用户名: 密码: 验证码:
城域以太网若干关键问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以太网在城域网中的应用,即城域以太网,是目前的研究热点,且受到业界的广泛关注。在诸多城域以太网解决方案中,全以太网的解决方案由于能够最大程度地继承以太网价廉物美的特点,被认为是最有竞争力的方案之一,但是其故障恢复和QoS方面的性能还有待提高;而在TDM网络大量铺设的现状下,基于TDM设施的解决方案是一种很实用的过渡性方案。因此,本文主要研究全以太网解决方案的故障恢复和QoS问题,以及基于现有TDM设施的解决方案中的电路设计问题。论文的主要创新成果和结论如下:
     1.针对全以太网的解决方案,提出了一种基于自保护生成树的快速故障恢复方案,能够实现对任意单故障的快速恢复。从理论角度证明了,该方案对生成树数目和网络拓扑的要求都达到了下限。此外,仿真结果表明,故障恢复时间为几十毫秒量级,满足城域以太网的需求。
     2.针对全以太网解决方案的拥塞控制问题,设计了一种高精度低复杂度的速率控制电路。针对硬件实现,对漏桶算法进行改进后,所设计的速率控制电路具有如下优点:发送速率的调整精度高,满足IEEE 802.3ar工作组所提出的高于1%的需求;电路简单,规模小于以太网MAC电路的5%。
     3.针对全以太网的解决方案,提出了一种用于降低故障发生后平均延时的分布式切换方法。理论证明和仿真结果表明,分布式切换在不恶化工作树平均延时的前提下,能够明显减小网络的单链路故障下平均延时。
     4.针对基于现有TDM设施的解决方案,提出了一种基于帧间插的以太网到多路E1反向复接器设计方案并用FPGA进行了实现。相比已有的字节间插方案而言,帧间插方案的优点是,只要有一路E1正常工作就能实现部分数据帧的传输,从而可以用网管功能实现快速自动的故障隔离。
     5.从电路设计的角度,提出了一种利用异步采样电路的不确定性提高FPGA的设计安全性的方案。异步采样电路的特点是,每次上电后的输出序列都不一样,而且和温度等外界因素有关。这种不确定性将使得剽窃者每次采样到的配置数据和验证数据几乎都不一样,增加了剽窃的难度。
Ethernet has been the most dominant networking solution in local area networks, and it is now expanding to the Metro Area Networks (MAN). The application of Ethernet in the MAN, named metro Ethernet, is a hot topic, which is also widely concerned by the industries. There are various metro Ethernet solutions. The native Ethernet solution is considered as one of the most competitive solutions because of its low cost. However, it faces resilience and Quality of Service (QoS) problems. Moreover, the TDM-based solution is a practical temporary solution, because the TDM infrastructures have been wildly deployed. Therefore, we mainly focus on the resilience and QoS issues in the native Ethernet solution, and circuit design issues in the TDM-based solution in this thesis. The main achievements and contributions are as follows.
     1. We propose a self-protected spanning tree based recovery scheme for the native Ethernet solution to protect against any single failure. It is theoretically proved that the scheme’s requirements to both the number of the trees and the network topology reach the lowest bound. Moreover, simulation results show that the recovery time is about several tens of milliseconds, which meets the metro Ethernet’s resilience requirement.
     2. We propose a fine-adjustable low-complexity rate control circuit for congestion control in the native Ethernet solution. Based on the hardware implementation oriented modifications to the token bucket algorithm, the designed rate control circuit has the following features. The rate reduction is fine-adjustable, which meets the 1% or better granularity requirement presented by IEEE 802.3ar task force. Moreover, the circuit is simple, and its area is less than 5% of the Ethernet MAC.
     3. We propose a distributed switching mechanism to reduce the average delay after link failure for the native Ethernet solution. Both theoretical proofs and simulation results show that the distributed switching mechanism is able to reduce the average delay after single link failure without affecting the original average delay of the working tree.
     4. We propose a frame granularity scheme for Ethernet over E1, which is one of the TDM-based solutions, and implement it with FPGA. Compared with the byte granularity scheme, the advantage of the frame granularity scheme is that even if only one E1 line works normally, some frames can still be tranmitted to the far end. Thus, the failed E1 links can be isolated using the network management function.
     5. We propose an asynchronous sampling circuit to secure the configuration of FPGA. The feature of the asynchronous sampling circuit is that its output sequence is different every time the board is powered on, and the sequence is even related with the outside conditions such as air temperature. This uncertainty prevents the possibility of cracking the system by copying the sequence.
引文
[1] Metro Ethernet Forum. Metro Ethernet Networks–A Technical Overview [EB/OL]. (2003-12) [2008-10-8]. http://metroethernetforum.org/PDF_Documents/metro-ethernet- networks.pdf.
    [2] IEEE Std 802.3ae. IEEE Standard for Information technology- Telecommunications and information exchange between systems- Local and metropolitan area networks- Specific requirements Part 3: Carrier Sense Multiple Access with Collision Detection (CSMA/CD) Access Method and Physical Layer Specifications Amendment: Media Access Control (MAC) Parameters, Physical Layers, and Management Parameters for 10 Gb/s Operation, 2002.
    [3] IEEE P802.3ba 40Gb/s and 100Gb/s Ethernet Task Force. IEEE P802.3ba Task Force objectives [EB/OL]. (2008-3-20) [2008-10-16]. http://www.ieee802.org/3/ ba/index.
    [4] D Allan, N Bragg, A McGuire, A Reid. Ethernet as carrier transport infrastructure. IEEE Communications Magazine, 2006, 44(2): 95-101.
    [5] D Fedyk, D Allan. Ethernet data plane evolution for provider networks. IEEE Communications Magazine, 2008, 46(3): 84-89.
    [6] Jeong-Dong Ryoo, Jongtae Song, Jaewoo Park, Bheom-Soon Joo. OAM and its performance monitoring mechanisms for carrier Ethernet transport networks. IEEE Communications Magazine, 2008, 46(3): 97-103.
    [7] S Salam, A Sajassi. Provider backbone bridging and MPLS: complementary technologies for next-generation carrier Ethernet transport. IEEE Communications Magazine, 2008, 46(3): 77-83.
    [8] M Huynh, P Mohapatra. Metropolitan Ethernet network: a move from LAN to MAN. Computer Networks, 2007, 51(17): 4867-4894.
    [9] M Ali, G Chiruvolu, A Ge. Traffic engineering in metro Ethernet. IEEE Network, 2005, 19(2): 10-17.
    [10] G Chiruvolu, A Ge, D Elie-Dit-Cosaque, M Ali, J Rouyer. Issues and approaches on extending Ethernet beyond LANs. IEEE Communications Magazine, 2004, 42(3): 80-86.
    [11] A Elangovan. Efficient multicasting and broadcasting in layer 2 provider backbone networks. IEEE Communications Magazine, 2005, 43(11): 166-170.
    [12] Metro Ethernet forum. MEF overview [EB/OL]. [2008-1-1]. http://metroethernetforum.org.
    [13]苏厉.城域网若干技术问题研究[清华大学博士论文].北京:清华大学电子工程系, 2004.
    [14]陈虹.基于以太网的宽带通信系统研究、芯片设计与实现[清华大学博士论文].北京:清华大学电子工程系, 2005.
    [15]刘昭. 10G以太网若干问题研究[清华大学博士论文].北京:清华大学电子工程系, 2005.
    [16] L Fang, R Zhang, M Taylor. The evolution of carrier ethernet services-requirements and deployment case studies. IEEE Communications Magazine, 2008, 46(3):69-76.
    [17] Metro Ethernet forum. Metro Ethernet services definitions Phase 2 [EB/OL]. (2008-04) [2008-10-8]. http://metroethernetforum.org/PDF_Documents/MEF6-1.pdf.
    [18] Robert M Metcalfe, Dave R Boggs. Hand draw diagram of Ethernet [EB/OL], (1976-07) [2008-10-16]. http://ieee802.org/3/ethernet_diag.html.
    [19] Robert M Metcalfe, Dave R Boggs. Ethernet: distributed packet switching for local computer networks. Communications of the ACM, 1976, 19(7): 395-404.
    [20] IEEE Std 802.1Q. IEEE standard for local and metropolitan area networks - virtual bridged local area networks, 2005.
    [21] IEEE Std 802.1ad. IEEE standard for local and metropolitan area networks-virtual bridged local area networks, Amendment 4: Provider Bridges, 2005.
    [22] IEEE P802.1ah/D4. Draft standard for local and metropolitan area networks-virtual bridged local area networks, Amendment 6: Provider Backbone Bridges, Feb. 2008.
    [23] K Jayant, C Ian, K Mohan.千兆位以太网教程.段晓,译.北京:清华大学出版社, 1999.
    [24] Andrew S Tanenbaum. Computer Networks. 4th Edition, Prentice Hall, 2003.
    [25] M McFarland, S Salam, R Checker. Ethernet OAM: key enabler for carrier class metro Ethernet services. IEEE Communications Magazine, 2005, 43(11): 152-157.
    [26] Y Lim, H Yu, S Das, S S Lee, M Gerla. QoS-aware multiple spanning tree mechanism over a bridged LAN environment. Proceedings of IEEE GLOBECOM 2003: 3068-3072.
    [27] Rich Seifert.千兆以太网技术与应用.郎波,黄冬泉,张辉,李巍,译.北京:机械工业出版社, 2000.
    [28] IEEE Std 802.1D. IEEE standard for local and metropolitan area networks Media Access Control (MAC) bridges, 2004.
    [29] IEEE Std 802.1w. IEEE standard for local and metropolitan area networks Media Access Control (MAC) bridges - Amendment 2: rapid reconfiguration, 2001.
    [30] K Elmeleegy, A L Cox, T S E Ng. On count to infinity induced forwarding loops in Ethernet networks. Proceedings of IEEE INFOCOM 2006: 1-13.
    [31] K Elmeleegy, A L Cox, T S E Ng. Understanding and mitigating the effects of count to infinity in Ethernet networks. to appear in IEEE/ACM Transactions on Networking.
    [32] IEEE Std 802.1s. IEEE standards for local and metropolitan area networks- virtual bridged local area networks - Amendment 3: Multiple Spanning Trees, 2002.
    [33] IEEE Std 802.3x. IEEE standards for local and metropolitan area networks: Supplements to Carrier Sense Multiple Access with Collision Detection (CSMA/CD) Access Method and Physical Layer Specifications - Specification for 802.3 Full Duplex Operation and Physical Layer Specification for 100 Mb/s Operation on Two Pairs of Category 3 or Better Balanced Twisted Pair Cable (100BASE-T2), 1997.
    [34] R Malhotra, R van Haalen, M Mandjes, R Nunez-Queija. Modeling the interaction of IEEE 802.3x hop-by-hop flow control and TCP end-to-end flow control. Proceedings of Next Generation Internet Networks 2005: 260- 267.
    [35] O Feuser, A Wenzel. On the effects of the IEEE 802.3x flow control in full-duplex Ethernet LANs, Proceedings of 24th Annual IEEE International Conference on Local Computer Networks, 1999: 160-161.
    [36] IEEE 802.3ar Congestion Management Task Force. IEEE 802.3ar objectives [EB/OL]. (2004-09) [2008-10-16]. http://www.ieee802.org/3/ar/index.html.
    [37] W Noureddine, F Tobagi. Selective back-pressure in switched Ethernet LANs. Proceedings of IEEE GLOBECOM 1999: 1256-1263.
    [38] D Lee, S Coleri, X Dong, M Ergen. FLORAX-Flow-rate based hop by hop back-pressure control for IEEE 802.3x. Proceedings of 5th IEEE International Conference on High Speed Networks and Multimedia Communications, 2002: 202-207.
    [39] M H M Nizam, G Chiruvolu, A Ge, J Rouyer, T Kim, L Gui. Differentiated and fair congestion control using efficient buffer management (DifCom) for the metro Ethernet. Proceedings of IEEE GLOBECOM 2003: 3113-3117.
    [40] A Ge, G Chiruvolu. DiffServ compatible extended pause (DiffPause) for fair congestion control in metro-Ethernet. Proceedings of IEEE ICC 2004: 1248-1252.
    [41] D Kataria, C Li. Explicit rate flow control in metro Ethernet networks. Proceedings of IEEE Military Communications Conference, 2007: 1-4.
    [42] J Wechta, M Fricker, F Halsall. Hop-by-hop flow control as a method to improve QoS in 802.3 LANs. Proceedings of 7th International Workshop on Quality of Service, 1999: 239-247.
    [43] J Jiang, R Jain. Analysis of Backward Congestion Notification (BCN) for Ethernet in datacenter applications. Proceedings of IEEE INFOCOM 2007: 2456-2460.
    [44] J Jiang, R Jain, C So-In. An explicit rate control framework for lossless Ethernet operation. Proceedings of IEEE ICC 2008: 5914 - 5918.
    [45] D Stiliadis, A Varma. Latency-rate servers: a general model for analysis of traffic scheduling algorithms. IEEE/ACM Transactions on Networking, 1998, 6(5): 611-624.
    [46] C Dovrolis, D Stiliadis, P Ramanathan. Proportional differentiated services: delay differentiation and packet scheduling. IEEE/ACM Transactions on Networking, 2002, 10(1): 12-26.
    [47] M Allman, V Paxson, W Stevens. RFC 2581, TCP Congestion Control [EB/OL]. (1999-04) [2008-10-16]. http://www.rfc-editor.org/rfc/rfc2581.txt.
    [48] R Braden, D Clark, S Shenker. RFC 1633, Integrated Services in the Internet architecture: an overview. (1994-06) [2008-10-16]. http://www.rfc-archive.org/getrfc.php?rfc=1633.
    [49] S Blake, D Black, M Carlson, E Davies, et al. RFC 2475, An architecture for differentiated services [EB/OL]. (1998-12) [2008-10-16]. http://www.ietf.org/rfc/rfc2475.txt.
    [50]蒋志刚,李乐民. ATM网络中突发业务的漏桶算法分析.电子学报, 1995, 23(1): 8-14.
    [51] Y Chen, X Xu. An adaptive buffer allocation mechanism for token bucket flow control. Proceedings of IEEE 60th Vehicular Technology Conference, 2004: 3020-3024.
    [52] K Yoshigoe, K Christensen. RATE control for bandwidth allocated services in IEEE 802.3 Ethernet. Proceedings of 26th Annual IEEE Conference on Local Computer Networks, 2001: 446 - 453.
    [53] J L Valenzuela, A Monleon, I S Esteban, M Portoles, O Sallent. A hierarchical token bucket algorithm to enhance QoS in IEEE 802.11: proposal, implementation and evaluation. Proceedings of IEEE 60th Vehicular Technology Conference, 2004: 2659 - 2662.
    [54] V Firoiu, J L Boudec, D Towsley, Z L Zhang. Theories and models for internet quality of service. Proceedings of IEEE, 2002, 90(9): 1565-1591.
    [55]王鹏.高速交换与多业务接入的若干关键问题研究[清华大学博士论文].北京:清华大学电子工程系, 2006.
    [56] P Wang, C Zhang, N Hua, D Jin, L Zeng. The design of a monolithic MSTP ASIC. IEICE Transanctions on Electronics, 2006, 89-C(8): 1284-1254.
    [57] A Itai, M Rodeh. The multi-tree approach to reliability in distributed networks. Information and Computation, 1988, 79(1) 43-59.
    [58] S G Finn, M Medard, R A Barry. A novel approach to automatic protection switching using trees. Proceedings of IEEE ICC 1997: 273-276.
    [59] M Medard, S G Finn, R A Barry, R G Gallager. Redundant trees for preplanned recovery in arbitrary vertex-redundant or edge-redundant graphs. IEEE/ACM Transactions on Networking, 1999, 7(5): 641-652.
    [60] G Xue, L Chen, K Thulasiraman. Quality-of-service and quality-of-protection issues in preplanned recovery schemes using redundant trees. IEEE Journal on Selected Areas in Communications, 2003, 21(8): 1332-1345.
    [61] G Xue, L Chen, K Thulasiraman. Delay reduction in redundant trees for preplanned protection against single link/node failure in 2-connected graphs. Proceedings of IEEEGLOBLECOM 2002: 2691-2695.
    [62] G Xue, L Chen, K Thulasiraman. QoS issues in redundant trees for protection in vertex-redundant or edge-redundant graphs. Proceedings of IEEE ICC 2002: 2766-2770.
    [63] W Zhang, G Xue, J Tang, K Thulasiraman. Linear time construction of redundant trees for recovery schemes enhancing QoP and QoS. Proceedings of IEEE INFOCOM 2005: 2702-2710.
    [64] W Zhang, G Xue, J Tang, K Thulasiraman. Faster algorithms for constructing recovery trees enhancing QoP and QoS. IEEE/ACM Transactions on Networking, 2008, 16(3): 642-655.
    [65] S Ramasubramanian, M Harkara, M Krunz. Linear time distributed construction of colored trees for disjoint multi-path routing. Computer Networks, 2007, 51(10): 2854-2866.
    [66] S Ramasubramanian, H Krishnamoorthy, M Krunz. Disjoint multipath routing using colored trees. Computer Networks, 2007, 51(8): 2163-2180.
    [67] G Jayavelu, S Ramasubramanian, O Younis. Maintaining colored trees for disjoint multipath routing under node failures. to appear in IEEE/ACM Transactions on Networking.
    [68] A Iwata, Y Hidaka, M Umayabash, E Enomoto, A. Arutaki. Global open Ethernet (GOE) system and its performance evaluation. IEEE Journal on Selected Areas in Communications, 2004, 22(8): 1432-1442.
    [69] A Kolarov, B Sengupta, A Iwata. Design of multiple reverse spanning trees in next generation of Ethernet-VPNs. Proceedings of IEEE GLOBECOM 2004: 1390 -1395.
    [70] S Sharma, K Gopalan, S Nanda, T Chiueh. Viking: a multi-spanning-tree Ethernet architecture for metropolitan area and cluster networks. Proceedings of IEEE INFOCOM 2004: 2283-2294.
    [71] S Lin, S Sharma, Tzi-cker Chiueh. Autonomic resource management for multiple-spanning-tree Metro-Ethernet networks. Proceedings of 6th IEEE International Symposium on Network Computing and Applications, 2007: 239 - 248.
    [72] Victor N. Kasyanov, Vladimir A Evstigneev. Graph theory for programmers: algorithms for processing trees. Kluwer academic publishers, 2000.
    [73] M Huynh, P Mohapatra, S Goose. Cross-over spanning trees: enhancing metro Ethernet resilience and load balancing. Technical Report CSE-2006-34, Department of Computer Science, UC Davis, 2006.
    [74] M Huynh, P Mohapatra. Etherlay: an overlay enhancement for metro Ethernet networks. Proceedings of IEEE ICC 2006: 2675-2680.
    [75] K Elmeleegy, A L Cox, T S E Ng. EtherFuse: an Ethernet watchdog. Proceedings of ACM SIGCOMM 2007: 253-264.
    [76] Z Fei, M Yang. A proactive tree recovery mechanism for resilient overlay multicast. IEEE/ACM Transactions on Networking, 2007, 15(1): 173-185.
    [77] Z Fei, M Yang. Restoring delivery tree from node failure in overlay multicast. IEICE Transactions on Communications, 2005, E88-B(5): 2046-2053.
    [78] S Birrer, F E Bustamante. A comparison of resilient overlay multicast approaches. IEEE Journal on Selected Areas in Communications, 2007, 25(9): 1695-1705.
    [79] Y Brehon, D Kofman, A Casaca. Virtual private network to spanning tree mapping. Proceedings of IFIP Networking 2007: 703-713.
    [80] J-P Vasseur, M Pickavet, P Demeester. Network recovery: protection and restoration of optical, SONET-SDH, and MPLS. Morgan Kaufmann, 2004.
    [81] D Katz, D Ward. Bidirectional Forwarding Detection, draft-IETF-bfd-base-08.txt [EB/OL]. (2008-09) [2008-10-16]. http://tools.ietf.org/html/draft-ietf-bfd-base-08.
    [82] O Bonaventure, C Filsfils, P Francois. Achieving sub-50 milliseconds recovery upon BGP peering link failures. IEEE/ACM Transanctions on Networking, 2007, 15(5): 1123-1135.
    [83] P Francois, C Filsfils, J Evans, O Bonaventure. Achieving sub-second IGP convergence in large IP networks. ACM SIGCOMM Computer Communication Review, 2005, 35(2): 35-44.
    [84] G Iannaccone, Chen-Nee Chuah, S Bhattacharyya, C Diot. Feasibility of IP restoration in a tier 1 backbone. IEEE Network, 2004, 18(2): 13-19.
    [85] J Farkas, C Antal, G Toth, L Westberg. Distributed resilient architecture for Ethernet networks. Proceedings of 5th International Workshop on Design of Reliable Communication Networks, 2005: 515-522.
    [86] http://condor.depaul.edu/~rjohnson/algorithm/index.html
    [87] Su-Wei Tan, G Waters, J Crawford. A multiple shared trees approach for application layer multicasting. Proceedings of IEEE ICC 2004: 1456-1460.
    [88] B Yener, Y Ofek, M Yung. Design and performance of convergence routing on multiple spanning trees. Proceeding of IEEE GLOBECOM 1994: 169-175.
    [89] A Young, J Chen, Z Ma, A Krishnamurthy, L Peterson, R Y Wang. Overlay mesh construction using interleaved spanning trees. Proceedings of IEEE INFOCOM 2004: 396-407.
    [90] A F De Sousa. Improving load balance and resilience of Ethernet carrier networks with IEEE 802.1s Multiple Spanning Tree Protocol. Proceedings of International Conference on Networking, International Conference on Systems and International Conference on Mobile Communications and Learning Technologies, 2006: 95-103.
    [91] M Padmaraj, S Nair, M Marchetti, G Chiruvolu, M Ali, A Ge. Metro Ethernet traffic engineering based on optimal multiple spanning trees. Proceedings of Second IFIPInternational Conference on Wireless and Optical Communications Networks, 2005: 568-572.
    [92] T Cinkler, A Kern, I Moldovan. Optimized QoS protection of Ethernet trees. Proceedings of 5th International Workshop on Design of Reliable Communication Networks, 2005: 337-344.
    [93] M Ali, G Chiruvolu, A Ge, M Padmaraj, S Nair, M Marchetti. Differentiated survivability in Ethernet-based MAN/WAN. Proceedings of IEEE International Conference on Computer Systems and Applications, 2006: 906-910.
    [94] IEEE Std 802.3ad. Amendment to carrier sense multiple access with collision detection (CSMA/CD) access method and physical layer specifications-aggregation of multiple link segments, 2000.
    [95] G Ibá?ez, A García-Martínez, A Azcorra, I Soto. ABridges: scalable, self-configuring Ethernet campus networks. Computer Networks, 2008, 52(3): 630-649.
    [96]秦晓懿.接入系统中复用技术若干问题的研究[清华大学博士论文].北京:清华大学电子工程系. 2001.
    [97] Li Xin, Jin Depeng, Zeng Lieguang. Encapsulation and rate adaptation for Ethernet over SDH. Proceedings of IEEE 2002 International Conference on Communications, Circuits and Systems and West Sino Expositions, 2002: 1301-1305.
    [98] V Ramamurti, J Siwko, G Young, M Pepe. Initial implementations of point-to-point Ethernet over SONET/SDH transport. IEEE Communications Magazine, 2004, 42(3): 64-70.
    [99]范亚希,葛宁.以太网到多路E1适配电路设计及FPGA实现.电子技术应用, 2002,28(11): 72-77.
    [100] ITU-T X.85/Y.1321. IP over SDH using LAPS. Mar. 2001.
    [101] ITU-T X.86. Ethernet over LAPS. Feb. 2001.
    [102]沙燕萍,皇甫伟,曾烈光.异步FIFO的VHDL设计.电子技术应用. 2001, 27(6): 74-75.
    [103] Altera Corporation. Cyclone device handbook datasheet[EB/OL]. (2008-05) [2008-10-16]. http://www.altera.com/literature/lit-cyc.jsp.
    [104] Xilinx Corporation. Virtex-II platform FPGA Handbook[EB/OL]. (2007-11-05) [2008-10-16]. http://www.xilinx.com/support/documentation/user_guides/ug002.pdf.
    [105] T Kean. Secure configuration of field programmable gate arrays. Proceedings of the 9th Annual IEEE Symposium on Field-Programmable Custom Computing Machines, 2001: 259-260.
    [106] Lilian Bossuet, Guy Gogniat, Wayne Burleson. Dynamically configurable security for SRAM FPGA bitstreams. Proceedings of the 18th International Parallel and DistributedProcessing Symposium, 2004: 146~152.
    [107]卿辉.用CPLD实现SRAM工艺FPGA的安全应用.通信技术, 2003, (12): 146-148.
    [108] Xilinx Corporation. Secure your consumer design with CoolRunner-II CPLDs [EB/OL]. (2004-07) [2008-10-16]. http://www.xilinx.com/publications/xcellonline/xcell_49/xc_pdf/ xc_coolrunner49.pdf.
    [109] Actel Corporation. Understanding Actel antifuse device security [EB/OL]. (2004-01) [2008-10-16]. http://www.actel.com/documents/AntifuseSecurityWP.pdf.
    [110] IEEE P802.3az Energy Efficient Ethernet Task Force. Approved IEEE 802.3az objectives [EB/OL]. (2008-07) [2008-10-16]. http://www.ieee802.org/3/az/index.html.
    [111] C Gunaratne, K Christensen, B Nordman, S Suen. Reducing the energy consumption of Ethernet with Adaptive Link Rate (ALR). IEEE Transactions on Computers, 2008, 57(4): 448-461.
    [112] M Gupta, S Singh. Using low-power modes for energy conservation in Ethernet LANs. Proceedings of IEEE INFOCOM 2007: 2451-2455.
    [113] C A Thekkath, T L Rodeheffer, D C Anderson. SmartBridge: a scalable bridge architecture. ACM SIGCOMM Computer Communication Review, 2000, 30(4): 205-216.
    [114] R Perlman. Rbridge: transparent routing. Proceedings of IEEE INFOCOM 2004: 1211-1218.
    [115] C Kim, J Rexford. Revisiting Ethernet: plug-and-play made scalable and efficient. Proceedings of 15th workshop on local and metropolitan area networks, 2007: 163-169.
    [116] M Padmaraj, S Nair, M Marchetti, G Chiruvolu, M Ali. Distributed restoration method for metro Ethernet. Proceedings of the International Conference on Networking, International Conference on Systems and International Conference on Mobile Communications and Learning Technologies, 2006: 94-103.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700