用户名: 密码: 验证码:
硅基梳齿式MEMS电容式加速度计的失效与DPA研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
MEMS技术因其具有可大批量生产、成本低、功耗小及集成化等特点,其应用及市场日益增长,发展潜力巨大,而可靠性是MEMS器件能否成功应用的一个关键,因此开展MEMS可靠性研究具有重要意义。
     在可靠性研究中,失效分析与破坏性物理分析(DPA)是产品可靠性工程的一个重要组成部分,尽管国内外对微电子机械系统(MEMS)的失效机理已有了众多的研究,也提出了相关理论,但由于MEMS结构的复杂性及产品的多样性,以及工艺技术的不断升级更新,仍有很多的失效模式与失效机理需进一步深入研究,并且国内外关于MEMS的DPA技术尚缺乏一定的标准,需要通过对MEMS进行失效及DPA技术研究,来完善和补充相关标准的内容,从而确保MEMS器件的可靠性。
     本论文是以硅基梳齿式MEMS电容式加速度计为研究对象,利用电子扫描显微镜(SEM)、X射线透视系统、扫描声学显微镜(SAM)、X射线能谱分析(EDX)、金相切片分析、封装气体分析、聚焦离子束(FIB)划痕及电性能测试等分析技术,通过一系列环境试验,对不同结构尺寸样品进行失效与DPA研究。
     在对工艺中失效的硅基梳齿式MEMS加速度计的失效研究和确定结构与封装的主要失效模式中发现:工艺制造中的机械失效是造成此类器件失效的主要原因,而封装失效主要表现为汽密性失效和装配工艺失效,初步评定粘连、污染、梳齿断裂、梳齿翘曲为标准缺陷。
     对硅基梳齿式MEMS加速度计在冲击下进行失效分析,阐述了其失效机理,验证了其悬臂梁断裂的主要结构失效模式,其ANSYS模态分析结果与实验结果一致,而封装失效仍表现为汽密性失效和装配工艺失效。实验证明,颗粒碰撞噪声检查(PIND)可应用于MEMS的DPA检测。
     本文还在高温低温储存、温度冲击、机械振动、机械冲击及耐湿试验等一系列环境试验下分别对特薄悬臂梁和在悬臂梁上有不同尺寸划痕的MEMS样品进行可靠性评价,确定悬臂梁尺寸变薄1/2以上为DPA标准缺陷,并可作为是否失效的一个判据。
The application and market of MEMS technology are growing and having huge potential for development because of its characteristics that it can be mass-produced and it is low cost, low power consumption and integrated, while the reliability of MEMS devices is a key to successful application, so it is important to carry out reliability research of MEMS.
     In reliability studies, failure analysis and destructive physical analysis (DPA) are important part of the produce reliability project. Despite the failure mechanism of Micro Electromechanical System(MEMS)has been numerous studies and related theory has also been presented, there are still a lot of failure mode and mechanism need further study because of the complexity of MEMS structure, the diversity of its product and the constant updates of MEMS technology, and the DPA of MEMS is still lack of standard at home and abroad, it is need to conduct failure analysis on MEMS and study DPA technology to improve relevant standard content and ensure the reliability of MEMS devices .
     Silicon-based MEMS comb-type capacitive accelerometer was studied in this thesis. By using Scanning Electron Microscopy (SEM), X-Ray Inspection System, Scan Acoustic Microscopy (SAM), Energy Dispersive X-ray spectroscopy (EDX), microsection inspection and analysis, package gas analysis and electrical test, and through a series of environment tests, failure analysis and DPA study were conducted on samples with different dimensions.
     Failure study on Silicon-based MEMS comb-type capacitive accelerometers that have failed in the process was conducted, its main failure modes of structure and package were determined. The verified failure modes show that main failures of this kind of MEMS products were the failures occurred in process. Moreover, the package failures of this kind of devices were leakage and failures occurred in assembling process. The adhesion, pollution, comb fracture and warping comb were aseessed as standard defect.
     Failure analysis of Silicon-based MEMS comb-type capacitive accelerometer under shock was conducted, its failure mechanism was analyzed and its main structural failure mode was verified as cantilever fracture, and mode analysis result by ANSYS was the same with the experimental result. While the package failures were still leakage and failures occurred in assembling process. Moreover, experimental results show that the particle impact noise (PIND) testing can be applied to DPA test of MEMS.
     The reliability of MEMS samples with special thin cantileverand and different sizes’scratch in cantilever respectively were evaluated under a series of environment tests such as high and low temperature, temperature shock, humidity tests mechanical vibration and mechanical shock . At last , thinner than 1 / 2 standard cantilever size was assessed as DPA standard defect, which as a criterion to decide whether failure.
引文
[1]朱健.MEMS技术的发展与应用[J] .半导体技术,2003,28(1):29-32
    [2]丁衡高.微系统与微米/纳米及其发展[A].第四届全国微米/纳米技术学术会议专刊[C].上海,2000,5(1):1-2
    [3] R.Feymann. A talk at annual meeting of the American Physical California Institute of the Technology [R] . USA, 1959
    [4] Peterson K.E. Silicon as a mechanical material [J].Proc. IEEE, 1982,70 (5): 420-457
    [5] R.T. Howe, R.S. Muller. Polycrystalline Silicon Micromechanical Beams [A].Proc. Electrochemical Society Spring Meeting [C]. Montreal, Canada, 1982:184-185
    [6] L. S. Fan, Y. C. Tai,R. S. Muller. IC-processed electrostatic micromotors [A].IEEE International Devices Meeting (IEDM) [C]. San Francisco, USA.1988. 666-669
    [7] C.M. Ho, Y. C. Tai. Micro-Electro-Mechanical systems (MEMS) and fluid flows [J]. Annual Review of Fluid Mechanics, 1998, 30(1): 579-612
    [8] Trimmer W.S. N. Microrobots and micromechanical systems [J]. Sensors and Actuators A, 1989, 19: 267-287
    [9]姜岩峰.微电子机械系统[M].合肥:化学工业出版社,2006:4.
    [10] Barbour Neil, Schmidt George. Inertial sensor technology trends [J]. IEEE Sensors Journal, 2001, 1 (4): 332 -339
    [11] Cimalla. V, Pezoldt. J, Ambacher. O. Group III nitride and SiC based MEMS and NEMS: Materials properties, technology and applications [J]. Journal of Physics D: Applied Physics, 2007, 40(20): 6386-6434
    [12] Aubin Keith .L, Park Seung-Min,Huang Jingqing,et al. Microfluidic encapsulated NEMS resonators for sensor applications [A].Proceedings of IEEE Sensors[C]. 2005:720-722
    [13] Kim Taegyu, Kwon Sejin. MEMS fuel cell system integrated with a methanol reformer for a portable power source [J]. Sensors and Actuators, A: Physical, 2009, 154(2):204-211
    [14] Kullberg Richard C, Ramesham Rajeshuni . Reliability, packaging, testing, and characterization of MEMS/MOEMS and nanodevices VIII: Introduction [A]. Proceedings of SPIE - The International Society for Optical Engineering [C] . 2009, 7206: ix
    [15] Gregoratto I,McNeil C.J, Reeks M.W. Micro-devices for rapid continuous separation of suspensions for use in micro-total-analysis-systems (μTAS) [A]. Proceedings of SPIE - The International Society for Optical Engineering [C] . 2007, 6465
    [16] Balachandran S, Hoff D.M , Kumar A,et al. Nanocrystalline diamond RF MEMS capacitive switch [A].IEEE MTT-S International Microwave Symposium Digest[C]. 2009,1657-1660
    [17] Matmat Mohamed ,Coccetti Fabio, Marty Antoine,et al. Capacitive RF MEMS analytical predictive reliability and lifetime characterization [J]. Microelectronics Reliability, 2009, 49(9-11):1304-1308
    [18] Stubenrauch M, Fr?ber U, Voges D, et al. A modular BioMEMS platform for new procedures and experiments in tissue engineering [J] . Journal of Micromechanics and Microengineering, 2009, 19(7):1-6
    [19] Giouroudi Ioanna , Kosel Jürgen,Scheffer Cornie . BioMEMS in diagnostics: A review and recent developments [J]. Recent Patents on Engineering, 2008, 2 (2):114-121
    [20]李炳乾,朱长纯,刘君哗.微电子机械系统的研究进展[J].国外电子元器件,2001,1:4-8
    [21]田文超.MEMS及纳米接触研究[D].西安:西安电子科技大学,2004
    [22]赵强.基于MEMS技术的微型泵的研究[D]:北京:中国科学电子研究所,2004
    [23]李志坚.微电子机械系统(MEMS)发展展望[J].电子科技导报,1997 (1):2-9
    [24]王亚珍,朱文坚.微机电系统(MEMS)技术及其发展趋势[J].机械设计与研究,2004,2(1):10-12
    [25]邵培革,王立鼎,任延同.微机械元件和仪器进展[J].光学精密工程,1997,7(1):10-15
    [26] IHAB El Fituri, MOHAMED El Mahdi Ali. Analysis and Trends for Future MEMS Markets [J] . CADDM , 2008:102 - 108
    [27] Biswas, Karabi,Sen, Siddhartha,Dutta, Pranab Kumar.MEMS capacitive accelerometers [J].Sensor Letters, 2007, 5:471-484
    [28]亢春梅.国外MEMS技术的现状及其在军事领域中的应用[J].传感器技术,2002,21(6):4-7
    [29]黄俊钦.微机电系统技术MEMS促进航空航天仪表的发展[J].测控技术,1999,10:2-6
    [30] Benecke, w. Silicon Micromachining for Microsensors and microactuators [J]. Microelectronic Engineering archive , 1990, 11:73-82
    [31] James M. Bustillo, Roger T. Howe, Richard S. Muller. Surface micromachining for microelectromechanical systems [J] . Proceedings of the IEEE, 1998, 86(8): 1552-1574
    [32]许高斌.MEMS表面微加工工艺技术[J].测控技术,2006,25(4):26-29
    [33] Schiek L.R, Schmidt C.R. Automated surface micromachining mask creation from a 3D model [J]. Microsystem Technologies, 2006, 12 (3): 204-207.
    [34] Gregory T.A.Kovacs, Nadim I, Maluf and Kurte. Petersen. Bulk Micromachining ofSilicon[J].Proceedings of the IEEE, 1998,86(8):1536-1551
    [35] Zubel I, Kramkowska M. New 3-D structures fabricated on Si (hkl) substrates by bulk micromachining [J]. JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, 2007, 16(6): 1411-1418
    [36]张光照,刘焱.微机械加工技术-LIGA技术[J].传感器技术,1997:2-5
    [37] He G, Shi GC. On the Mechanical Behavior of LIGA Nickel[A]. 4TH IEEE INTERNATIONAL CONFERENCE ON NANO/MICRO ENGINEERED AND MOLECULAR SYSTEMS [C]. 2009:758-762
    [38] Huang MS, Li CJ, Yu JC, et al. Robust parameter design of micro-injection molded gears using a LIGA-like fabricated mold insert [J]. JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, 2009, 209(15-16): 5690-5701
    [39]王阳元,武国英,郝一龙,等.硅基MEMS加工技术及其标准工艺研究[J].电子学报,2002,30(11):1577-1584
    [40] Katagiri, Daisuke,Yokoyama, Yoshinori; Sakamoto, Hiroo, et al. Bonding strength evaluation for hermetic seal of MEMS package [J].Journal of the Society of Materials Science, 2007,56(10) :926-931
    [41] Premachandran, C.S.,Chong.Ser Choong, Liw.Saxon, et al. Design, fabrication and testing of wafer level vacuum package for MEMS device [A]. Proceedings - IEEE 56th Electronic Components and Technology Conference [C] . 2006, 1136-1140
    [42] Lin, Xiaohui , Shi, Tielin; Tang, Zirong,et al. Process, reliability test, and interfacial characterization for low temperature wafer direct bonding [A]. Proceedings of SPIE - The International Society for Optical Engineering, 2007, p 672332
    [43]温梁,汪家友,刘道广,等.MEMS器件制造工艺中的高深宽比硅干法刻蚀技术[J].微纳电子技术,2004,6:30-34
    [44]王泗禹,康剑.半导体微细加工中的刻蚀设备及工艺[J].微纳电子技术,2002,11: 41-44
    [45]郝一龙,李志宏,张大成,等.硅表面牺牲层技术[J].电子科技导报,1999,12: 16-20
    [46] Zhixiong Xiao, Yilong Hao, Ting Li, Guobing Zhang, Shimei Liu, Guoying Wu. A new release process for polysilicon surface micromaching using sacrificial polysilicon anchor and photolithography after sacrificial etching [J]. J Micromech. Microeng, 1999, 9: 300 - 304
    [47]王俊杰.MEMS电容式加速度传感器检测电路减噪与微机械谐振器静电自激驱动研究[D].上海:中国科学院上海微系统与信息技术研究所,2006
    [48]程未,曾晓鹭,卞剑涛,等.基于MEMS技术的微电容式加速度传感器的设计[J].传感器技术,2003,22(8):75-77
    [49] Kuechnel W. Modeling of the mechanical behavior of a differential capacitor accelerometer sensor[J].Sensors and Actuators A, 1993,79-87
    [50]马欣龙,王永梁.梳齿式微机械力平衡加速度计[J].中国惯性技术学报,2002,10(3):55-60
    [51] Neels A, Dommann A ,et al. Reliability and failure in single crystal silicon MEMS devices [J] . Microelectronics Reliability, 2008, 48(8-9):1245-1247
    [52] Walraven J.A. Failure analysis issues in microelectromechanical systems (MEMS) [J].Microelectronics Reliability, 2005, 45(9-11):1750-1757
    [53] Walraven, Jeremy A. Failure Mechanisms in MEMS [A]. IEEE International Test Conference (TC) [C].2003: 828-833
    [54] Van Spengen, W. Merlijn .MEMS reliability from a failure mechanisms perspective [J].Microelectronics Reliability, 2003, 43 (7):1049-1060
    [55] Allameh Seyed M, Shrotriya Pranav, Butterwick Alex ,et al. Surface topography evolution and fatigue fracture in polysilicon MEMS structures [J]. Journal of Microelectromechanical Systems, 2003, 12( 3) :313-324
    [56] Kahn H, Tayebi N, Ballarini R ,et al. Fracture toughness of polysilicon MEMS devices [J].Sensors and Actuators, A: Physical, 2000, 82(1): 274-280
    [57] Hariri Alireza ,Zu Jean, Mrad Ridha Ben.Modeling of wet stiction in microelectromechanical systems (MEMS) [J]. Journal of Microelectromechanical Systems, 2007, 16(5): 1276-1285
    [58] Merlijn Van Spengen W, Puers Robert, De Wolf Ingrid . A physical model to predict stiction in MEMS [J].Journal of Micromechanics and Microengineering, 2002, 12(5):702-713
    [59] Bhushan Bharat .Adhesion and stiction: Mechanisms, measurement techniques, and methods for reduction [J]. Journal of Vacuum Science and Technology B: Microelectronics and Nanometer Structures, 2003, 21(6): 2262-2296
    [60] Legtenberg Rob,Tilmans A.C, Elders Job,et al. Stiction of surface micromachined structures after rinsing and drying: model and investigation of adhesion mechanisms [J].Sensors and Actuators, A: Physical, 1994, 43(1-3): 230-238
    [61] Li J, Cui Z, Baker M.A. A study of the surface chemistry, morphology and wear of silicon based MEMS[J]. Surface and Interface Analysis, 2004, 36(8)1254-1258
    [62] Wang Weiyuan ,Wang Yuelin,Bao Haifei,et al. Friction and wear properties in MEMS
    [J].Sensors and Actuators, A: Physical, 2002, 97-98:486-491
    [63] Xiong Xingguo ,Wu Yu-Liang,Jone Wen-Ben. Material fatigue and reliability of MEMS accelerometers [A]. Proceedings-IEEE International Symposium on Defect and Fault Tolerance in VLSI Systems[C].2008,314-322
    [64] Bhalerao K, Soboyejo A.B.O,Soboyejo W.O. Modeling of fatigue in polysilicon MEMS structures[J].Journal of Materials Science, 2003,38(20):4157-4161
    [65]孔学东,恩云飞.电子元器件失效分析与典型案例[M].北京:国防工业出版社,2006:1-17
    [66]刘萍,邹勉.破坏性物理分析技术初探[J].光电子技术,2007,27(2):139-142
    [67]邓永孝.开展电子、电磁和电气元器件的DPA研究[J].电子质量,2000,6:24-27
    [68] Michael R. Douglass.MEMS Reliability - Coming of Age [J].Reliability, Packaging, Testing, and Characterization of MEMS/MOEMS VII, Proc. of SPIE ,2008,6884:688402
    [69] Herbert R. Shea.Reliability of MEMS for space applications [J].Reliability, Packaging, Testing, and Characterization of MEMS/MOEMS V, Proc. of SPIE ,2006,6111:61110A
    [70] A. Neels a, A. Dommanna, A. Schifferle b.Reliability and failure in single crystal silicon MEMS devices [J].Microelectronics Reliability, 2008 (48) :1245–1247
    [71] GJB4027A-2006,军用电子元器件破坏性物理分析方法[S].北京:中国人民解放军总装备部,2006
    [72] MIL-STD-1580B, Destructive physical analysis for electronic, electromagnetic and electromechanical parts[S].USA: Department of defense, 2003
    [73] GJB5439-2005,压阻式加速度传感器通用规范[S].北京:中国人民解放军总装备部,2005
    [74]范钦珊.材料力学[M].北京:清华大学出版社,2004
    [75]王立森,胡宇群,李志宏等,微加速度计在冲击载荷作用下的失效分析[J].机械强度, 2001, 23 (4): 516-522

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700