall K. The crayfish pathogen psorospermium-haeckeli activates the prophenoloxidase activating system of fresh-water crayfish in vitro. Aquaculture. 1991 99:225-33.
    116. Wang Y, Jiang H. Purification and characterization of Manduca sexta serpin-6: a serine proteinase inhibitor that selectively inhibits prophenoloxidase-activating proteinase-3. Insect Biochem Mol Biol. 2004 34:387-95.
    117. Jiang H, Wang Y, Yu XQ, Zhu Y, Kanost M. Prophenoloxidase-activating proteinase-3 (PAP-3) from Manduca sexta hemolymph: a clip-domain serine proteinase regulated by serpin-1J and serine proteinase homologs. Insect Biochem Mol Biol. 2003 33:1049-60.
    118. Zou Z, Jiang H. Gene structure and expression profile of Manduca sexta prophenoloxidase-activating proteinase-3 (PAP-3), an immune protein containing two clip domains. Insect Mol Biol. 2005 14:433-42.
    119. Piao S, Song YL, Kim JH, Park SY, Park JW, Lee BL, et al. Crystal structure of a clip-domain serine protease and functional roles of the clip domains. Embo Journal. 2005 24:4404-14.
    120. Amparyup P, Jitvaropas R, Pulsook N, Tassanakajon A. Molecular cloning,characterization and expression of a masquerade-like serine proteinase homologue from black tiger shrimp Penaeus monodon. Fish & Shellfish Immunology. 2007 22:535-46.
    121. Jiang H, Kanost MR. The clip-domain family of serine proteases in arthropods. Insect Biochem Mol Biol. 2000 30:95-105.
    122. Huang R, Lu Z, Dai H, Velde DV, Prakash O, Jiang H. The Solution Structure of Clip Domains from Manduca sexta Prophenoloxidase Activating Proteinase-2. 2007 46:41.
    123. Yu XQ, Jiang H, Wang Y, Kanost MR. Nonproteolytic serine proteinase homologs are involved in prophenoloxidase activation in the tobacco hornworm, Manduca sexta. Insect Biochemistry and Molecular Biology. 2003 33:197208.
    124. Kawabata S, Tokunaga F, Kugi Y, Motoyama S, Miura Y, Hirata M. Limulus factor D, a 43-kDa protein isolated from horseshoe crab hemocytes, is a serine proteinase homologue with antimicrobial activity. FEBS Lett 1996 398:14-e50.
    125. Kim MS, Baek MJ, Lee MH, Park JW, Lee SY, Soderhall K, et al. A new easter-type serine protease cleaves a masquerade-like protein during prophenoloxidase activation in Holotrichia diomphalia larvae. J Biol Chem. 2002 277:39999-40004.
    126. Lin CY, Hu KY, Ho SH, Song YL. Cloning and characterization of a shrimp clip domain serine protease homolog (cSPH) as a cell adhesion molecule. Developmental & Comparative Immunology. 2006 30:1132.
    127. Buda ES, Shafer TH. Expression of a serine proteinase homolog prophenoloxidase-activating factor from the blue crab, Callinectes sapidus. Comp Biochem Physiol B Biochem Mol Biol. 2005 140:521-31.
    128. Gupta S, Wang Y, Jiang H. Manduca sexta prophenoloxidase (proPO) activation requires proPO-activating proteinase (PAP) and serine proteinase homologs (SPHs) simultaneously. Insect Biochem Mol Biol. 2005 35:241-8.
    129. Rattanachai A, Hirono I, Ohira T, Takahashi Y, Aoki T. Peptidoglycan inducible expression of a serine proteinase homologue from kuruma shrimp (Marsupenaeus japonicus). Fish & Shellfish Immunology. 2005 18:39-48.
    130. Zdobnov EM vMC, Letunic I. Comparative genome and proteome analysis of Anopheles gambiae and Drosophila melanogaster. Science. 2002 298:149-59.
    131. Simonet G, Claeys I, Franssens V, De Loof A, Broeck JV. Genomics, evolution and biological functions of the pacifastin peptide family: a conserved serine protease inhibitor family in arthropods. Peptides. 2003 24:1633-44.
    132. Rawlings ND, FR M, Barrett AJ. MEROPS:the peptidase database. Nucleic Acids Res. 2006 34:d270-d2.
    133. Hergenhahn HG, Aspan A, Soderhall K. Purification and characterization of a high-Mr proteinase-inhibitor of pro-phenol oxidase activation from crayfish plasma. Biochem J. 1987 248:223-8.
    134. Simonet G, Claeys I, Vanderperren H, November T, De Loof A, Vanden Broeck J. cDNA cloning of two different serine protease inhibitor precursors in the migratory locust, Locusta migratoria. Insect Mol Biol. 2002 11:249-56.
    135. Gaspari Z, Ortutay C, Perczel A. A simple fold with variations: the pacifastin inhibitor family. Bioinformatics. 2004 20:448-51.
    136. Nakakura N, Hietter H, Van Dorsselaer A, Luu B. Isolation and structuralidentification of three peptides from the insect Locusta migratoria. Eur J Biochem. 1992 204:147-53.
    137. Mer G, Kellenberger C, Koehl P, Stote R, Sorokine O, Van Dorsselaer A, Luu B, Hietter H, Lefèvre JF. Solution structure of PMP-D2, a 35-residue peptide isolated from the insect Locusta migratoria. Biochemistry. 1994 33:15397-407.
    138. Mer G, Hietter H, Kellenberger C, Renatus M, Luu B, Lefèvre JF. Solution structure of PMP-C: a new fold in the group of small serine protease inhibitors. J Mol Biol. 1996 258:158-71.
    139. Gaspari Z, Patthy A, Graf L, Perczel A. Comparative structure analysis of proteinase inhibitors from the desert locust, Schistocerca gregaria. Eur J Biochem. 2002 269:527-37.
    140. Liang Z, Sottrup-Jensen L, Aspan A, Hall M, Soderhall K. Pacifastin, a novel
    155-kDa heterodimeric proteinase inhibitor containing a unique transferrin chain. Proc Natl Acad Sci U S A. 1997 94:6682-7.
    141. Scherfer C, Tang H, Kambris Z, Lhocine N, Hashimoto C, Lemaitre B. Drosophila Serpin-28D regulates hemolymph phenoloxidase activity and adult pigmentation. Developmental Biology. 2008 323:189-96.
    142. Zou Z, Picheng Z, Weng H, Mita K, Jiang H. A comparative analysis of serpin genes in the silkworm genome. Genomics. 2009 93:367-75.
    143. Wang Y, Jiang H. Purification and characterization of Manduca sexta serpin-6: a serine proteinase inhibitor that selectively inhibits prophenoloxidase-activating proteinase-3. Insect Biochem Mol Biol. 2004 34:387-95.
    144. Donpudsa S, Tassanakajon A, Rimphanitchayakit V. Domain inhibitory and bacteriostatic activities of the five-domain Kazal-type serine proteinase inhibitor from black tiger shrimp Penaeus monodon. Dev Comp Immunol. 2009 33:481-8.
    145. Jimenez-Vega F, Vargas-Albores F. A four-Kazal domain protein in Litopenaeus vannamei hemocytes. Dev Comp Immunol. 2005 29:385-91.
    146.孙兆峰。中国对虾酚氧化酶的研究。硕士学位论文。中国科学院海洋研究所。2002。
    147. Waterhouse RM, Evgenia V. Kriventseva, Meister S. Evolutionary Dynamics of Immune-Related Genes and Pathways in Disease-Vector Mosquitoes. Science. 2007 316,: 1738-43.
    148. Parkinson N, Smith I, Weaver R, JP. E. A new form of arthropod phenoloxidase is abundant in venom of the parasitoid wasp Pimpla hypochondriaca. Insect Biochem Mol Biol. 2001 31:57-63.
    149. Ling E, Yu XQ. Prophenoloxidase binds to the surface of hemocytes and is involved in hemocyte melanization in Manduca sexta. Insect Biochem Mol Biol. 2005 35:1356-66.
    150. Evans JJT. The activation of prophenoloxidase during melanization of the pupal blood of the Chinese Oak silkmoth, Antheraea pernyi. Journal of Insect Physiology. 1967 13:1699-711.
    151. Hiruma K, Riddiford LM. Granular phenoloxidase involved in cuticular melanization in the tobacco hornworm: Regulation of its synthesis in the epidermis byjuvenile hormone. Developmental Biology. 1988 130:87-97.
    152. Rizki TM, Rizki RM, RA. B. Genetics of a Drosophila phenoloxidase. Mol Gen Genet. 1985 201:7-13.
    153. Shrestha S, Kim Y. Eicosanoids mediate prophenoloxidase release from oenocytoids in the beet armyworm Spodoptera exigua. Insect Biochem Mol Biol. 2008 38:99-112.
    154. Asano T, Ashida M. Transepithelially transported pro-phenoloxidase in the cuticle of the silkworm, Bombyx mori. Identification of its methionyl residues oxidized to methionine sulfoxides. J Biol Chem. 2001 276:11113-25.
    155. Mavrouli MD, Tsakas S, Theodorou GL, Lampropoulou M, VJ. M. MAP kinases mediate phagocytosis and melanization via prophenoloxidase activation in medfly hemocytes. Biochim Biophys Acta. 2005 1744:145-56.
    156. Wang YC, Chang PS, Chen HY. Tissue distribution of prophenoloxidase transcript in the Pacific white shrimp Litopenaeus vannamei. Fish & Shellfish Immunology. 2006 20:414.
    157. Johansson MW, Lind MI, Holmblad T, Thornqvist PO, Soderhall K. Peroxinectin, a Novel Cell Adhesion Protein from Crayfish Blood. Biochemical and Biophysical Research Communications. 1995 216:1079-87.
    158. Sritunyalucksana K, Wongsuebsantati K, Johansson MW, Soerhall K. Peroxinectin, a cell adhesive protein associated with the proPO system from the black tiger shrimp, Penaeus monodon. Developmental & Comparative Immunology. 2001 25:353-63.
    159. Liu CH, Cheng W, Chen JC. The peroxinectin of white shrimp Litopenaeus vannamei is synthesised in the semigranular and granular cells, and its transcription is upregulated with Vibrio alginolyticus infection. Fish & Shellfish Immunology. 2005 18:43144.
    160. Liu CH, Yeh SP, Hsu PY, Cheng W. Peroxinectin gene transcription of the giant freshwater prawn Macrobrachium rosenbergii under intrinsic, immunostimulant, and chemotherapeutant influences. Fish & Shellfish Immunology. 2007 22:408-17.
    161. Hsu PI, Liu CH, Tseng DY, Lee PP, Cheng W. Molecular cloning and characterisation of peroxinectin, a cell adhesion molecule, from the giant freshwater prawn Macrobrachium rosenbergii. Fish & Shellfish Immunology. 2006 21:110.
    162. Liu CH, Cheng W, Kuo CM, Chen JC. Molecular cloning and characterisation of a cell adhesion molecule, peroxinectin from the white shrimp Litopenaeus vannamei. Fish & Shellfish Immunology. 2004 17:1326.
    163. Vazquez M, Rodriguez R, Zurita M. A new peroxinectin-like gene preferentially expressed during oogenesis and early embryogenesis in Drosophila melanogaster. Development Genes and Evolution. 2002 212:526-9.
    164. Liu CH, Cheng W, Kuo CM, Chen JC. Molecular cloning and characterisation of a cell adhesion molecule, peroxinectin from the white shrimp Litopenaeus vannamei. Fish & Shellfish Immunology. 2004 17:13-26.
    165. Liu CH, Cheng W, Chen JC. The peroxinectin of white shrimp Litopenaeus vannamei is synthesised in the semi-granular and granular cells, and its transcription is up-regulated with Vibrio alginolyticus infection. Fish & Shellfish Immunology. 2005 18:431-44.
    166. Johansson MW, Soderhall K. Isolation and purification of a cell adhesion factor from crayfish blood cells. J Cell Biol. 1988 106:1795-803.
    167. Johansson MW. Cell adhesion molecules in invertebrate immunity Developmental & Comparative Immunology. 1999 23 303-15.
    168. Johansson MW, Soderhall K. A cell adhesion factor from crayfish haemocytes has degranulating activity towards crayfish granular cells. Insect Biochem. 1989 19:183-90.
    169. Thornqvist PO, Johansson MW, Soderhall K. Opsonic activity of cell adhesion proteins and beta-1,3-glucan binding proteins from two crustaceans. Dev Comp Immunol. 1994 18:3-12.
    170. Johansson MW, Soderhall K. Cellular immunity in crustaceans and the proPO system. Parasitology Today. 1989 5:171-6.
    171. Paskewitz SM, Andreev O. Silencing the genes for dopa decarboxylase or dopachrome conversion enzyme reduces melanization of foreign targets in Anopheles gambiae. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology. 2008 150:403-8.
    172. Fang J, Han Q, Johnson JK, Christensen BM, Li J. Functional Expression and Characterization of Aedes aegypti Dopachrome Conversion Enzyme. Biochemical and Biophysical Research Communications. 2002 290:287-93.
    173. Johnson JK, Li J, Christensen BM. Cloning and characterization of a dopachrome conversion enzyme from the yellow fever mosquito, Aedes aegypti. Insect Biochem Mol Biol. 2001 31:1125-35.
    174. Soerhall K, Cerenius L. Role of the prophenoloxidase-activating system in invertebrate immunity. Curr Opin Immunol. 1998 10:23-8.
    175. Asada N, Sezaki H. Properties of phenoloxidases generated from prophenoloxidase with 2-propanol and the natural activator in Drosophila melanogaster. Biochem Genet 1999 37(149-58.
    176. Muller HMea. A hemocyte-like cell line established from the malaria vector Anopheles gambiae expresses six prophenoloxidase genes. J Biol Chem. 1999 274:11727-35.
    177. Li JS, Ruyl Kim S, Christensen BM, Li J. Purification and primary structural characterization of prophenoloxidases from Aedes aegypti larvae. Insect Biochem Mol Biol. 2005 35:1269-83.
    178. Jiang H, Wang Y, Ma C, MR. K. Subunit composition of pro-phenoloxidase from Manduca sexta: molecular cloning of subunit proPO-P1. Insect Biochem Mol Biol. 1997 27:835-50.
    179. Lu KY, Huang YT, Lee HH, Sung HH. Cloning the prophenoloxidase cDNA and monitoring the expression of proPO mRNA in prawns (Macrobrachium rosenbergii) stimulated in vivo by CpG oligodeoxynucleotides. Fish & Shellfish Immunology. 2006 20:274.
    180. Ahmed A, Martin D, Manetti AGO, Han SJ, Lee WJ, Mathiopoulos KD, et al. Genomic structure and ecdysone regulation of the prophenoloxidase 1 gene in the malaria vector Anopheles gambiae. proceedings of the national academy of sciences of the united states of america. 1999 96:14795-800.
    181. Zufelato MS, Louren?o AP, Sim?es ZL, Jorge JA, Bitondi MM. Phenoloxidase activity in Apis mellifera honey bee pupae, and ecdysteroid-dependent expression of the prophenoloxidase mRNA. Insect Biochemistry and Molecular Biology 2004 34:1257–68.
    182. Tsao IY, Lin US, Christensen BM, Chen CC. Armigeres subalbatus prophenoloxidase III: Cloning, characterization and potential role in morphogenesis. Insect Biochem Mol Biol. 2009 39:96-104.
    183. Chuo CP LS, Sung HH. Signal transduction of the prophenoloxidase activating system of prawn haemocytes triggered by CpG oligodeoxynucleotides. Fish & Shellfish Immunology 2005 18:149-62.
    184. Bidla G, Dushay MS, U. T. Crystal cell rupture after injury in Drosophila requires the JNK pathway, small GTPases and the TNF homolog Eiger. J Cell Sci. 2007 120:1209–15.
    185. Lee SY, Lee BL, Soderhall K. Processing of crayfish hemocyanin subunits into phenoloxidase. Biochemical and Biophysical Research Communications. 2004 322:490-6.
    186.庞秋香。青岛文昌鱼体液酚氧化酶:分离、纯化、鉴定、诱导形成及其基因克隆。博士学位论文。中国海洋大学。2006。
    187. Nappi AJ, Frey F, Carton Y. Drosophila serpin 27A is a likely target for immune suppression of the blood cell-mediated melanotic encapsulation response. Journal of Insect Physiology. 2005 51:197-205.
    188. De Gregorio E, Han SJ, Lee WJ, Baek MJ, Osaki T, Kawabata SI, et al. An ImmuneResponsive Serpin Regulates the Melanization Cascade in Drosophila. Developmental Cell. 2002 3:58192.
    189. Ligoxygakis P, Pelte N, Ji C, Leclerc V, Duvic B, Belvin M, et al. A serpin mutant links Toll activation to melanization in the host defence of Drosophila. Embo J. 2002 21:6330-7.
    190. Kanost MR, Jiang H, Yu XQ. Innate immune responses of a lepidopteran insect, Manduca sexta. Immunol Rev. 2004 198:97-105.
    191. Jiang H, Wang Y, Yu X-Q, Zhu Y, Kanost M. Prophenoloxidase-activating proteinase-3 (PAP-3) from Manduca sexta hemolymph: a clip-domain serine proteinase regulated by serpin-1J and serine proteinase homologs. Insect biochemistry and molecular biology. 2003 33:1049-60.
    192. Mavrouli MD, Tsakas S, Theodorou GL, Lampropoulou M, Marmaras VJ. MAP kinases mediate phagocytosis and melanization via prophenoloxidase activation in medfly hemocytes. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research. 2005 1744:145-56.
    193. Yang Wang, Jiang H. A positive feedback mechanism in the Manduca sexta prophenoloxidase activation system. Insect Biochemistry and Molecular Biology 2008 38 763- 9.
    194. Sugumaran M, Nellaiappan K, Amaratunga C, Cardinale S, Scott T. Insect Melanogenesis: III. Metabolon Formation in the Melanogenic Pathway--Regulation of Phenoloxidase Activity by Endogenous Dopachrome Isomerase (Decarboxylating) from Manduca sexta. Archives of Biochemistry and Biophysics. 2000 378:393-403.
    195. Marra MA, Hillier, L, Waterston, RH. Expressed sequence tags ESTablising bridgesbetween genomes. Trends Genet 1998 14:4-7.
    196. Chen L, Zhao L, Gao Q. Generation and analysis of expressed sequence tags from the tender shoots cDNA library of tea plant (Camellia sinensis). Plant Science. 2005 168:359-63.
    197. Wang YC, Yang CP, Liu GF, Jiang J, Wu JH. Generation and analysis of expressed sequence tags from a cDNA library of Tamarix androssowii. Plant Science. 2006 170:2836.
    198. Coram TE, Pang ECK. Isolation and analysis of candidate ascochyta blight defence genes in chickpea. Part I. Generation and analysis of an expressed sequence tag (EST) library. Physiological and Molecular Plant Pathology. 2005 66:192-200.
    199. Sun H, Zhou K, Song D. Mitochondrial genome of the Chinese mitten crab Eriocheir japonica sinenesis (Brachyura: Thoracotremata: Grapsoidea) reveals a novel gene order and two target regions of gene rearrangements. Gene. 2005 349:207-17.
    200. Rojtinnakorn J, Hirono I, Itami T, Takahashi Y, Aoki T.Gene expression in haemocytes of kuruma prawn, Penaeus japonicus, in response to infection with WSSV by EST approach. 2002 13(1):69-83.
    201. Dong B, Xiang JH. Discovery of genes involved in defense/immunity functions in a haemocytes cDNA library from Fenneropenaeus chinensis by ESTs annotation. Aquaculture. 2007 272:208-15.
    202. Gross PS, Bartlett TC, Browdy CL, Chapman RW, Warr GW. Immune gene discovery by expressed sequence tag analysis of hemocytes and hepatopancreas in the Pacific White Shrimp, Litopenaeus vannamei, and the Atlantic White Shrimp, L. setiferus. Developmental & Comparative Immunology. 2001 25:565-77.
    203. Skiba B, Ford R, Pang ECK. Construction of a cDNA library of Lathyrus sativus inoculated with Mycosphaerella pinodes and the expression of potential defence-related expressed sequence tags (ESTs). Physiological and Molecular Plant Pathology. 2005 66:55-67.
    204. Pongsomboon S, Wongpanya R, Tang S, Chalorsrikul A, Tassanakajon A. Abundantly expressed transcripts in the lymphoid organ of the black tiger shrimp, Penaeus monodon, and their implication in immune function. Fish & Shellfish Immunology. 2008 25:485-93.
    205. Ding JL. Outwit, outplay, outlive. Immunobiology. 2006 211:211–2.
    206. Scherfer C, Qazi MR, Takahashi K, Ueda R, Dushay MS, Theopold U, et al. The Toll immune-regulated Drosophila protein Fondue is involved in hemolymph clotting and puparium formation. Developmental Biology. 2006 295:156-63.
    207. Hall M, Soderhall K. Crayfish a-2-macroglobulin as a substrate for transglutaminases. Comp Biochem Physiol. 1994 B:108.
    208. Lesch C, Goto A, Lindgren M, Bidla G, Dushay MS, Theopold U. A role for Hemolectin in coagulation and immunity in Drosophila melanogaster. Developmental & Comparative Immunology. 2007 31:1255-63.
    209. Mende K, Petoukhova O, Koulitchkova V, Schaub GA, Lange U, Kaufmann R, et al. Dipetalogastin, a potent thrombin inhibitor from the blood-sucking insect Dipetalogaster maximus - cDNA cloning, expression and characterization. European Journal of Biochemistry. 1999 266:583-90.
    210. Reddy VB, Kounga K, Mariano F, Lerner EA. Chrysoptin is a potent glycoprotein IIb/IIIa fibrinogen receptor antagonist present in salivary gland extracts of the deerfly. Journal of Biological Chemistry. 2000 275:15861-7.
    211. Wang X, Fuchs JF, Infanger LC, Rocheleau TA, Hillyer JF, Chen CC, et al. Mosquito innate immunity: involvement ofβ1,3-glucan recognition protein in melanotic encapsulation immune responses in Armigeres subalbatus. Molecular and Biochemical Parasitology. 2005 139:65.
    212. S?derh?ll K, Cerenius L. Crustacean immunity. Ann Rev Fish Dis. 1992 2:3-23.
    213. Jiang H, Kanost MR. The clip-domain family of serine proteinases in arthropods. Insect Biochem Mol Biol. 2000 30:95-105.
    214. Ko CF, Chiou TT, Vaseeharan B, Lu JK, Chen JC. Cloning and characterisation of a prophenoloxidase from the haemocytes of mud crab Scylla serrata. Developmental & Comparative Immunology. 2007 31:1222.
    215. S?derh?ll K, Cerenius L, Johansson M. The prophenoloxidase activating system and its role in invertebrate defence. Ann NY Acad Sci. 1994 712:155-61.
    216. Yang LS, Yin ZX, Liao JX, Huang XD, Guo CJ, Weng SP, et al. A Toll receptor in shrimp. Molecular Immunology. 2007 44:19992008.
    217. Yang C, Zhang J, Li F, Ma H, Zhang Q, Jose Priya TA, et al. A Toll receptor from Chinese shrimp Fenneropenaeus chinensis is responsive to Vibrio anguillarum infection. Fish & Shellfish Immunology. 2008 24:564-74.
    218. Davidson CR, Best NM, Francis JW, Cooper EL, Wood TC. Toll-like receptor genes (TLRs) from Capitella capitata and Helobdella robusta (Annelida). Developmental & Comparative Immunology. 2008 32:608-12.
    219. Takeda K, Kaisho T, Akira S. Toll-like receptors. Annu Rev Immunol. 2003 21:335-76.
    220. Chen SL, Li W, Meng L, Sha ZX, Wang ZJ, Ren GC. Molecular cloning and expression analysis of a hepcidin antimicrobial peptide gene from turbot (Scophthalmus maximus). Fish & Shellfish Immunology. 2007 22:172-81.
    221. Beutler B. Innate immunity: an overview. Molecular Immunology. 2004 40:845-59.
    222. Levashina EA, Moita LF, Blandin S, Vriend G, Lagueux M, Kafatos FC. Conserved Role of a Complement-like Protein in Phagocytosis Revealed by dsRNA Knockout in Cultured Cells of the Mosquito, Anopheles gambiae. Cell. 2001 104:709-18.
    223. Zhu Y, Thangamani S, Ho B, Ding JL. The ancient origin of the complement system. Embo Journal. 2005 24:382-94.
    224. Dishaw LJ, Smith SL, Bigger CH. Characterization of a C3-like cDNA in a coral: phylogenetic implications. Immunogenetics. 2005 57:535-48.
    225. Zhang H, Song L, Li C, Zhao J, Wang H, Gao Q, et al. Molecular cloning and characterization of a thioester-containing protein from Zhikong scallop Chlamys farreri. Molecular Immunology 2007 44:3492-500.
    226. Fujino G, Noguchi T, Takeda K, Ichijo H. Thioredoxin and protein kinases in redox signaling. Seminars in Cancer Biology. 2006 16:427-35.
    227. Park K, Kwak IS. Characterization of heat shock protein 40 and 90 in Chironomus riparius larvae: Effects of di(2-ethylhexyl) phthalate exposure on gene expressions andmouthpart deformities. Chemosphere. 2008 74:89-95.
    228. Aufricht C. Heat-shock protein 70: molecular supertool? Pediatric Nephrology. 2005 20:707-13.
    229. Bryant B, Blair CD, Olson KE, Clem RJ. Annotation and expression profiling of apoptosis-related genes in the yellow fever mosquito, Aedes aegypti. Insect Biochem Mol Biol. 2008 38:331-45.
    230. Leu JH, Kuo YC, Kou GH, Lo CF. Molecular cloning and characterization of an inhibitor of apoptosis protein (IAP) from the tiger shrimp, Penaeus monodon. Developmental & Comparative Immunology. 2008 32:12133.
    231. Wang L, Zhi B, Wu W, Zhang X. Requirement for shrimp caspase in apoptosis against virus infection. Developmental & Comparative Immunology. 2008 32:706-15.
    232. Bukrinsky MI. Cyclophilins: unexpected messengers in intercellular communications. Trends in Immunology. 2002 23:323-5.
    233. Durand JP, Goudard F, Pieri J, Escoubas JM, Schreiber N, Cadoret JP. Crassostrea gigas ferritin: cDNA sequence analysis for two heavy chain type subunits and protein purification. Gene. 2004 338:187-95.
    234. Wang H, Song L, Li C, Zhao J, Zhang H, Ni D, et al. Cloning and characterization of a novel C-type lectin from Zhikong scallop Chlamys farreri. Molecular Immunology. 2007 44:722-31.
    235. Fass D, Blacklow S, Kim PS, Berger JM. Molecular basis of familial hypercholesterolaemia fromstructure of LDL receptor module. Nature. 1997 388:691-3.
    236. Klomklao S, Kishimura H, Nonami Y, Benjakul S. Biochemical properties of two isoforms of trypsin purified from the Intestine of skipjack tuna (Katsuwonus pelamis). Food Chemistry. 2009 115:155-62.
    237. Attardo GM, Strickler-Dinglasan P, Perkin SAH, Soares MB, El-Sayeed NaA, S. Analysis of fat body transcriptome from the adult tsetse fly, Glossina morsitans morsitans. Insect Mol Biol. 2006 15:411-24
    238. Ji C, Wang Y, Guo X, Hartson S, Jiang H. A pattern recognition serine proteinase triggers the prophenoloxidase activation cascade in the tobacco hornworm, Manduca sexta. J Biol Chem. 2004 279:34101-6.
    239. Wang Y, Jiang H. Reconstitution of a branch of the Manduca sexta prophenoloxidase activation cascade in vitro: Snake-like hemolymph proteinase 21 (HP21) cleaved by HP14 activates prophenoloxidase-activating proteinase-2 precursor. Insect Biochem Mol Biol. 2007 37:1015-25.
    240. Gupta S, Wang Y, Jiang H. Manduca sexta prophenoloxidase (proPO) activation requires proPO-activating proteinase (PAP) and serine proteinase homologs (SPHs) simultaneously. Insect Biochem Mol Biol. 2005 35:241-8.
    241. Zhang G, Lu ZQ, Jiang H, Asgari S. Negative regulation of prophenoloxidase (proPO) activation by a clip-domain serine proteinase homolog (SPH) from endoparasitoid venom. Insect Biochem Mol Biol. 2004 34:477-83.
    242. Jiang H, Ma C, Lu ZQ, Kanost MR.β-1,3-Glucan recognition protein-2 (βGRP-2) from Manduca sexta: an acute-phase protein that bindsβ-1,3-glucan and lipoteichoic acid to aggregate fungi and bacteria and stimulate prophenoloxidase activation. InsectBiochem Mol Biol. 2004 34:89-100.
    243. Sritunyalucksana K, Lee SY, Soerhall K. Aβ-1,3-glucan binding protein from the black tiger shrimp, Penaeus monodon. Developmental & Comparative Immunology. 2002 26:237-45.
    244. Soerhall K.β-1,3-Glucan enhancement of protease activity in crayfish hemocyte lysate. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology. 1983 74:221-4.
    245. Smith VJ, Soerhall K, Hamilton M.β1, 3-Glucan induced cellular defence reactions in the shore crab, Carcinus maenas. Comparative Biochemistry and Physiology Part A: Physiology. 1984 77:635-9.
    246. Johansson MW, Soerhall K. Intracellular signaling in arthropod blood cells: Involvement of protein kinase c and protein tyrosine phosphorylation in the response to the 76-kDa protein or theβ-1,3-glucan-binding protein in crayfish. Developmental & Comparative Immunology. 1993 17:495-500.
    247. Romo-Figueroa MG, Vargas-Requena C, Sotelo-Mundo RR, Vargas-Albores F, Higuera-Ciapara I, Soerhall K, et al. Molecular cloning of aβ-glucan pattern-recognition lipoprotein from the white shrimp Penaeus (Litopenaeus) vannamei: correlations between the deduced amino acid sequence and the native protein structure. Developmental & Comparative Immunology. 2004 28:713-26.
    248. Vargas-Albores F, Jimenez-Vega F, Soerhall K. A plasma protein isolated from brown shrimp (Penaeus californiensis) which enhances the activation of prophenoloxidase system byβ-1,3-glucan. Developmental & Comparative Immunology. 1996 20:299-306.
    249. Vargas-Albores F, Jimenez-Vega F, Soerhall K, Yepiz-Plascencia G. PP 9 Shrimp beta glucan binding protein. Developmental & Comparative Immunology. 1997 21:214-.
    250. Soerha K, Roener W, Soerhal I, Newton RP, Ratcliffe NA. The properties and purification of a Blaberus craniifer plasma protein which enhances the activation of haemocyte prophenoloxidase by aβ1,3-glucan. Insect Biochemistry. 1988 18:323-30.
    251. Lin YC, Vaseeharan B, Chen JC. Identification and phylogenetic analysis on lipopolysaccharide andβ-1,3-glucan binding protein (LGBP) of kuruma shrimp Marsupenaeus japonicus. Developmental & Comparative Immunology. 2008 32:1260-9.
    252. Onoe H, Matsumoto A, Hashimoto K, Yamano Y, Morishima I. Peptidoglycan recognition protein (PGRP) from eri-silkworm, Samia cynthia ricini; protein purification and induction of the gene expression. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology. 2007 147:512-9.
    253. de Haan W, Out R, Berbee JFP, van der Hoogt CC, Dijk KWv, van Berkel TJC, et al. Apolipoprotein CI inhibits scavenger receptor BI and increases plasma HDL levels in vivo. Biochemical and Biophysical Research Communications. 2008 377:1294-8.
    254. Lee SY, Cho MY, Hyun JH, Lee KM, Homma KI, Natori S, et al. Molecular cloning of cDNA for pro-phenol-oxidase-activating factor I, a serine protease is induced by lipopolysaccharide or 1,3-beta-glucan in coleopteran insect, Holotrichia diomphalia larvae. Eur J Biochem. 1998 257:615-21.
    255. Li D, Scherfer C, Korayem AM, Zhao Z, Schmidt O, Theopold U. Insect hemolymph clotting: evidence for interaction between the coagulation system and the prophenoloxidase activating cascade. Insect Biochem Mol Biol. 2002 32:919-28.
    256. Lai SC, Chen CC, Hou RF. Immunolocalization of prophenoloxidase in the process of wound healing in the mosquito Armigeres subalbatus (Diptera : Culicidae). Journal of Medical Entomology. 2002 39:266-74.
    257. Sritunyalucksana K, Soerhall K. The proPO and clotting system in crustaceans. Aquaculture. 2000 191:53-69.
    258. Theopold U, Schmidt O, Soerhall K, Dushay MS. Coagulation in arthropods: defence, wound closure and healing. Trends Immunol. 2004 25:289-94.
    259. Terenius O, Bettencourt R, Lee SY, Li W, Soerhall K, Faye I. RNA interference of Hemolin causes depletion of phenoloxidase activity in Hyalophora cecropia. Developmental & Comparative Immunology. 2007 31:571-5.
    260. Liu H, Soerhall I. Histone H2A as a transfection agent in crayfish hematopoietic tissue cells. Developmental & Comparative Immunology. 2007 31:340-6.
    261. Liu H, Jiravanichpaisal P, Cerenius L, Lee BL, Sorderhall I, Soderhall K. Phenoloxidase is an important component of the Defense against Aeromonas hydrophila infection in a crustacean, Pacifastacus leniusculus. Journal of Biological Chemistry. 2007 282.
    262. Sriphaijit T, Flegel TW, Senapin S. Characterization of a shrimp serine protease homolog, a binding protein of yellow head virus. Developmental & Comparative Immunology. 2007 31:1145-58.
    263. Nicholl SM, Roztocil E, Davies MG. Urokinase-induced smooth muscle cell responses require distinct signaling pathways: A role for the epidermal growth factor receptor. J Vasc Surg 2005 41:672-81.
    264. Payne V, Kam PCA. Mast cell tryptase-role in the investigation of acute hypersensitivity reactions. Current Anaesthesia & Critical Care. 2006 17:29-35.
    265. De Gregorio E, Spellman PT, Rubin GM, Lemaitre B. Genome-wide analysis of the Drosophila immune response by using oligonucleotide microarrays. proceedings of the national academy of sciences of the united states of america. 2001 98 12590-5.
    266. Soderhall K, Cerenius L. Role of the prophenoloxidase-activating system in invertebrate immunity. Curr Opin Immunol. 1998 10:23-8.
    267. Wang R, Lee SY, Cerenius L,S?derh?ll K. Properties of the prophenoloxidase activating enzyme of the freshwater crayfish, Pacifastacus lenuisculus. Eur J Biochem. 2001 268:895-902.
    268. Terenius O, Bettencourt R, Lee SY, Li W, Soderhall K, Faye I. RNA interference of Hemolin causes depletion of phenoloxidase activity in Hyalophora cecropia. Dev Comp Immunol. 2007 31:571-5.
    269. Sioud M. RNA interference and innate immunity. Advanced Drug Delivery Reviews. 2007 59:153-63.
    270. Nene V, Wortman JR, Lawson D, Haas B, Kodira C, Tu ZJ, et al. Genome sequence of Aedes aegypti, a major arbovirus vector. Science. 2007 316:1718-23.
    271. Clynen E, Huybrechts J, Verleyen P, De Loof A, Schoofs L. Annotation of novel neuropeptide precursors in the migratory locust based on transcript screening of a public EST database and mass spectrometry. BMC Genomics. 2006 7:201.
    272. Nakakura N, Hietter H, Van Dorsselaer A, Luu B. Isolation and structuraldetermination of three peptides from the insect Locusta migratoria. Identification of a deoxyhexose-linked peptide. Eur J Biochem. 1992 204:147-53.
    273. Kellenberger C, Boudier C, Bermudez I, Bieth JG, Luu B, Hietter H. Serine protease inhibition by insect peptides containing a cysteine knot and a triple-stranded beta-sheet. J Biol Chem. 1995 270:25514-9.
    274. Hamdaoui A, Wataleb S, Devreese B, Chiou SJ, Vanden Broeck J, Van Beeumen J, et al. Purification and characterization of a group of five novel peptide serine protease inhibitors from ovaries of the desert locust, Schistocerca gregaria. FEBS Letters. 1998 422:74-8.
    275. Magert HJ, Kreutzmann P, Standker L, Walden M, Drogemuller K, Forssmann WG. LEKTI: a multidomain serine proteinase inhibitor with pathophysiological relevance. Int J Biochem Cell Biol. 2002 34:573-6.
    276. Scott MJ, Huckaby CS, Kato I, Kohr W, Jr. ML, Tsai MJ, et al. Ovoinhibitor Introns Specify Functional Domains as in the Related and Linked Ovomucoid Gene. The Journal of Biological Hemistry. J Biol Chem. 1987 262:5899-907.
    277. Waldron C, Wegrich LM, Merlo PA, Walsh TA. Characterization of a genomic sequence coding for potato multicystatin, an eight-domain cysteine proteinase inhibitor. Plant Mol Biol. 1993 23 801-12.
    278. Lai R, Takeuchi H, Jonczy J, Rees HH, Turner PC. A thrombin inhibitor from the ixodid tick, Amblyomma hebraeum. Gene. 2004 342:243– 9.
    279. Pszenny V, Angel SO, Duschak VG, Paulino M, Ledesma B, Yabo MI, et al. Molecular cloning, sequencing and expression of a serine proteinase inhibitor gene from Toxoplasma gondii. Mol Biochem Parasitol. 2000 107:241-9.
    280. van de Locht A, Stubbs MT, Bode W, Friedrich T, Bollschweiler C, H?ffken W, Huber R. The ornithodorin-thrombin crystal structure, a key to the TAP enigma? The EMBO Journal. 1996 15:6011-7.
    281. Schlott B, Wonert J, Icke C, Hartmann M, Ramachandran R, Gurs K-H, et al. Interaction of Kazal-type Inhibitor Domains with Serine Proteinases: Biochemical and Structural Studies. Journal of Molecular Biology. 2002 318:533-46.
    282. Laskowski MJ, Kato I, Kohr WJ, March CJ, Bogard WC. Evolution of the family of serine proteinase inhibitors homologous to pancreatic secretory trypsin inhibitor (Kazal). (Peeters,. In Protides of Biological Fluids (Peeters, H, ed), pp Pergamon Press, Oxford. 1980:123-8.
    283. Kato I, Schrode J, Kohr WJ, Laskowski M Jr. Chicken Ovomucoid: Determination of Its Amino Acid Sequence, Determination of the Trypsin Reactive Site, and Preparation of All Three of Its Domains. Biochemistry. 1987 26:193-201.
    284. Sawano Y, Muramatsu T, Hatano K, Nagata K, Tanokura M. Characterization of Genomic Sequence Coding for Bromelain Inhibitors in Pineapple and Expression of Its Recombinant Isoform. J Biol Chem. 2002 277:28222–7.
    285. Simonet G, Claeys I, Van Soest S, Breugelmans B, Franssens V, De Loof A, Vanden Broeck J. Molecular identification of SGPP-5, a novel pacifastin-like peptide precursor in the desert locust. Peptides 2004 25:941-50.
    286. Franssens V, Simonet G, Breugelmans B, Van Soest S, Van Hoef V, Broeck JV. The role of hemocytes, serine protease inhibitors and pathogen-associated patterns in prophenoloxidase activation in the desert locust, Schistocerca gregaria. Peptides. InPress, Accepted Manuscript.
    287. Zhao ZY, Yin ZX, Wang SP, Guan HJ, Li SD, et al. Profiling of differentially expressed genes in hepatopancreas of white spot syndrome virus-resistant shrimp (Litopenaeus vannamei) by suppression subtractive hybridisation. Fish & Shellfish Immunology. 2007 22:520-34.
    288. Luo T, Li F, Lei K, Xu X. Genomic organization, promoter characterization and expression profiles of an antiviral gene PmAV from the shrimp Penaeus monodon. Molecular Immunology. 2007 44:1516-23.
    289. Zhao J, Song L, Li C, Zou H, Ni D, Wang W, Xu W. Molecular cloning of an invertebrate goose-type lysozyme gene from Chlamys farreri, and lytic activity of the recombinant protein. Molecular Immunology 2007 44:1198-208.
    290. Song L, Wu L, Ni D, Chang Y, Xu W, Xing K. The cDNA cloning and mRNA expression of heat shock protein 70 gene in the haemocytes of bay scallop (Argopecten irradians, Lamarck 1819) responding to bacteria challenge and naphthalin stress. Fish & Shellfish Immunology. 2006 21:335.
    291. Wilson K, Thomas MB, Blanford S, Doggett M, Simpson SJ, Moore SL. Coping with crowds: density-dependent disease resistance in desert locusts. Proc Natl Acad Sci USA. 2002 99:5471-5.
    292. Liu H, Jiravanichpaisal P, Cerenius L, Lee BL, Soderhall I, Soderhall K. Phenoloxidase Is an Important Component of the Defense against Aeromonas hydrophila Infection in a Crustacean, Pacifastacus leniusculus. J Biol Chem. 2007 282:33593-8.
    293. Badisco L, Claeys I, Loy TV, Hiel MV, Franssens V, Simonet G, et al. Neuroparsins, a family of conserved arthropod neuropeptides. General and Comparative Endocrinology. 2007 153: 64-71.
    294. Aspán A, Sturtevant J, Smith VJ, S?derh?ll K. Purification and characterisation of a prophenoloxidase activating enzyme from crayfish blood cells. Insect Biochem. 1990 20:709-18.
    295. Franssens V, Simonet G, Breugelmans B, Van Soest S, Van Hoef V, Vanden Broeck J. The role of hemocytes, serine protease inhibitors and pathogen-associated patterns in prophenoloxidase activation in the desert locust, Schistocerca gregaria. Peptides. 2008 29:235-41.
    296. Haipeng Liu, Pikul Jiravanichpaisal, Lage Cerenius, Bok Luel Lee, Irene Soderhall, Soderhall K. Phenoloxidase Is an Important Component of the Defense against Aeromonas hydrophila Infection in a Crustacean, Pacifastacus leniusculus. The Journal of Biological Chemistry. 2007 282:33593–8.
    297. Sung HH, Huang Y, Hsiao LT. Phenoloxidase activity of Macrobrachium rosenbergii after challenge with two pathogens: Aeromonas veronii and Lactococcus garvieae. Fish Pathol 2004 39:1-8.
    298. Lovato DV, Nicolau de Campos IT, Amino R, Tanaka AS. The full-length cDNA of anticoagulant protein infestin revealed a novel releasable Kazal domain, a neutrophil elastase inhibitor lacking anticoagulant activity. Biochimie. 2006 88:673-81.
    299. Lai EC, Tam B, Rubin GM. Pervasive regulation of Drosophila Notch target genes by GY-box-, brd-box-, and K-box-class microRNAs (vol 19, pg 1067, 2005). Genes & Development. 2005 19:1400-.
    300. Lovato DV, Nicolau de Campos IT, Amino R, Tanaka AS. The full-length cDNA of anticoagulant protein infestin revealed a novel releasable Kazal domain, a neutrophil elastase inhibitor lacking anticoagulant activity. Biochimie. 2006 88:673-81.
    301. Jimenez-Vega F, Vargas-Albores F. A four-Kazal domain protein in Litopenaeus vannamei hemocytes. Developmental & Comparative Immunology. 2005 29:385-91.
    302. Zheng QL, Chen J, Nie ZM, Lv ZB, Wang D, Zhang YZ. Expression, purification and characterization of a threedomain Kazaltype inhibitor from silkworm pupae (Bombyx mori). Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology. 2007 146:23440.
    303. Kong HJ, Cho HK, Park EM, Hong GE, Kim YO, Nam BH, et al. Molecular cloning of Kazaltype proteinase inhibitor of the shrimp Fenneropenaeus chinensis. Fish & Shellfish Immunology. 2009 26:10914.
    304. Wang B, Zhao J, Song L, Zhang H, Wang L, Li C, et al. Molecular cloning and expression of a novel Kazal-type serine proteinase inhibitor gene from Zhikong scallop Chlamys farreri, and the inhibitory activity of its recombinant domain. Fish & Shellfish Immunology. 2008 24:629-37.
    305. Hill JJ, Qiu Y, Hewick RM, Wolfman NM. Regulation of Myostatin in Vivo by Growth and Differentiation Factor-Associated Serum Protein-1: A Novel Protein with Protease Inhibitor and Follistatin Domains. Mol Endocrinol,. 2003 17:1144-54
    306. Stacey Williams, Colleen Ryan, Jacobson C. Agrin and neuregulin, expanding roles and implications for therapeutics. Biotechnology Advances. 2008 26:187–201.
    307. A four-Kazal domain protein in Litopenaeus vannamei hemocytes. Developmental and Comparative Immunology. 2005 29:385–91.
    308. Zhao J, Song L, Li C, Ni D, Wu L, Zhu L, et al. Molecular cloning, expression of a big defensin gene from bay scallop Argopecten irradians and the antimicrobial activity of its recombinant protein. Molecular Immunology. 2007 44:360-8.
    309. Lai EC, Tam B, Rubin GM. Pervasive regulation of Drosophila Notch target genes by GY-box-Brd-box-, and K-box-class microRNAs. Genes and Development. 2005 19:1067-80.
    310. Aspan A, Soerhall K. Purification of prophenoloxidase from crayfish blood cells, and its activation by an endogenous serine proteinase. Insect Biochemistry. 1991 21:363-73.
    311. Asp?n A HT, Cerenius L, S?derh? ll K. cDNA cloning of a prophenoloxidase from the freshwater crayfish Pacifastacus lenicusculus and its activation. Proc Natl Acad Sci USA. 1995 92:939-42.
    312. S?derh?ll I, Bangyeekhun E, Mayo S, Soderhall K. Hemocyte production and maturation in an invertebrate animal; proliferation and gene expression in hematopoietic stem cells of Pacifastacus leniusculus. Developmental & Comparative Immunology. 2003 27:661.
    313. Soderhall K. Biochemical and molecular aspects of cellular communication in arthropods. Bull Zool 1992 59:141-51.
    314. Nappi AJ, Christensen BM. Melanogenesis and associated cytotoxic reactions: Applications to insect innate immunity. Insect Biochemistry and Molecular Biology. 2005 35:443-59.
    315. Lai CY, Cheng W, Kuo CM. Molecular cloning and characterisation ofprophenoloxidase from haemocytes of the white shrimp, Litopenaeus vannamei. Fish & Shellfish Immunology 2005 18:417-30.
    316. Liu CH, Tseng DY, Lai CY, Cheng W, Kuo CM. Molecular cloning and characterisation of prophenoloxidase cDNA from haemocytes of the giant freshwater prawn, Macrobrachium rosenbergii, and its transcription in relation with the moult stage. Fish & Shellfish Immunology. 2006 21:60.
    317. Cerenius L Banqyeekhum E, Keyser P, Soderhall I, Soderhall K, Soderhall K. Host prophenoloxidase expression in freshwater crayfish is linked to increased resistance to the crayfish plague fungus,Aphanomyces astaci Cell Microbiol. 2003 5:353-7.
    318. Hauton C HJ, Smith VJ. Real-time PCR quantification of the in vitro effects of crustacean immunostimulatants on gene expression in lobster (Homarus gammarus) granular haemocytes.. Dev Comp Immunol 2005 29:33-42.
    319. Huang LH, Christensen BM, Chen CC. Molecular cloning of a second prophenoloxidase cDNA from the mosquito Armigeres subalbatus: prophenoloxidase expression in blood-fed andmicrofilariae-inoculated mosquitoes. Insect Mol Biol. 2001 10:87-96.
    320. Rajagopal R, Thamilarasi K, Venkatesh GR, Srinivas P, Bhatnagar RK. Immune cascade of Spodoptera litura: Cloning, expression, and characterization of inducible prophenol oxidase. Biochemical and Biophysical Research Communications. 2005 337:394-400.
    321. Huang TS, Wang H, Lee SY, Johansson MW, Soderhall K, Cerenius L. A cell adhesion protein from the crayfish Pacifastacus leniusculus, a serine proteinase homologue similar to Drosophila masquerade. J Biol Chem. 2000 275:9996-10001.
    322. Reimann I, Huth A, Thiele H, Thiele B-J. Suppression of 15-lipoxygenase synthesis by hnRNP E1 is dependent on repetitive nature of LOX mRNA 3'-UTR control element DICE. Journal of Molecular Biology. 2002 315:965-74.
    323. Ostareck DH, Ostareck-Lederer A, Shatsky IN, Hentze MW. Lipoxygenase mRNA Silencing in Erythroid Differentiation: The 3'UTR Regulatory Complex Controls 60S Ribosomal Subunit Joining. Cell. 2001 104:281-90.
    324. Johansson MW, Patarroyo M, Oberg F, Siegbahn A, Nilsson, Nilsson K. Myeloperoxidase mediates cell adhesion via the aMb2 integrin (Mac-1, CD11b/CD18) J Cell Sci. 1997 110:1133-9.
    325. Ai HS, Liao JX, Huang XD, Yin Z-, Weng SP, Zhao Z-, et al. A novel prophenoloxidase 2 exists in shrimp hemocytes. Developmental & Comparative Immunology. 2009 33:59-68.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700