用户名: 密码: 验证码:
EVOH及高性能材料的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本工作对EVOH及高性能无机物纳米复合材料进行了深入研究,首先采取熔融共混法制备出EVOH/无机物纳米复合材料,重点研究了复合材料的力学性能,兼顾了流变性能的研究。通过理论推导和加工实践,构建和验证了复合物相间相互作用强弱对于复合物加工性能和力学性能的影响。从不同影响因素讨论了对纳米复合物性能的影响。通过控制纳米级无机相的类型、含量以及颗粒尺寸,控制复合物基体的类型等可以调控复合材料的力学性能和熔体流变性能,同时增强填料颗粒与基体之间的相互作用,促进颗粒在基体中的分散性。其次利用酯化反应制备了EVOH-AA(丙烯酸)和EVOH-MAH(马来酸酐)接枝型材料,并利用转矩流变仪及凝胶抽提实验研究了制备改性EVOH的条件。利用傅立叶红外光谱对接枝产物进行了表征,通过凝胶抽提实验来验证改性EVOH是否变得易于交联,以及其作为一种大分子多官能团单体(PFM),是否具备强化辐射交联作用,然后通过力学性能测试和热性能测试研究了这种大分子PFM和小分子PFM对EVOH和聚乳酸共混物强化辐射交联后性能的变化,此外,对于EVOH预辐照反应接枝MAH的加工条件及反应机理也进行了初步的探索。最后选用LDPE与EVOH共混,研究了E171、F101与LDPE共混体系辐照后的凝胶含量和力学性能变化。
The expansion of industrial and economic activities results in a continuous demand for new, low-cost materials able to meet increasingly stringent conditions. Polymers are commonly admixed with a variety of both natural and synthetic compounds to improve their performance. Inorganic components used for this purpose are called“fillers”and give rise to“filled polymers”with greater mechanical strength or impact resistance, or reduced electrical conductivity or permeability to gases, such as oxygen, and moisture. In these conventional materials, there is a distinct macroscopic separation between the organic and the inorganic phase without any significant interactions between them. Microscopic dispersion is the most that can be achieved by treating the surface of the inorganic material. Nano-composites, on the other hand, constitute a new class of materials with an ultra-fine phase dispersion (e.g. of clay) of the order of a few nanometers that endows them with unique properties not shared by conventional materials and offers new technological and economic opportunities. Nano-composites can be classified depending on the shape of the nano-filler. Particles are characterized by a three-dimensional nano-size distribution whereas in nano-tubes or whiskers nano-size is limited to two dimensions in space. Finally, in the case of phyllosilicates (e.g. clay) single silicate layers with one-dimensional nano-size can be dispersed in the polymer. Grafting modification is the main one of the means for preparing modified polyolefin. To carry out grafted polyolefins containing special functional groups that have polarity and reactivity can not only improve their performance deficiencies, but also add new performance, which is a simple and effective method to expand uses of polyolefin materials. In recent years, modifying the existing polyolefin to produce functional and high-performance polyolefin materials has been developing rapidly by the reactive processing technology.
     Our research group has researched on radiation effect of ethylene-vinyl alcohol copolymers (EVOH). On the basis of this work, my work focuses on the research on the preparation, characterization and radiation effect of EVOH/inorganic nano-composites. Using EVOH-56(VA content 56mol%) and EVOH-68(VA content 68mol%) as matrix and different nano-particles as the filler, different kinds of nano-composites were prepared by melt blending. Tensile tests, FTIR and X-Ray were used to characterize the mechanical properties, rheological properties and morphological structure in order to research and compare the following contents: 1. Effects of nano-particles with different chemical structures on the properties of nano-composites. 2. Effects of nano-particles with different interface structures on the properties of nano-composites. 3. Effects of nano-particles with different aggregation statuses on the properties of nano-composites. 4. Effects of matrixes with different VA contents on the properties of nano-composites. 5. Effect of radiation on the properties of nano-composites. The main results of this work are as followings:
     1.Effects of nano-particles with different chemical structures, interface structures and aggregation statuses on the properties of nano-composites were researched and discussed using models of interaction among phases of composites and structures of MMT nano-composites. Results show that the less is the parameter B in the model of interaction among phases of composites-TPT equation, the better the interaction among phases of composites, the smaller the adhesion degree of the systems, and the better the mechanical properties of the composites. The value of B of EVOH-56/nano-TiO2 composite is higher than that of EVOH-56/nano-ZnO composite, and so are the mechanical properties. The mechanical properties of treated nano-particles filled composites are better than those untreated nano-particles filled composites. The elongation at break of ZQ-602 coupler treated nano-TiO2 filled composite is higher than that of YGO-1203 coupler treated nano-TiO2 filled composite. Nano-fillers with different aggregation structures have different interaction styles with matrixes, but they exhibit almost the same mechanical properties.
     2.The value of B of EVOH-56/nano-TiO2 is higher than that of EVOH-68/nano-TiO2 composite, and so are the mechanical properties. The value of B of EVOH-56/nano-ZnO is higher than that of EVOH-68/nano-ZnO composite, and so are the mechanical properties. The mechanical properties of EVOH-56/MMT composites are generally lower than those of EVOH-68/MMT systems. But the elongation at break of EVOH-56/MMT composite has increased to 200% of neat matrix.
     3.After radiation, the mechanical properties of all the samples were discussed. It is found that mechanical properties of irradiated nano-composites based on EVOH-68 decrease dramatically, while the mechanical properties of irradiated nano-composites based on EVOH-56 improve at low radiation doses and decrease at high radiation doses, and in general have small changes. For nano-composites with different nano-fillers, different systems have different reactions to radiation. EVOH-56/nano-ZnO system exhibits better endurance to radiation than EVOH-56/nano-TiO2 system. At the irradiation doses of 10M、20M and 60M, The mechanical strength of EVOH-56/ZQ602/nano-TiO2 system improves more than EVOH-56/YGO-1203/nano-TiO2 system. At different irradiation doses, EVOH-56/nano-ZnO system, EVOH-56/nano-TiO2 system, EVOH-56/nano-SiO2 system and EVOH-56/nanoMMT system have different mechanical property trends. However, the mechanical strength of EVOH-56/nanoMMT system improves most, increasing to 140% of neat matrix at the irradiation dose of 20M.
     Ethylene-vinyl alcohol copolymers (EVOH) are one of the three high gas-barrier materials. They are used widely in various fields such as good packing, gasoline tanks, or other materials. EVOH are expected to work as one of the soft materials for no emission of poisonous gas upon incineration and chlorine-free. However EVOH are hygroscopic and the absorbed water lowers their ability to inhibit oxygen diffusion, which is undesirable in food packaging. Introducing crosslinking bonds between polymer molecules by chemical or radiation treaments is a powerful method to reduce the hygroscopicty. But it is difficult for EVOH to cross-link, which can’t form gel below 800kGy. The radiation crosslinking of particular ethylene copolymers can markedly be enhanced by introduction of pendant radiation-sensitive functional groups and that reactive melt processing offers an attractive alternative to introduce the pendant groups. EVOH can be activated by the branched-chain groups hydroxyl and occur grafting polymerization with vinyl monomers, and functionalized EVOH may become crosslinked easily by radiation. and EVOH with vinyl monomers as its pendant group can be used as polyfunctional monomers (PFM), which may promote crosslinking as a kind of macromolecules crosslinking promoter and be potential to overcome the unfavorable factors of common PFM and to be applied blending polymers in the or modifying engineering plastics and so on. This paper studies the following elements: 1. preparation, characterization and radiation effects of functionalized EVOH by esterification grafting; 2. whether functionalize EVOH can be used as macromolecules PFM; 3.the effect of enhanced crosslinking of macromolecules PFM on the properties of EVOH/PLA (polylactic acid) blends, and to compare with the effect of the small molecule PFM 4. pre-irradiation induced graft reaction of maleic anhydride onto EVOH. FTIR spectrum of functionalized EVOH show that peak values of neighborhood 1717cm-1 increase corresponding to C=O peak formed by esterification. Because EVOH contains a small amount of unhydrolyzed vinyl acetate unit, we found after EVOH functionalized, the ratio value increased significantly that demonstrated AA and MAH were grafted to the matrix of EVOH by calculating the ratio of the strength of the absorbed peak of -OH and C=O groups (AbsC=O/AbsO-H). The results of gel fraction of functionalized EVOH at different doses showe that EVOH-AA materials become easy to crosslink by radiation, and gel fraction can reach more than 45% after having received a radiation dose of 10kGy. but EVOH-MAH materials that were prepared only when reaction time was 5 min, 2%MAH or reaction time was 10 min, 1%MAH can elevate the gel fraction after irradiated but gel content increased less than that of EVOH-AA. For EVOH-MAH at other processing conditions, gel content changed little as the absorbed dose increased.
     The results of gel extraction experiment of EA1T1/PLA blends show that the blends can form gel when EA1T1 was used as macromolecular PFM whose content was more than 5%. At the same absorbed dose, gel fraction of blends increased as the content of EA1T1 increased. However the gel content of 20% EA1T1 was more than that of 30% and 40%. The calculated results show that the content of PLA which entered the crosslinking network was more than others and EA1T1 had certain enhanced radiation crosslinking effect, and the best content is 20%. When EA2T1, Et2M1 and Et1M2 were used as macromolecular PFM, gel content of blends increased as the content of PFM, but the calculated results showe that only Et2M1 PFM was used, a little PLA entered the crosslinking network, and Et2M1 PFM had certain enhanced radiation crosslinking effect. When EA2T1 and Et1M2 was used, no or only minimal ammount of PLA entered the crosslinking network and enhanced radiation crosslinking was less effective. When Et1M1 was used, whose content was not more than 50%, blends didn’t form gel at the absorbed dose below 100kGy.
     The results of the properties of EVOH/PLA which were enhanced radiation-crosslinked by macromlecular show that mechanical properties EVOH/PLA did not change much, only in the 50/50 system, heat deformation temperature of the blend had been improved. The results of the properties of EVOH/PLA which were enhanced radiation-crosslinked by small molecular PFM show that when the tensile strength of blends that had 3% or 5% PFM at the absorbed dose of 30-50kGy. The heat deformation temperature had been significantly improved at the absorbed dose of 50-100kGy. But the elongation at the breaking and the impact strength didn’t change much. Compared to macromolecular cross-linking agent, small molecule PFM was more suitable for enhanced radiation-crosslinking of EVOH/PLA blend.
     The analysis results of torque and gel content in the process of pre-irradiation reaction grafting of F101 show that the gel content of product increased as the MAH content and changed not much as the absorbed dose with the same content of MAH. It is deduced that reaction was mainly esterification. Infrared spectra of product confirmed that, where a new peak appeared in 1718cm-1 corresponding to C=O in the ester bonds. E171 has a similar pre-irradiation grafting process with F101, but owning the same MAH content, gel content of product is lower than F101 system. Titration results also confirmed that esterification reactions occured in the grafting process. According to the application, MAH content was below 2% for pre-irradiation grafting of F101 and was less than 3% for E171.
引文
[1]白春礼.纳米科学与技术,昆明,云南科技出版社,第一版,1995.
    [2]张立德,牟季美.纳米材料和纳米结构,北京,科学出版社,第一版,2001.
    [3] Wagenknecht U.Functional Effect Fillers,Berlin,Proceedings,2000:1-24.
    [4] Abdullah M,Lenggoro I W,Okuyama K,In situ synthesis of polymer nanocomposite electrolytes emitting a high luminescence with a tunable Wavelength [J],Journal of Physical Chemistry B,2003,107(9):1957-1961.
    [5] Lewin M.Some comments on the modes of action of nanocomposites in the flame retardancy of polymers[J],Fire and Materials,2003,27(1):1-7.
    [6]曾汉民.高技术新材料要览,中国科技出版社,1993.
    [7]严东生,冯端.材料新星纳米材料科学,湖南科学技术出版社,第一版,1997.
    [8]高其标,申屠宝卿,翁志学.纳米改性聚合物材料研究进展[J].化工生产与技术,2001,8(6):22~23.
    [9] Gong XY,Liu J,Baskaran S,et al.Surfactant assisted processing of carbon nanotube/polymer composites[J].Chemistry of Materials,2000,12(4): 1049~1052.
    [10]贺鹏等.聚合物改性中纳米复合新技术[J].高分子通报,2001,2(1):74~75.
    [11]吴崇浩等.纳米微粒表面修饰的研究进展[J].化工新型材料,2002,30(7):3~5.
    [12]谷元.粉粒体表面改性技术及其应用[J].化工进展,1994(1):33-41.
    [13]郭卫红,李盾,唐颂超等.纳米材料及其在聚合物改性中的应用[J] .工程塑料应用,1998,26(1):11-13.
    [14]魏绍东.纳米碳酸钙制备技术的研究进展[J].材料导报,2004,(18): 133-135.
    [15]Kormann C,Bahnemann D W,Hoffmann M R.Preparation and characterization of quantum-size titanium dioxide[J] .Journal of Physical Chemistry,1988,92:5196-5201.
    [16]Tituan MK,Janisen JBH,Cems JW.The preparatintiun and cher- artemnatiun of nol-gel[J].Spheres,1995,186:30.
    [17] Hohenberger G,Tomandl G.Sol-gel processing of varistor powders[J]. Journal of Materials Research,1992,7(3):546-548.
    [18] Thiruchitrambalam M,Palkar V R,Gopinathan V.Hydrolysis of aluminium metal and sol-gel processing of nano alumina[J].Materials Letters,2004,58:3063-3066.
    [19] Cheng B , Samulski ET . Hydrothermal synthesis of one-dimensional ZnO nanostructures with different aspect ratios[J] .Chemical Communications ,2004 ,(8):986-987.
    [20] Gangopadhyay S,Hadjipanayis G C,Dale B,et al.Magnetic properties of ultrafine iron particles[J].Physical Review B,1992,45:9778.
    [21]王旭,黄锐,濮阳南.聚合物基纳米复合材料的研究进展[J].塑料,2000,29(4):25-30.
    [22] Sanchez C,Ribot F,Lebeau B.Molecular design of hybrid organic- inorganic nanocomposites synthesized via sol-gel chemistry[J].Journal of MaterialsChemistry,1999,9(1):35-34.
    [23] Schmidt HK,Geiter E,Mennig M,et al.The sol-gel process for nano-technologies: new nanocomposites with interesting optical and mechanical properties [J].Journal of Sol-Gel Science and Technology, 1998,13(1-3): 397-404.
    [24]章永化,龚克成.Sol-Gel法制备有机/无机纳米复合材料的进展[J].高分子材料科学与工程,1997,13(4):14-18.
    [25]尚修勇,朱子康,印杰等.可溶性PI/SiO2纳米复合材料中SiO2微相结构变化的研究[J].高分子材料科学与工程,2001,17(2):68~69.
    [26]赵竹第,高宗明,欧玉春等.苯乙烯-马来酸酐共聚物/聚硅氧烷纳米尺度复合材料的研究[J].高分子学报,1996,(2):228-233.
    [27] Zilg C,Reichert P,Dietsche F,et al.Plastics and rubber nanocomposites based upon layered silicates[J].Kunststoffe,Plast Europe,1998,88(10): 65-57.
    [28] Fischer HR,Gielgens LH,Koster TPM.Nanocomposites from polymers and layered minerals[J].Acta Polymerica,1999,50(4): 122-126.
    [29] Fischer HR, Gielgens LH, Koster TPM.Nanocomposites from polymers and layered minerals[J].Materials Research Society Symposium Proceedings,1998,519: 117-123.
    [30] Kornmann X,Berglund L A,Sterte J,et al.Nanocomposites based on montmorillonite and unsaturated polyester[J].Polymer Engineering and Science,1998,38(8): 1351-1358.
    [31] Yano K,Usuki A,Okada A,et al.Synthesis and properties of polyinide-clay hybrid [J].Journal of Polymer Science: Part A,1993,31: 2493-2498.
    [32] Giannelis E P.Polymer layered silicate nanocomposites[J].Advanced Materials,1996,8(1):29-35.
    [33]Giannelis EP,Krishnamoorti R,Manias E.Polymer-silicate nanocomposites:Model systems for confined polymers and polymer brushes [J].Advances in Polymer Science,1999,(138):107-147.
    [34] Ruckenstein E,Yuan Y.Nanocomposites of rigid polyamide dispersed in flexible vinyl polymer [J].Polymer,1997,38 (15):3855-3860.
    [35] Dufresne A , Cavaille J V , Helbert W . New nanocomposite materials: Microcrystalline starch reinforced thermoplastic[J].Macromolecules,1996,29(23): 7624-7626.
    [36]黄锐,徐伟平,蔡碧华.纳米级无机粒子对聚乙烯的增强与增韧[J].塑料工业,1997,(3):106-108.
    [37]徐伟平,黄锐,蔡碧华等.纳米级CaCO3填充HDPE复合材料的研制[J].中国塑料,1998,12(6):30-34.
    [38]罗忠富,黄锐,卢艾等.纳米CaCO3增强增韧HDPE复合材料的研究[J].中国塑料,2000,14(8):25-29.
    [39]王旭,黄锐.PP/纳米级CaCO3复合材料性能研究[J].中国塑料,1999,13(10):23-25.
    [40]胡圣飞.纳米CaCO3对PVC增韧增强研究[J].中国塑料, 1999, 13(6): 25-28.
    [41] Jisheng Ma,Zongneng Qi,Youliang Hu,Synthesis and Characterization of Polypropylene/clay nanocomposites,Journal of Applied Polymer Science[J],2001,82:3611-3617.
    [42]胡显奎,林少全,刘振兴.聚合物基无机纳米粒子复合材料的制备技术及应用展望[J].材料导报,2000,14(10 ): 62-63.
    [43]欧玉春,杨锋,庄严等.在位分散聚合聚甲基丙烯酸甲酯/二氧化硅纳米复合材料的研究[J].高分子学报,1997,(2):199-205
    [44] Sun T,Garces J M.High-performance polypropylene-clay nanocomposites by in-situ polymerization with metallocene/clay catalysts , Advanced Materials[J] , 2002 ,14(2):128-130.
    [45]曾晓飞,陈建峰,王国全.纳米级CaC03粒子与弹性体CPE微粒同时增韧PVC的研究[J].高分子学报,2002,6: 738-741.
    [46] Monserral Garcia,Werner E van zyl,Mattijs G J ten Cate, et al.Novel Preparation of Hybrid Polypropylene/Silica Nonocomposites in a Slurry-Phase Polymerization Reactor[J],Industrial & Engineering Chemistry Research,2003,42:3750-3757.
    [47] Jonathan Tudor,Louise Willington,Dermot O’Hare et al.,Intercalation of catalytically active metal complexes in phyllosilicates and their application as propene polymerization catalysts[J],Chemistry Communication,1996,17:2031-2032.
    [48] Sumita M, Ookuma T, Miyasaka K, et al. Effect of ultrafine particles on the elastic properties of oriented low-density polyethylene composites[J]. Journal of Applied Polymer Science,1982,27(8):3059-3066.
    [49] Sumita M,Shizuma T,Miyasaka K,et al.Effect of reducible properties of temperature,rate of strain,and filler content on the tensile yield stress of nylon6 composites filled with ultrafine particles[J].Journal of Macro-molecular Science - Physics,1983,B22(4):601-618.
    [50] Sumita M,Tsukihi H,Miyasak K,et al.Dynamic mechanical properties of polypropylene of polypropylene composites filled with ultrafine particles [J].Journal of Applied Polymer Science,1984,29(5):1523-1530.
    [51] Sumita M,Ookuma T,Miyasaka K,et al.Mechanical properties of oriented polyvinylchloride composites filled with ultrafine particles[J].Colloid and Polymer Science,1984,262(2):103-109.
    [52] Sumita M,Shizuma T,Miyasaka K,et al.Mechanical properties of drawn poly (methyl methacrylate) filled with ultrafine particles[J].Polymer Composites,1986,7(1) :36-41.
    [53]黄锐,徐伟平,郑学晶等.纳米级无机粒子对聚乙烯的增强与增韧[J].塑料工业[J],1997,3:106-108.
    [54]沈曾民,杨子芹,赵东林等.碳纳米管/ABS树脂基复合材料的力学性能和雷达波吸收性能的研究[J].复合材料学报,2003,20(2):25-29.
    [55] Kurokawa Y,Yasuda H,Kashiwagi M,et al.Structure and properties of a montmorillonite/polypropylene nanocomposite[J].Journal of Materials Science Letters,1997,(16):1670-1672.
    [56] Qian D,dickey E C,Andrews R,et al.Load transfer and defomation mechanisms in carbon-polystyrene composites[J].Applied Physics Letters, 2000,76(20): 2868-2870.
    [57] Rong MZ,Zhang MQ,Liu H,et al.Synthesis of silver nanoparticles and theirself-organization behavior in epoxy resin[J].Polymer,1999,40(22): 6169-6178.
    [58] Stephen C,Ngugen T P,Lahr B,et al.Ramanspectroscopy and conductivity measurements on polymer multiwalled carbon nanotube composites[J]. Journal of Materials Research,2002,17(2):396-400.
    [59]Krystewski M , Jeszka J K . Nanostructured conducting polymer composites-superparamagnetic particles in conducting polymers [J].Synthetic Metals Synth,1998,94:99-104.
    [60] Wang L, Feng LX, Xie T. Novel magnetic polyethylene nanocomposites produced by supported nanometre magnetic Ziegler-Natta catalyst[J]. Polymer International.2000,49(2):184-188.
    [61] Morgan A B,Harris J,Richard H,et al.Flammability of polystyrene layered silicate (clay) nanocomposites: Carbonaceous char formation[J].Fire and Materials,2002,26:247-254.
    [62]舒中俊,陈光明,漆宗能.聚合物/粘土纳米复合材料及其特殊阻燃性能[J] .塑料工业,2000,28(3): 24-26.
    [63] Gilman J W,Kashiwagi T,Lichtenhan J D,et al.Nanocomposites: A revolutionary new flame retardant approach [J].Sampe Journal,1997,33(4):40-46.
    [64]杨柏,黄金满.半导体纳米微粒在聚合物基体中的复合与组装[J].高等学校化学学报,1997,18(7):1218-1226.
    [65]王文中,李良荣.纳米材料的性能,制备和开发应用[J].材料导报,1994,(6):8-10.
    [66] Schwerzel R E, Spahr K B, Kurmer J P,et al. Nanocomposite photonic polymers. 1. Third-order nonlinear optical properties of capped cadmium sulfide nanocrystals in an ordered polydiacetylene host [J].Journal of Physical Chemistry A,1998,102(28): 5622-5626.
    [67] Yano K,Usuki A,Okada A,et al.Synthesis and properties of polyimide -clay hybrid[J].Journal of Polymer Science,Part A:Polymer Chemistry, 1993 32(10): 2493-2498.
    [68] Yano K, Usuki A,Okada A. Synthesis and properties of polyimide-clay hybrid films [J].Journal of Polymer Science,Part A:Polymer Chemistry,1997,35(11): 2289- 2294.
    [69] Ren JX,Silba AS,Krishnamoorti R. Linear viscoelasticity of disordered polystyrene-polyisoprene block copolymer based layered-silicate nanocomposites[J] .Macromolecules,2000,33(10):3739-3746.
    [70] Li F,Hu K,Li J,et al.The friction and wer characteristics of nanometer ZnO filled polytetrafluoroethylene[J],Wear,2002,249:877-882.
    [71] Sawyer W G,Freudenberg K D,Bhimaraj P,et al.Astudy on the friction and wear behavior of PTFE filled with alumina nanoparticles[J],Wear,2003,254:573-580.
    [72] Xue Q,Wang Q.Wear mechanisms of polyetheretherketone composites filled with various kinds of SiC[J],Wear,1997,213:54-58.
    [73] Wang Q,Xue Q,Liu W,et al.Tribological properties of micro silicon carbidefilled polyetheretherketone[J],Journal of Applied Polymer Science,1999,74:2611-2615.
    [74] Wang Q,Xue Q,Liu W,et al.The effect of nanometer SiC filler on the tribological behavior of PEEK under distilled water lubrication[J],Journal of Applied Polymer Science,2000,78:609-614.
    [75]陈艳,王新宇,高宗明等.聚酞亚胺/二氧化硅纳米尺度复合材料的研究[J].高分子学报,1997,(1):73-78.
    [76] Shoichiro Y . Preparation and characterization of hydroxylpropyl cellulose/silica microhybride[J].Polymer,1994,35(25):5565-5570.
    [77] Maria A J,Yeung K L,Lee C Y,et al.Size Effects in Gas-Phase Photo- Oxidation of Trichloroethylene using nanometer-sized TiO2 Catalysis[J]. Journal of Catalysis,2000,192:185-196.
    [78] Muggli D S,Mclue J T,Falconer J L.Mechanism of the Photocatalytic Oxidation of Ethanol on TiO2[J].Journal of Catalysis,1998,(173):470-483.
    [79] Sherring D C. Reaction of Polymers. Encyclopedia of Polymer Science and Engineering. Vol 14. New York: John Wiley, 1988.101-169
    [80] Lambla M. Reactive processing of thermoplastic polymers. Comprehensive Polymer Sciences 1st supplement. New York: Pergamon,1993.21
    [81] Liu N C, Baker W E. Adv Polym Technol, 1992,11: 249
    [82] Xanthos X, Dagli S S. Polym Eng Sci, 1991, 31: 929
    [83]李志君,郭宝华,胡平等. PP-g-(GMA-co-St)对PA6/ PC共混物的反应增容作用[J].高等学校化学学报,2001,27(7) :1 244
    [84] RAHMA F,FELLAHI S. Study of compatibilizers for glass fibre reinforced nylon6/ polypropylene blends[J ]. Polym Int,2000,49(6) :519
    [85]童身毅,万敏,张良均.氯化聚丙烯接枝聚乙二醇的合成与性能[J].合成树脂及塑料,2001 ,18 (3) :6
    [86] MISHIA J K,RAYCHOUDHURG S,DAS C K. Heat-shrinkable polymer blends based on grafted low-density polyethylene and polyurethane elastomer. Part 1[J].Polym Int,2000,49(12):1615
    [87] SCLAVONS M,FRANQUINET P, CARLIER V. et al.Quantification of the maleic anhydride grafted onto polypropylene by chemical and viscosimetric titrations[J].Polym,2000,41(6):1989
    [88] SHU HUI QIN,KUN YUAN QIU. A new polymerizable photoiniferter for preparing poly(methyl methecrylate)macromonomer[J].Europ Polym J,2001,37(4):711.
    [89] RATZSCH M, BUCKA H,IVANCHEV S S,et al. Some Peculiar features of radiation grafting of monomers of various structure and reactivities onto polyolefins[J]. J Appl Polym Sci,2000,77(4):711
    [90]徐绍刚,孙玉凤,杨万泰等. LDPE2丙烯酸体系光接枝表面改性的研究[J].北京化工大学学报,2000,27(4):29
    [91] A.J.斯沃罗著,陈文琇,贾海顺.包华影译.辐射化学导论.北京:原子能出版社1985
    [92]哈鸿飞,吴季兰.高分子辐射化学-原理与应用.北京:北京大学出版社2002
    [93]蔡鹤琴,符素兰,唐彬.剂量率等因素对聚乙烯辐照交联的影响.激光生物学,1996,5(3):903-909
    [94]吴培熙,张留城.聚合物共混改性.北京:中国轻工业出版社1996
    [95]王文广.塑料阻透性的改进技术现状.中国塑料,2000,14(8):3-11
    [96]张锡薇,柏晓红.阻隔性容器专用料的研制.黑龙江石油化工, 1998,9(1):11-141
    [97]承民联,裘兆蓉,李锦春,等.阻隔型农药包装容器的研究.现代化, 1997, (8): 24-26
    [98]李震,宋文韬,鼓珍珍,等. HDPE/PA6层状阻隔材料的形态与性能研究.高分子材料科学与工程,2001,17(3):153-156
    [99]唐伟家.EVOH树脂.合成树脂及塑料,1990,(1):63-70
    [100] Lagaron JM,Powell AK,Bonner G. Polymer Testing 2001,20(5):569
    [101]陈昌杰,张烈银.塑料薄膜的印刷与复合,北京:化学工业出版社,1998
    [102] Mark,H.F.,Bikales,N.M,Overberger, C.G et al. Encyclopedia of Polymer Science and Engineering, Wiley, New York 1989, 17:173
    [103] Foster P.H. Polymer News 1986, 11:264
    [104]邵承栋.乙烯-乙烯醇共聚物的生产及市场前景分析[J].石油化工技术2003,(1):43-461
    [105]樊岩,胡绍华,章悦庭,EVOH树脂[J].化工新型材料,2000,(2):23-261
    [106]邹盛欧.功能性包装材料[J].塑料科技,1999,(1):41-451
    [107] N. Artzi, Y. NIR,D.WANG,and M. NARKIS. EVOH/Clay Nanocomposites Produced by Melt Processing. Polymer Ccomposites [J].October 2001,Vol. 22,No. 5.
    [108] N. ARTZI,Y. NIR,M. NARKIS,A. SIEGMANN. Melt Blending of Ethylene–Vinyl Alcohol Copolymer/Clay Nanocomposites: Effect of the Clay Type and Processing Conditions [J]. Journal of Polymer Science: Part B: Polymer Physics, 2002, Vol. 40,1741–1753.
    [109] N. ARTZI, Y. NIR, and M. NARKIS. The Effect of Maleated Compatibilizers on the Structure and Properties of EVOH/Clay Nanocomposites [J].Polymer Composites,October 2003,Vol.24,No. 5.
    [110] N. ARTZI,M. NARKIS,and A. SIEGMANN. EVOH/Clay Nanocomposites Produced by Dynamic Melt Mixing [J]. Polymer Engineering and Science, June 2004,Vol. 44,No. 6.
    [111] N. Artzi,A. Tzur,M. Narkis.The Effect of Extrusion Processing Conditions on EVOH/Clay Nanocomposites at Low Organo-Clay Contents [J].Polymer Composites, 2005,343-351.
    [112] D. Aleperstein,N. Artzi,A. Siegmann,M. Narkis. Experimental and Computational Investigation of EVOH/Clay Nanocomposites [J].Journal of Applied Polymer Science,2005, Vol. 97,2060–2066.
    [113]N.Artzi,M.Narkis,A.Siegmann. Review of Melt-Processed Nanocomposites Based on EVOH/Organoclay [J].Journal of Polymer Science: Part B: Polymer Physics, 2005, Vol. 43,1931–1943.
    [114] Llu?′s Cabedo,Enrique Gime′nez,Jose′M. Lagaron,Rafael Gavara,Juan J. Saura. Development of EVOH-kaolinite Nanocomposites[J]. Polymer, 2004, 45, 5233–5238.
    [115] HAN MO JEONG,BYEONG CHOON KIM,EUN HA KIM. Structure and properties of EVOH/organoclay Nanocomposites[J]. Journal of Materials Science, 2005, 40, 3783– 3787.
    [116]Thomas S. Ellis. Reverse exfoliation in a polymer nanocomposite by blendingwith a miscible polymer [J]. Polymer, 2003, 44, 6443–6448.
    [117]Kyung Min Lee, Chang Dae Han. Rheology of Organoclay Nanocomposites: Effects of Polymer Matrix/Organoclay Compatibility and the Gallery Distance of Organoclay [J]. Macromolecules, 2003, 36,7165-7178.
    [118] Sang-Soo Lee,Myung Hyun Hur,Hoichang Yang,Soonho Lim,Junkyung Kim. Effect of Interfacial Attraction on Intercalation in Polymer/Clay Nanocomposites[J]. Journal of Applied Polymer Science, 2006, 101, 2749–2753.
    [119]戴亚杰,金镇镐,张文龙,温玉萍,张玉军.EVOH/有机蒙脱土插层复合材料的制备与表征[J].中国塑料,2004, 18, 3.
    [120]代丽君,张玉军,王暄.EVOH/蒙脱土插层型纳米复合材料的研究[J].材料科学与工艺,2005 13, 3.
    [121]张玉军,周浩然,李丰富,巩桂芬,蒋进勇.EVOH /蒙脱土插层复合材料的制备与结构表征[J].黑龙江大学自然科学学报,2006, 23, 1.
    [122] Ekman K,Nasman J,Sjostrom H. Preparation of Ethylene Copolymers Containing Pendant Unsaturation for Radiation Crosslinking. J Appl Polym Sci,1993,48:167-179
    [123] Kenneth B,Ekman,Jan H,Nasman. Radiation Cross-Linking of Ethylene Vinyl Alcohol Copolymer Functionalized with m-Isopropenyl-α,α-Dimethyl Benzyl Isocyanate. J Appl Polym Sci,1993,50:233-242
    [124] Sjostrom H, Ekman K,Turpeinen V,Pulliainen K. Cross-linkable ethylene-vinyl alcohol-acrylate polymer and method of producing the same. U S Pat Appl,1991, 28855
    [125] Park E S,Kim M N,Yoon J S. Grafting of Polycaprolactone onto Poly(ethylene-co-vinyl alcohol) And Application to Polyethylene-Based Bioerodable Blends. J Polym Sci,2002,40:2561-2569
    [126] Park E S,Kim H S, Kim M N,Yoon J S. Soil Burial test for Poly(ethylene-co-vinyl alcohol)-graft-Polycaprolactone. J Appl Polym Sci,2005,96:1064-1071
    [127] Maurizio T,Elena F,Paola F,et al. Modification of EVOH Copolymers withε-Caprolactone:Synthesis and Compatibilization Effects in PE/PVC Blends. Macromol Symp,2001,176:233-244
    [128]Jiang Hongjin,He Junpo,Liu Jieping,Yang Yuliang. Synthesis and Characterization of Poly(ethylen-co-vinyl alcohol)-graft-poly(ε-caprolactone). Polym J,2002,34(9):682-686
    [129]Jiang Hongjin,Wu Peiyi,Yang Yuliang. Variable Temperature FTIR Study ofPoly(ethylene-co-vinylalcohol)-graft-poly(-caprolactone) .Biomacromolecules 2003,4:1343-1347
    [130] Pemberton L,De Jaeger R,Gengembre L. Grafting of a thin layer of poly(organophosphazene) containing succinic anhydride groups onto poly(vinyl alcohol) and poly(ethylen-co-vinyl alcohol). Polym,1998,39(6-7):1299-1307
    [131] Choon Mee Lee,Eung Su Kim,Jin-San Yoon. Reactive Blending of Poly(L-lactic acid) with Poly(ethylene-co-vinyl alcohol). Journal of applied polymer science,2005,98:886-890
    [132]代丽君.EVOH梳型单离子聚合物的合成及其离子电导电性质.应用化学,2006,23(9):1014-1018
    [133]代丽君.侧链为亚乙氧基结构的EVOH梳型聚合物的合成.化学与黏合,2005,27(3):177-179
    [134]代丽君.离子交换膜金属复合材料的制备及其形貌特征.齐齐哈尔大学学报,2006,22(4):7-10
    [135]张玉军,耿林,曹海林.静电纺丝技术制备EVOH-g-SO3无纺布膜的研究.哈尔滨工程大学学报,2006,27(5):681-685
    [136] Yoshimasa Hama,Tetsuya Hirade. Radiat. Phys. Chem. 1991,37(1): pp.59-64
    [137] Grishina A.D. Dokl.Akad.Nauk SSSR 1963, 150:809
    [138] Hase H, Yamaoka H. Radiat.Effects 1973, 19:195
    [139] Ogawa S. J.Phys.Soc.Jpn 1960, 16:1488
    [140] Ohnishi S, Sugimoto S, Nitta I. J.Polum.Sci. 1960, A1, 605
    [141] Wong P.K. Polymer 1983, 19:785
    [142] Ohnishi S, Ikeda Y, Sugimoto S, Nitta I. J.Polum.Sci. 1960, 47:503
    [143] Ohnishi S, Ikeda Y.Kashiwagi M, Nitta I. Polymer 1961, 2:119
    [144] Lawton E J, Balwit J S, Powell R.S. J.Chem.Phys. 1960, 33:405
    [145]柳美华,邓鹏飏,孙国恩等.乙烯-乙烯醇共聚物(EVOH )的辐射效应研究.辐射研究与辐射工艺学报,2006,24(6):337-340
    [146] Deng Pengyang,Liu Meihua,Zhang Wanxi,Sun Jiazhen.Preparation and physical properties of enhanced radiation induced crosslinkling of ethylene-vinyl alcohol copolymer(EVOH).Nuclear Instruments and Methods in Physics Research B 2007,258:357-361
    [147] J.M.Lagaron,E.Gimenez,et al.Phase morphology,crystallinity and mechanical properties of binary blends of high barrier ethylene-vinyl alcohol copolymer and amorphous polyamide and a polyamide-containing ionomer .Polymer,2001,42:7381-7394
    [148] Maria J Abad,Ana Ares,et al.Influence of the ethylene–(methacrylic acid)–Zn2+ ionomer on the thermal and mechanical properties of blends of poly(propylene) (PP) ethylene–(vinyl alcohol) copolymer (EVOH) .Polymer International,2005,54(4):673-678
    [149] Weichuan Du,Wei Zhong,et al.Space charge distribution and crystalline structure in polyethylene blended with EVOH.European Polymer Journal 2004,40:1987–1995
    [150] M. Montoya,M.J. Abad,L. Barral,C. Bernal.Mechanical and fracture behavior of polypropylene/poly(ethylene-co-vinyl alcohol) blends compatibilized with ionomer Na+.European Polymer Journal,2006,42(2):265-273
    [151] Costas K.Samios , Nikos K.Kalfoglou . Compatibilization of poly (ethylene-co-vinyl alcohol) (EVOH) and EVOH / HDPE blends with ionomers.Structure and properties.Polymer,1998,39(16):3863-3870
    [152]N.Artzi,M.Narkis,A.Siegmann. Review of Melt-Processed Nanocomposites Based on EVOH/Organoclay [J].Journal of Polymer Science: Part B: Polymer Physics, 2005, Vol. 43,1931–1943
    [153] Llu?′s Cabedo,Enrique Gime′nez,Jose′M. Lagaron,Rafael Gavara,Juan J. Saura.Development of EVOH-kaolinite Nanocomposites[J]. Polymer, 2004, 45, 5233–5238
    [154] HAN MO JEONG,BYEONG CHOON KIM,EUN HA KIM. Structure and properties of EVOH/organoclay Nanocomposites[J]. Journal of Materials Science, 2005, 40, 3783– 3787
    [155]Thomas S. Ellis. Reverse exfoliation in a polymer nanocomposite by blending with a miscible polymer [J]. Polymer, 2003, 44, 6443–6448
    [156]Kyung Min Lee, Chang Dae Han. Rheology of Organoclay Nanocomposites: Effects of Polymer Matrix/Organoclay Compatibility and the Gallery Distance of Organoclay [J]. Macromolecules, 2003, 36,7165-7178
    [157] Sang-Soo Lee,Myung Hyun Hur,Hoichang Yang,Soonho Lim,Junkyung Kim. Effect of Interfacial Attraction on Intercalation in Polymer/Clay Nanocomposites[J]. Journal of Applied Polymer Science, 2006, 101, 2749–2753
    [158]俞强,承民联,王媛媛. EVOH/PE-HD共混相容性研究.中国塑料,2004, 18(11):45-50
    [159]张美洁,李树材,崔永岩,卢勇,陈爱国,高留意. TPS/EVOH共混物的制备及性能研究.塑料工业,2003,31(1):29-31
    [160] M. Montoya,M.J. Abad,L. Barral,C. Bernal.Mechanical and fracture behavior of polypropylene/poly(ethylene-co-vinyl alcohol) blends compatibilized with ionomer Na+.European Polymer Journal,2006,42(2):265-273
    [161] Maria J Abad,Ana Ares,et al.Influence of the ethylene–(methacrylic acid)–Zn2+ ionomer on the thermal and mechanical properties of blends of poly(propylene) (PP) ethylene–(vinyl alcohol) copolymer (EVOH) .Polymer International,2005,54(4):673-678
    [162] Josef J and Jaroslay K. Yield Behavior of Polypropylene Filled with CaCO3 and Mg(OH)2:“Zero”Interfacial Adhesion[J]. Polymer Engineering and Science,June 1990,Vol.30,No.12,707-713.
    [163] B. Turczanyl, B. Pukanszky, and F. Kelen. J. Mater. Sci. Lett. 7 (1988) .
    [164]郭云亮,张涑戎,李立平.偶联剂的种类和特点及应用.橡胶工业,2003,50: 692-696.
    [165] Kounmann X,Berglund L A,Sterte J.Nanocomposites Based on Montmorillonite and Unsaturated Polyester[J].Polymer Engineering and Science, 1998,38(8): 1351-1158.
    [166] Marco Zanetti, Sergei Lomakina, Giovanni Camino. Polymer layered silicate nanocomposites [J]. Macromol.Mater. Eng., 2000, 279, 1–9.
    [167]王春艳.插层法制备环氧树脂/膨润土纳米复合材料的研究现状.
    [168] Ole Becker,Russell J.Varley Thermal stability and water uptake of high performance epoxy layered silicate nanocomposites [J]. European Polymer Journal,January 2004,Volume 40,Issue1,Pages 187-195.
    [169] Xu Weibing , He Pingsheng and Chen Dazhu , Cure behavior of epoxy resin/montmorillonite/imidazole nano-composite by dynamic torsional vibration method[J]. European Polymer Journal,March2003,Volume39, Issue3,Pages 617-625P.
    [170] Suprakas Sinha Ray and Masami Okamoto , Polymer/layered silicate nano-composites: a review from preparation to processing[J]. Progress in Polymer Science,November 2003,Volume28,Issue11,Pages 1539-1641P.
    [171] T. Akahane, T. Mochizuki.高分子化学(日), 1971,28:577.
    [172] T. Matsumoto, K. Nakamae, and T. Ochiumi, Sen - I Gakkaishi, 1974, 30:398.
    [173]陈昌杰,张烈银,塑料薄膜的印刷与复合,北京:化学工业出版社,1998.
    [174]蔡鹤琴,符素兰,唐彬.剂量率等因素对聚乙烯辐照交联的影响[J].激光物学,1996,5( 3):903-909.
    [175] J Z Sun,Y F Zhong,X Zhong,X Zhu. Radiat. Phy. Chem., 1994, 44:655.
    [176] T Sasuga,M Takehisa. J. Makromol.Sci.Phys. 1975, B11:389.
    [177] G Akay,F Cimen,T Tincer. Radiat.Phys.Chem. 1990,36:377.
    [178]罗延龄,赵振兴.高分子通报,1999,12(4): 88-99.
    [179]罗延龄,赵振兴.高分子通报,1999,12(4):88-99
    [180]马宏伟,王胜敏.塑料, 1991, 23 (5) : 37
    [181]陈庆隆,陈志军.LDPE辐射交联热收缩材料研究.核农学报,2000,14(2) 110-114

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700