用户名: 密码: 验证码:
基于资源优化的分组传送网生存性关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着互联网技术的蓬勃发展及宽带数据业务的爆炸式增长,传送网承载的业务正在从以TDM为主向以IP为主转变,传统的面向TDM业务的SDH传送网技术已难以满足IP化数据业务的传送需求,迫切需要一个智能的传送层面将各类业务高效、灵活地梳理到光纤巨大的带宽通道中,并保证业务的可靠性、可管理性和可扩展性。
     分组传送网(PTN, Packet Transport Network)正好满足了以上需求,使得TDM向分组化的平滑演进成为可能。分组传送网能够灵活智能地建立网络连接、合理高效地调度网络资源,并能提供快速、可靠的业务保护恢复手段。其中,生存性技术是保证分组传送网性能的关键技术,用于在网络发生任何故障后能尽快将受影响的业务重新倒换到备份或者空闲资源上以减少损失,其实现主要参考两方面因素——恢复时间和保护资源。本论文在国家863项目“基于T-MPLS的电信级分组传送网络”的支持下,从这两个方面对分组传送网生存性进行了深入研究,围绕资源优化的生存性技术取得了若干具有创新性的成果,主要的工作和创新点包括以下几个方面:
     第一,根据T-MPLS相关标准及技术原理设计了基于T-MPLS的分组传送网实验网架构,提出T-MPLS节点功能模型及多业务传送的封装/解封装解决方案,并在此基础上参与完成硬件传送平台及控制平面仿真软件,为分组传送网中各种功能及优化算法的研究提供分析验证手段。
     第二,等价多路径能有效地实现负载分担及流量均衡,但将引入网络管控上的困难。论文基于网络电信级的可管可控需求,分析不同的OAM功能在包含等价多路径域的分组传送网中的实现并提出相应的节点处理及帧扩展方案。笔者通过扩展OAM帧功能及节点对OAM帧的处理,在包含等价多路径的分组传送网中实现了端到端路径的OAM功能。同时提出OAM节点功能模型,通过OAM功能的实现,分析发送周期及网络拓扑等对OAM性能的影响。
     第三,针对快速重路由技术中用于保护的链路带宽消耗大的问题,基于共享风险链路组(SRLG)的共享保护思想,提出基于共享的资源预留及建路机制。并在此基础上,提出基于源节点计算的共享保护路由算法,以实现保护路径间资源共享最大化。另外,考虑工作路径对保护路径选择的影响,对提出的共享保护路由算法进行改进,实现工作路径与保护路径占用总资源更少。同时,考虑资源在权重中的影响比例,对链路权重进行修改,使提出的共享保护路由算法能够适应各种因素对链路权重的影响。
     第四,在分析分组传送网组播生存性的基础上,提出两种组播生存性技术。一种是探测重路由路径的快速组播恢复技术。该技术定义重路由探测消息,通过泛洪该消息完成重路由路径的快速寻找,实现在节约网络资源的同时尽可能缩短恢复时间。另一种是在组播快速重路由技术中,提出避免路径重复及回路的组播树保护技术。该技术通过扩展协议信令及节点处理,利用组播树中故障无关节点,以避免保护路径和组播工作路径重复或形成回路,达到减少资源浪费、实现资源优化的目的。
With the rapid development of Internet technology, and the explosive growth of broadband data sevices, transfer of Service on Transport Network has happened from TDM to IP. Tranditional SDH transport network which is mainly for TDM cann't meet the requirement of IP service's transport. Then an intelligent transport layer is needed to pad the huge capacity of fiber with kinds of service efficiently and flexibly, and the transport layer should guarantee the reliability, manageability and expandability of service.
     Appearance of PTN (Packet Transport Network) transport layer meets the requirements above, and it made the smooth evolution from TDM to IP become possible. Packet Transport Network (PTN) can automatically establish dynamic traffic connections and effectively configure network resources. And also multiple schmes for rapid restoration are provided in PTN. These incredible network functions are realized due to control plane based on GMPLS. Survivability is the key technology which greatly impacts the performance of optical networks. It is used to switch the service interrupted to backup resource when fault happenes to reduce the loss of service. There are two mainly factors in survivability technology, one is protection time, and the other is protection resource. The survivability problems are investigated in depth in the above two aspects in this paper with the support of the High-Tech Research and Development Program of China. The main innovative contributions about survivability based on resource optimization are listed as follows.
     Firstly, According to the T-MPLS standards and theory, network architecture of Packet Transport Network (PTN) based on T-MPLS and the function of nodes are designed, including control unit, management unit and switching and forwarding unit. Adaptation and carrier of multi-service in node interfaces are researched to realize the access of multi-service. OAM function is implemented to manage and control the network and finish the functions of ring protection.
     Secondly, Equal cost multi path technology (ECMP) can realize load balance, but it will bring the problems of management in PTN. In the paper the carrier-grade management is considered, and OAM functions in ECMP domain are researched. OAM frames are expanded and sub-path identification is added, then the function in the source and end nodes of ECMP domain is modified, to finish end to end OAM function in the domain including ECMP.
     Thirdly, based on previous study, shared-bandwidth reservation and backup path establishment strategy is proposed to solve the problem of large resource consumption in fast reroute. RSVP protocol has been expanded to realize bandwidth sharing among backup paths of different service LSPs during the establishment of backup path. A routing algorithm for backup path computation and its enhancement are proposed to solve out the problem of sharing among backup paths that belong to different SRLG work paths.
     Fourthly, based on survivability of multicast, two aspects are researched according to the feature of multicast tree. On the one hand, protection time is considered. A restoration technology of finding backup path is proposed to reduce the protection time and speed up the protection. On the other hand, protection resource is considered. A fast reroute protection strategy of avoiding path repeat and loop is rased to implement resource optimization.
引文
[1]何岩,张傲.下一代分组传送网的新技术发展走向.电信工程技术与标准化,2007.1.
    [2]龚倩,徐荣.分组传送网.北京:人民邮电出版社,2009.
    [3]李秉钧,万晓榆,樊自甫,等.演进中的电信传送网.北京:人民邮电出版社,2004.
    [4]任由.业务转型时期光传送网的演进.Data Communicaions.2006.5:82-83.
    [5]曹蓟光.吴英桦编著.多业务传送平台(MSTP)技术与应用.北京:人民邮电出版社,2003.
    [6]PBT:Carrier Grade Ethernet Transport. http://www.tpack.com/.
    [7]IEEE Std.802.1AD-2006. Virtual Bridged Local Area Networks Amendment 4:Provider Bridge.
    [8]IEEE P802.1ah/D3.5-2007[S]. Virtual Bridged Local Area Networks Amendment 6:Provider Backbone Bridges.
    [9]IEEE P802.1Qay/D3.0-2008[S]. Virtual Bridged Local Area Networks Amendment:Provider Backbone Bridge Traffic Engineering.
    [10]ITU-T Draft new Rec G.8110.1. Architecture of transport MPLS (T-MPLS) layer network, Feb.2006.
    [11]ITU-T Draft Amendment.1 to G8110.1, March 2007.
    [12]ITU-T Rec G.8110. MPLS layer network architecture, January 2005.
    [13]ITU-T Rec G8080. Architecture for the automatically switched optical network. June 2006.
    [14]祁云磊,曲桦.T-MPLS的关键技术研究.电信科学.2007,23(3):73-77.
    [15]石帅,谢文军,贾武.T-MPLS统一多业务适配及其OPNET建模,光网络技术,2008年第1期,7-11.
    [16]石晶林,丁炜,等.MPLS宽带网络互联技术.北京:人民邮电出版社,2001.
    [17]吴江,赵慧玲.下一代的IP骨干网络技术-多协议标记交换.北京:人民邮电出版社,2001.
    [18]E.Rosen, A.Viswanathan, R.Callon. Multi-protocol Label Switching Architecture. IETF RFC 3031, January 2001.
    [19]F.Le Faucheur, S.Davari, et al. Multi-Protocol Label Switching (MPLS) Support of Differentiated Services. IETF RFC 3270. May 2002:167-201.
    [20]L.Andersson, I.Minei, et al. LDP Specification. IETF RFC 5036, October 2007.
    [21]D.Awduche, L.Berger, et al. RSVP-TE:Extensions to RSVP for LSP Tunnels. IETF RFC3209. December 2001.
    [22]Reliable Mobile Backhaul Packet Transport using PBB-TE and T-MPLS, http://www.tpack.com/.
    [23]Application Driven Comparison of T-MPLS/MPLS-TP and PBB-TE-Driver Choices for Carrier Ethernet. INFOCOM 2009, July 2009.
    [24]王健全,徐荣,牟春波,顾畹仪,纪越峰.“21世纪光通信技术发展趋势预测”,通信世界,2001.10.
    [25]宋鸿升.智能光网络中生存性和路由技术关键问题的研究.北京邮电大学博士学位论文.2004.05.
    [26]张永军,尧昱,顾畹仪.电信级以太网环网技术的研究,中兴通讯技术,2008,12(12).
    [27]张永军,尧昱,顾畹仪.电信级分组传送网T-MPLS网络生存性技术,邮电设计技术, 2009.6.
    [28]曲桦,苏醒.面向业务的GMPLS网络生存性算法.通信学报.2006,27(z1):219-223.
    [29]V.Sharma, B.M.Crane, S.Makam, K.Owens, et al. Framework for Multi-Protocol Label Switching (MPLS)-based Recovery. IETF RFC 3496. February 2003.
    [30]Awduche, D., Berger, L., Gan, D., Li, T., Srinivasan, et al, IETF RFC 3209 RSVP-TE: Extensions to RSVP for LSP Tunnels[S], London:IETF, December 2001.
    [31]Dongmei Wang, Guangzhi Li, Efficient Distributed Bandwidth Management for MPLS Fast Reroute[J]. IEEE/ACM Transactions on networking,2008,16(2):486-495.
    [32]Guangzhi, L., Dongmei, W. Efficient distributed restoration path selection for shared mesh restoration [J]. Networking, IEEE/ACM Transactions,2003,11(5):761-771.
    [33]Yong, L. and A. L. N. Reddy. A fast rerouting scheme for OSPF/IS-IS networks[C]//Proceedings.13th International Conference on Computer Communications and Networks. Chicago:ICCCN,2004:47-52
    [34]C.Huang, V.Sharma, K.Owens, et al. Building reliable MPLS Networks using a path protection mechanism. IEEE Communications Magazine. March 2002,40(3):156-162.
    [35]E.Calle, J.L.Marzo, A.Urra, et al, Enhancing fault management performance of two-step QoS routing algorithms in GMPLS networks. IEEE Communications Society. June 2004,4: 1932-1936.
    [36]B.Awerbuch, A.Bar-Noy, M.Gopal. Approximate Distributed Bellman-Ford Algorithms. IEEE Trans. On Communications,1994,42(8):2515-2517.
    [37]A.R.Soltani, H.Tawfik, J.Y.Goulermas,et al. Path Planning in Construction Sites:Performace Evaluation of the Dijkstra, A*, and GA Search Algorithms. Advanced Engineering lnformaties.2002,16(4):291-303.
    [38]E.Caile, J.L.Marzo, A.Urra. Evaluating the probability and the impact of a failure in GMPLS based networks. In proceedings of DRCN 2003, Alberta (Canada) IEEE 2003. October 2003: 114-120.
    [39]ITU-T Rec G8112. Interfaces for the Transport MPLS Hierarchy.October 2006.
    [40]ITU-T Rec G.8121. Characteristics of Transport MPLS equipment functional blocks, March 2006.
    [41]ITU-T Draft Rec G8131. Linear protection switching for transport MPLS networks, November.2006.
    [42]ITU-T Rec G.8081. Generic protection switching-Linear trail and subnetwork protection. March 2006.
    [43]ITU-T Rec Y.1720. Protection switching for MPLS networks. December 2006.
    [44]ITU-T Draft Rec G.8132. T-MPLS shared protection ring (TM-SPRing), July.2007.
    [45]ITU-T Rec Y.1711. Operation&Maintenance mechanism for MPLS networks, February 2004.
    [46]ITU-T Draft Rec Y.17tor v0.1. Requirements for OAM function in T-MPLS based networks. July 2006.
    [47]ITU-T DraR Rec Y.17tom v0.1. Operation&maintenance mechanisms for T-MPLS layer networks, July 2006.
    [48]ITU-T Rec Y.1710. Requirements for Operation&maintenance functionality for MPLS networks. November 2002.
    [49]ITU-T Rec Y.1730. Requirements for OAM functions in Ethemet-based networks and Ethernet services. June 2004.
    [50]ITU-T Rec Y.1731. OAM functions and mechanisms for Ethernet based networks. May 2006.
    [51]马武.运营级以太网中的OAM.电信科学.2006,22(11):17-21.
    [52]R.Aggarwal. OAM Mechanisms in MPLS Layer 2 Transport Networks. IEEE Communicatins Magazine. October 2004,42(10):124-130.
    [53]J.Ash, L.Chung, K.D'Souza, W.S.Lai, et al. AT&T's MPLS OAM architecture, experience, and evolution. IEEE Communications Magazine. October 2004,42(10):100-111.
    [54]T.Nadcau, M.Morrow, et al. Operations and Management (OAM) Requirements for Multi-Protocol Label Switched (MPLS) Networks. IETF RFC 4377. February 2006.
    [55]D.Allan, T.Nadeau, et al. A Framework for Multi-Protocol Label Switching (MPLS) Operations and Management (OAM). IETF RFC 4378. February 2006.
    [56]ITU-T draft Rec G.tmpls-mgmt. Management aspects of the T-MPLS network element.October 2006.
    [57]S. Bryant. Joint Working Team (JWT) Report on MPLS Architectural Considerations for a Transport Profile. IETF RFC 5317 February 2009.
    [58]Yu Yao, Yongjun Zhang, Lin Tan, Wu Jia, Yongli Zhao, Shanguo Huang, Wanyi Gu. Analyse and Design on node of Control plane in Transport MPLS, APOC,2008.10.
    [59]张永军,尧昱,鲁传好,张志辉,赵永利,顾畹仪.基于资源共享的MPLS快速重路由,北京工业大学学报,vol.34, Supp.2008.12.
    [60]Yu Yao, Yongjun Zhang, Chuanhao Lu, Zhihui Zhang, Yongli Zhao, Wanyi Gu. An Efficient Shared-Bandwidth Reservation Strategy for MPLS Fast Reroute, ICISE 2009.
    [61]Yao Yu, Zhang Yongjun, Lu Chuanhao, Zhang Zhihui, Li Bin, Gu Wanyi. A PCE-based redundancy-aware path selection scheme for multi-layer network, ACP,2009.10.
    [1]ITU-T Rec G.8110. MPLS layer network architecture, January 2005.
    [2]石晶林,丁炜,等.MPLS宽带网络互联技术.北京:人民邮电出版社,2001.
    [3]E.Rosen, A.Viswanathan, R.Callon. Multi-protocol Label Switching Architecture. IETF RFC 3031, January 2001.
    [4]E. Hernandez, et al, T-MPLS:Carrier-Class Transport for Converged Optical/Packet Networks. OFC 2007 NTuC5,2007.
    [5]Application Driven Comparison of T-MPLS/MPLS-TP and PBB-TE-Driver Choices for Carrier Ethernet. INFOCOM 2009, July 2009.
    [6]ITU-T Draft new Rec G.8110.1. Architecture of transport MPLS (T-MPLS) layer network, Feb.2006.
    [7]ITU-T Draft Amendment.1 to G8110.1, March 2007.
    [8]ITU-T Rec G8080. Architecture for the automatically switched optical network. June 2006.
    [9]祁云磊,曲桦.T-MPLS的关键技术研究.电信科学.2007,23(3):73-77.
    [10]石帅,谢文军,贾武.T-MPLS统一多业务适配及其OPNET建模,光网络技术,2008年第1期,7-11.
    [11]ITU-T Rec. G.8080/Y.1304, Architecture of the Automatically Switched Optical Network (ASON),2001.
    [12]IETF RFC 4206, Label Switched Paths (LSP) Hierarchy with Generalized Multi-Protocol Label Switching (GMPLS) Traffic Engineering (TE). Oct 2005.
    [13]W. Jia, et al, A Hardware Design on Node in Transport MPLS Packet Network Based on FPGA, APOC2007, Wuhan, China.
    [14]Katsuhiro Shimano, et al, Architecture and functional requirements of Control Planes for Automatic Switched Optical Networks:experience of the IST Project LION, Communications Magazine, IEEE, Volume 40, Nov.2002, Page(s):60-65.
    [15]F.Le Faucheur, S.Davari, et al. Multi-Protocol Label Switching (MPLS) Support of Differentiated Services. IETF RFC 3270. May 2002:167-201.
    [16]ITU-T Recommendation G.7715.1, ASON Routing Architecture and requirements for Link State Protocols.
    [17]Yu Yao, Yongjun Zhang, Lin Tan, Wu Jia, Yongli Zhao, Shanguo Huang, Wanyi Gu. Analyse and Design on node of Control plane in Transport MPLS, APOC,2008.10.
    [18]D.Awduche, L.Berger, et al. RSVP-TE:Extensions to RSVP for LSP Tunnels. IETF RFC3209. December 2001.
    [19]IETF RFC 3209, RSVP-TE:Extensions to RSVP for LSP Tunnels, December 2001.
    [20]IETF RFC 4203, OSPF Extensions in Support of Generalized MPLS, Oct.2005.
    [21]S. Bryant. Pseudo Wire Emulation Edge-to-Edge (PWE3) Architecture. IETF RFC 3985, March 2005.
    [22]IETF RFC4553 "Structure-Agnostic Time Division Multiplexing (TDM) over Packet (SAToP)".
    [23]IETF RFC4197 "Requirements for Edge-to-Edge Emulation of Time Division Multiplexed (TDM) Circuits over Packet Switching Networks".
    [24]M. Riegel. Requirements for Edge-to-Edge Emulation of Time Division Multiplexed (TDM) Circuits over Packet Switching Networks. IETF RFC 4197, October 2005.
    [1]祁云磊.T-MPLS网络中的OAM机制研究.西安邮电学院硕士学位论文.2008.03.
    [2]林伟,刘斌,唐毅.等价多路径间基于LRU Cache和计数统计的流量分配调度算法.电子学报,2008.01(1).
    [3]C.Hopps, Analysis of an Equal-Cost Multi-Path Algorithm, IETF RFC 2992, November 2000.
    [4]Thaler, D. and C. Hopps, Multipath Issues in Unicast and Multicast, IETF RFC 2991, November 2000.
    [5]Thaler, D. and C.V. Ravishankar, Using Name-Based Mappings to Increase Hit Rates, IEEE/ACM Transactions on Networking, February 1998.
    [6]Estrin, D., Farinacci, D., Helmy, A., Thaler, D., Deering, S., Handley, M., Jacobson, V., Liu, C., Sharma, P. and L. Wei, Protocol Independent Multicast-Sparse Mode (PIM-SM):Protocol Specification, IETF RFC 2362, June 1998.
    [7]Andersen, D G,A C Snoeren, H Balakrishnan. Best-path vs. multi-path overlay routing. In Proceedings of the ACM SIGCOMM Internet Measurement Conference, IMC, pp.91-100, 2003 [C]. Miami Beach, FL, United States:Association for Computing Machinery, New York, NY 1003625701, United States.
    [8]E L Hahne. Round-robin scheduling for max-min fairness in data networks. IEEE Journal on Selected Areas in Communications,1991,9(7):1024-1039.
    [9]Shi H, H Sethu. Greedy fair queueing:A goal-oriented strategy for fair real2time packet scheduling. In Proceedings of RealTime Systems Symposium. Cancun, Mexico:Institute of Electrical and Electronics Engineers Inc,2003.345-356.
    [10]Cao Z, Z Wang, E Zegura. Performance of hashing-based schemes for Internet load balancing. In Proceedings of IEEE INFOCOM. Tel Aviv, Isr:IEEE, Piscataway, NJ, USA, 2000.1.332-341.
    [11]Chim T W, K L Yeung. Traffic distribution over equal-cost multi-paths. In Proceedings of IEEE International Conference on Communications. Paris, France:Institute of Electrical and Electronics Engineers Inc., Piscataway, United States:,2004.2.1207-1211.
    [12]A Zinin. Cisco IP Routing, Packet Forwarding and Intra-domain Routing Protocals. Section 5.5.1:Addison Wesley,2002.
    [13]ITU-T Rec Y.1711. Operation&Maintenance mechanism for MPLS networks, February 2004.
    [14]ITU-T Draft Rec Y.17tor v0.1. Requirements for OAM function in T-MPLS based networks. July 2006.
    [15]ITU-T Draft Rec Y.17tom v0.1. Operation&maintenance mechanisms for T-MPLS layer networks, July 2006.
    [16]ITU-T Rec Y.1710. Requirements for Operation&maintenance functionality for MPLS networks. November 2002.
    [17]ITU-T Rec Y.1730. Requirements for OAM functions in Ethemet-based networks and Ethernet services. June 2004.
    [18]ITU-T Rec Y.1731. OAM functions and mechanisms for Ethernet based networks. May 2006.
    [19]ITU-T Rec G.8110.1. Architecture of transport MPLS (T-MPLS) layer network[S], Feb 2006.
    [20]ITU-T Draft Amendment.1 to G.8110.1 [S], Mar 2007.
    [21]马武.运营级以太网中的OAM.电信科学.2006,22(11):17-21.
    [22]R.Aggarwal. OAM Mechanisms in MPLS Layer 2 Transport Networks. IEEE Communicatins Magazine. October 2004,42(10):124-130.
    [23]J.Ash, L.Chung, K.D'Souza, W.S.Lai, et al. AT&T's MPLS OAM architecture, experience, and evolution. IEEE Communications Magazine. October 2004,42(10):100-111.
    [24]T.Nadcau, M.Morrow, et al. Operations and Management (OAM) Requirements for Multi-Protocol Label Switched (MPLS) Networks. IETF RFC 4377. February 2006.
    [25]D.Allan, T.Nadeau, et al. A Framework for Multi-Protocol Label Switching (MPLS) Operations and Management (OAM). IETF RFC 4378. February 2006.
    [26]ITU-T draft Rec G.tmpls-mgmt. Management aspects of the T-MPLS network element.October 2006.
    [1]ITU-T Draft Rec G8131. Linear protection switching for transport MPLS networks, November.2006.
    [2]ITU-T Rec G.8081. Generic protection switching-Linear trail and subnetwork protection. March 2006.
    [3]张永军,尧昱,顾畹仪.电信级分组传送网T-MPLS网络生存性技术,邮电设计技术,2009.6.
    [4]ITU-T Draft Rec G8132. T-MPLS shared protection ring (TM-SPRing), July.2007.
    [5]Paa, P., Ed., Swallow, G, Ed., and A.Atlas, Ed., "Fast Reroute Extensions to RSVP-TE for LSP Tunnels", RFC 4090, May 2005.
    [6]J.P. Lang, Ed., Y. Rekhter, Ed., D. Papadimitriou, Ed., RSVP-TE Extensions in Support of End-to-End Generalized Multi-Protocol Label Switching (GMPLS) Recovery, RFC 4872, May 2007.
    [7]Awduche, D., Berger, L., Gan, D., Li, T., Srinivasan, V, and G. Swallow, "RSVP-TE: Extensions to RSVP for LSP Tunnels", RFC 3209, December 2001.
    [8]Rosen, E., Viswanathan, A. and R. Callon, Multiprotocol Label Switching Architecture, RFC 3031, January 2001.
    [9]Berger, L., Ed., "Generalized Multi-Protocol Label Switching (GMPLS) Signaling Resource ReserVation Protocol-Traffic Engineering (RSVP-TE) Extensions", RFC 3473, January 2003.
    [10]胡刚毅,毛期俭,王汝言,颜红.WDM光网络中一种基于SRLG限制的动态共享保护算法研究.江西通信科技,2009(1).
    [11]ITU-T Rec Y.1720. Protection switching for MPLS networks. December 2006.
    [12]Braden, R., Zhang, L., Berson, S., Herzog, S., and S. Jamin, "Resource ReSerVation Protocol (RSVP)-Version 1 Functional Specification". RFC 2205, September 1997.
    [13]Kompella, K. and Y. Rekhter, "Signalling Unnumbered Links in Resource ReSerVation Protocol-Traffic Engineering (RSVP-TE)", RFC 3477, January 2003.
    [14]张永军,尧昱,顾畹仪.电信级以太网环网技术的研究,中兴通讯技术,2008,12(12).
    [15]曲桦,苏醒.面向业务的GMPLS网络生存性算法.通信学报.2006,27(z1):219-223.
    [16]Awduche, D., Berger, L., Gan, D., Li, T., Srinivasan, et al, IETF RFC 3209 RSVP-TE: Extensions to RSVP for LSP Tunnels[S], London:IETF, December 2001.
    [17]Dongmei Wang, Guangzhi Li, Efficient Distributed Bandwidth Management for MPLS Fast Reroute. IEEE/ACM Transactions on networking,2008,16(2):486-495.
    [18]Guangzhi, L., Dongmei, W. Efficient distributed restoration path selection for shared mesh restoration. Networking, IEEE/ACM Transactions,2003,11(5):761-771.
    [19]M.Kodialam and T.Lakshman, Dynamic routing of locally restorable bandwidth guaranteed tunnels using aggregated link usage information, in IEEE INFOCOM 2001, pp.376-385.
    [20]M.Kodaliam and T.Lakshman, Dynamic routing of bandwidth guaranteed tunnels with restoration, in IEEE INFOCOM 2000.
    [21]C.Ou, J.Zhang, H.Zhang, L.Sahasrabuddhe, and B.Mukherjee, "New and improved approaches for shared path protection in WDM mesh networks," J. Lightw. Technol., vol.22, no.5, pp.1223-1332, May 2004.
    [22]C.Qiao and D.Xu, "Distributed Partial Information Management (DPIM) for survivable networks," in INFOCOM 2002.
    [23]P.Ho, J.Tapolcai, and H.Moufth, "On achieving optimal survivable routing for shared protection in survivable next-generation internet," IEEE Trans. Reliability, vol.53, no.2, pp. 216-225, Jun.2004.
    [24]C.Qiao and D.Xu, Distributed Partial Information Management (DPIM) for survivable networks, in INFOCOM 2002.
    [25]Y.Liu, D.Tipper, and P.Siripongwutikorn, "Approximating optimal space capacity allocation by successive survivable routing," in Proc.IEEE INFOCOM,2001, pp.699-708.
    [26]G.Li, R.Doverspike, and C.Kalmanek, "Fiber span failure protection in optical networks," Opt. Networks Mag., vol.3, pp.21-31, May/June 2003.
    [27]R.Bhandari, Survivable Networks:Algorithms for Diverse Routing. Norwood, MA:Kluwer, 1999.
    [28]D.Dunn, W.Grover, and M.MacGregor, "Comparison of k-shortest paths and maximum flow routing for network facility restoration," IEEE J. Select. Areas Commun., vol.2, pp.88-89, Jan.1994.
    [29]E.Bouillet, J.Labourdette, G.Ellinas, R.Ramamurthy, and S.Chaudhuri, "Stochastic approaches to compute shared mesh restored lightpaths in optical network architectures," in Proc. IEEE INFOCOM, June 2002, pp.801-807.
    [30]R.Doverspike and J.Yates, Challenges for MPLS in optical network restoration, IEEE Commun. Mag., Feb.2001.
    [31]Jian Wang, Laxman Sahasrabuddhe and Biswanath Mukherjee, Path vs. Subpath vs. Link Restoration for Fault Management in IP-over-WDM Networks:Performance Comparisons Using GMPLS Control Signaling, IEEE Communications Magazine, November 2002.
    [32]P.Ho, J.Tapolcai, and H.Moufth, On achieving optimal survivable routing for shared protection in survivable next-generation internet, IEEE Trans. Reliability, vol.53, no.2, pp.216-225, Jun.2004.
    [33]P.Ho, J.Tapolcai, and Cinkler, Segment shared protection in mesh communications networks with bandwidth guaranteed tunnels, IEEE Trans. Networking, vol.12, no.6, Dec.2004.
    [34]S.Han and G.Shin, Fast restoration of real-time communication service from component failure in multi-hop networks, in ACM SIGCOMM 1997.
    [35]R.Sabella, M.Settembre, G.Oriolo, F.Razza, F.Ferlito, and G.Conte, A multilayer solution for path provisioning in new generation optical/MPLS networks, J.Lightw.Technol., vol.21, no.5, pp.1141-1155.
    [36]Y.Xiong and L.Mason, Restoration strategies and spare capacity requirements in self-healing ATM networks, IEEE/ACM Trans. Netw., vol.7, no.1, Feb.1999.
    [37]Yong, L. and A.L.N.Reddy. A fast rerouting scheme for OSPF/IS-IS networks. In proceedings.13th International Conference on Computer Communications and Networks. Chicago:ICCCN,2004:47-52
    [38]C.Huang, V.Sharma, K.Owens, et al. Building reliable MPLS Networks using a path protection mechanism. IEEE Communications Magazine. March 2002,40(3):156-162.
    [39]E.Calle, J.L.Marzo, A.Urra, et al, Enhancing fault management performance of two-step QoS routing algorithms in GMPLS networks. IEEE Communications Society. June 2004,4: 1932-1936.
    [40]S.Ramamurthy and Biswanath Mukherjee, Survivable WDM Mesh Networks, Part I-Protection,1999 IEEE.
    [41]S.Ramamurthy and Biswanath Mukherjee, Survivable WDM Mesh Networks, Part II-Restoration.1999 IEEE.
    [1]杜志璟,侯韶华,MPLS网络中的RSVP-TE P2MP技术,数据通信,2006.6
    [2]李津,孙卫强,基于RSVP-TE的组播信令协议的实现机制及性能研究,电讯技术,2006.6
    [3]R.Aggarwal,Ed., D.Papadimitriou,Ed., S.Yasukawa,Ed., Extensions to Resource Reservation Protocol-Traffic Engineering (RSVP-TE)for Point-to-Multipoint TE Label Switched Paths (LSPs), RFC 4875, May 2007.
    [4]Berger,L., Ed. Generalized Multi-Protocol Label Switching (GMPLS) Signaling Resource ReserVation Protocol-Traffic Engineering (RSVP-TE) Extensions, IETF RFC 3473, January 2003.
    [5]D.Awduche, L.Berger, D.Gan, T.Li, et al., RSVP-TE:Extensions to RSVP for LSP Tunnels, RFC 3209, December 2001.
    [6]D.Ceccarelli, D.Caviglia, et al. P2MP traffic protection in MPLS-TP ring topology. IETF draft-ceccarelli-mpls-tp-p2mp-ring-00, January 29,2009.
    [7]Tae-sik Cheung, Jeong-dong Ryoo, MPLS-TP Mesh Protection. IETF draft-cheung-mpls-tp-mesh-protection-00, March 1,2010.
    [8]J.L.Le Roux Ed., R.Aggarwal, J.P. Vasseur, P2MP MPLS-TE Fast Reroute with P2MP Bypass Tunnels, draft-ietf-mpls-p2mp-te-bypass-01.txt, July 2007.
    [9]Pan,P., Ed., Swallow, G., Ed., and A.Atlas, Ed., Fast Reroute Extensions to RSVP-TE for LSP Tunnels, RFC 4090, May 2005.
    [10]S.Yasukawa, Signaling Requirements for Point to Multipoint Traffic Engineered MPLS LSPs, IETF Internet draft, draft-ietf-mpls-p2mp-sig-requirement-03.txt, June,2005, working in progress.
    [11]V. Sharma and F. Hellstrand, Framework for Multi-Protocol Label Switching MPLS-based Recovery, IETF RFC 3469,2003.
    [12]M.Kodialam and T.V. Lakshman, Dynamic Routing of Bandwidth Guaranteed Multicasts with Failure Backup, IEEE ICNP,2002, pp259-269.
    [13]孙卫强,金耀辉,胡卫生.ASON组播技术及其应用研究.中兴通讯技术,2006(06).
    [14]Yasukawa, S., Ed., "Signaling Requirements for Point-to-Multipoint Traffic-Engineered MPLS Label Switched Paths (LSPs)", RFC 4461, April 2006.
    [15]Rosen, E., Viswanathan, A. and R. Callon, Multiprotocol Label Switching Architecture. IETF RFC 3031, January 2001.
    [16]殷鹏程.ASON网络路由和保护恢复技术研究.西南交通大学硕士学位论文,2008.
    [17]I.Minei,Ed., K. Kompella, I.Wijnands, Ed., Label Distribution Protocol Extensions for Point-to-Multipoint and Multipoint-to-Multipoint Label Switched Paths. draft-ietf-mpls-ldp-p2mp-03, July 2007
    [18]Shuying Liu, Gang Cheng, Lianshu Zheng, Reroute Extensions to LDP for P2MP LSP, draft-liu-mpls-ldp-p2mp-reroute-00.txt, August 2006.
    [19]Katz,D. and D.Ward, Bidirectional Forwarding Detection. Work in Progress, March 2007.
    [20]M. Medard et al, Redundant Trees for Preplanned Recovery in Arbitrary Vertex-redundant or Edge-redundant Graphs, IEEE/ACM Transactions on Networking, vol 7(5),1999.
    [21]A.Fei et al, A dual-tree scheme for fault-tolerant multicast, in proceeding of ICC,2001, pp690-694.
    [22]N.K.Singhal, Protecting Multicast Sessions in WDM Optical Mesh Networks, in Journal of Lightwave Technology, Vol.21, NO.4, April,2003.
    [23]W.Lau et al, Efficient Bandwidth Guaranteed Restoration Algorithms for Multicast Connections,IFIP Networking,2005, pp1005-1017.
    [24]P.Winter, Steiner problem in networks:a survey, Networks, vol 17, pp129-167,1987.
    [25]G.Li, D.Wang, C.Kalmanek and R.Doverpike, Efficient Distributed Path Selection for Shared Restoration Connections, IEEE INFOCOM, New York, Vol.1, pp.140-149,2002.
    [26]M.Kodaliam and T.Lakshman, Dynamic Routing of Bandwidth Guaranteed Tunnels with Restoration, IEEE INFOCOM 2000, Vol.2, pp902-911.
    [27]C.Qiao and D.Xum. Distributed Partial Information Management (DPIM) for Survivable Networks, IEEE INFOCOM 2002, pp302-311.
    [28]P.Ho, J.Tapolcai, and H.Mouftah, On achieving optimal survivable routing for shared protection in survivable next-generation internet, IEEE Transaction on Reliability, Vol 53(2), June 2004, pp216-225.
    [29]P.Ho and H.Mouftah, Reconfiguration of spare capacity for MPLS-based recovery for the Internet Backbone networks, IEEE/ACM ToN, Vol 12(1), Feb.2004, pp 73-85.
    [30]S.Han and G.Shin, Fast restoration of real-time communication service from component failure in multi-hop networks, ACM SIGCOM 1997, pp77-88.
    [31]Y.Xiong and L.Mason, Restoration Strategies and Spare Capacity Requirements in Self-Healing ATM Networks, IEEE/ACM Transactions on Networks, vol 7(1), February 1999.
    [32]Guangzhi Li, Dongmei Wang, Robert Doverspike. Efficient Distributed MPLS P2MP Fast Reroute. INFOCOM 2006, pp1-11.
    [33]D.Wang and G Li, Efficient Distributed Solutions for MPLS Fast Reroute, IFIP Networking 2005,pp804-815.
    [34]Y.Chu, S.Rao, S.Seshan, and H.Zhang, Enabling Conferencing Applications on the Internet using an Overlay Multicast Architecture, ACM SIGCOMM,2001, pp55-67.
    [35]S.Banerjee, C.Bhattacharjee, and C.Kommareddy, Scalable application layer multicast, ACM SIGCOMM,2002.
    [36]S.Banerjee, C.Kommareddy, K.Kar, B.Bhattacharjee, and S.Khuller, Construction of an Efficient Overlay Multicast Infrastructure for Real-Time Applications, IEEE INFOCOM, 2003.
    [37]S.Banerjee, S.Lee, B.Bhattacharjee, and A.Srinivasan, Resilient Multicast using Overlays, ACM SIGMETRICS,2003.
    [38]R.Braden et al, Resource Reservation Protocol (RSVP)-Versionl Functional Specification, RFC 2205, Sept.1997.
    [39]D.Katz et al., Traffic Engineering (TE) Extensions to OSPF. Version 2, RFC 3630, Sept.2003.
    [40]D.Awduche et al, RSVP-TE:Extensions to RSVP for LSP Tunnels, RFC3209, Dec.2001.
    [41]D.Papadimitriou and E.Mannie, Analysis of Generalized Multi-Protocol Label Switching (GMPLS)-based Recovery Mechanisms, draft-ietf-ccamp-gmpls-recovery-analysis-05.txt, 2005, working in progress.
    [42]M.Kodialam et al, A Simple Traffic Independent Scheme for Enabling Restoration Oblivious Routing of Resilient Connections, IEEE Infocom 2004.
    [43]Yijun Xiong, Mason, L.G.. Restoration strategies and spare capacity requirements in self-healing ATM networks. Networking, IEEE/ACM Transactions on Volume:7, Issue:1, 1999,pp98-110.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700