用户名: 密码: 验证码:
基于丛枝菌根真菌共生的外来植物南美蟛蜞菊入侵机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生物入侵不仅对生态环境造成了严重的危害,而且会对社会经济和人类健康造成不可估量的损失,已成为21世纪五大全球性环境问题之一。全球科学家投入大量的精力对生物入侵的机制和防治方法进行研究,近年来研究者们发现植物的入侵和土壤微生物之间存在着紧密的联系。丛植菌根真菌(Arbuscular mycorrhizal fungi, AMF)是在农田、草地、森林等陆地生态系统中广泛分布一类功能型微生物,能够和90%以上的植物共生形成菌根。研究者发现,大部分入侵植物都能够与AMF形成共生关系,入侵植物与AMF的相互作用成为当今的研究热点之一。关于入侵植物和AMF相互作用的文章虽然很多,但单一进行野外调查或室内模拟实验往往具有孤立性和片面性。本文构建野外宏观实验-室内盆栽实验-培养皿微观实验体系,克服了过去单一进行野外调查或室内模拟实验的弊端,既避免了室内模拟实验的片面性又保证了实验的可控性,同时兼顾宏观和微观研究,是目前研究AMF与植物的相互关系比较系统和全面的研究方法
     本文选取中国南部造成严重生态危害的入侵植物南美蟛蜞菊(Wedelia trilobata),从野外宏观实验,室内盆栽实验和培养皿微观实验三个层次全面的研究了南美蟛蜞菊不同程度入侵对土壤中细菌和真菌群落的影响,AMF对南美蟛蜞菊表型可塑性和异速生长的影响,南美蟛蜞菊的菌根依赖性以及南美蟛蜞菊提取物和根系分泌物物对AMF孢子萌发以及菌丝发育的影响,旨在为探讨植物入侵机制,寻找防治植物入侵提供理论依据。本研究主要得到以下结论:
     1.在中国海南省的五个不同地点分别选取了不同南美蟛蜞菊入侵程度(未入侵、低度入侵和高度入侵)下的根际土壤,系统分析了土壤的理化性质和土壤微生物结构。研究结果显示:(1)低程度的南美蟛蜞菊入侵显著的增加了土壤的pH值,但是高度入侵并没有显著的改变土壤的pH值。(2)南美蟛蜞菊的入侵程度还显著的影响了土壤中K和Ca的含量,但是没有影响其他的理化指标。(3)南美蟛蜞菊低度入侵和高度入侵显著的增加了根际真菌群落的丰度,但是对根际细菌群落没有显著的影响。(4)南美蟛蜞菊的入侵还影响了参与土壤N循环的土壤微生物。这些由南美蟛蜞菊入侵导致的土壤理化性质和微生物群落的变化可能会进一步促进植物的入侵过程。
     2.为验证土壤微生物对入侵植物的作用,我们在海南岛设计实验来验证密度和AMF对典型克隆植物南美蟛蜞菊表型可塑性与异速生长的影响。通过是否在土壤中添加真菌抑制剂苯菌灵获得高AMF和低AMF两种AMF处理。植物的种植密度设置为25棵/m2和50棵/m2。在种植后的30,60,90和120d进行取样。结果显示:(1)高密度处理和高AMF处理会提高南美蟛蜞菊的菌根侵染率。(2)密度处理和AMF处理都影响了南美蟛蜞菊的表型可塑性和异速生长,并且AMF对其表型可塑性和异速生长的影响在不同的密度下是不同的。(3)低密度和高AMF处理增加了植物的总生物量,但是高AMF处理减少了地下生物量的分配。据我们所了解,本次研究是第一次对AMF和密度处理对入侵克隆植物表型可塑性与异速生长的研究。
     3.为了更好的研究AMF与南美蟛蜞菊的关系,必须尽可能排除杀菌剂和土壤中其他微生物的影响。我们在江苏大学温室内设计了土壤营养和AMF处理双因素的盆栽实验,验证南美蟛蜞菊在灭菌后的,不同营养条件的土壤中的生长状况和菌根依赖性。在2种土壤营养处理和5种AMF处理下,种植南美蟛蜞菊90d后发现:(1)南美蟛蜞菊可以被多种AMF侵染,并且在不同的营养情况下普遍具有较高的菌根侵染率。(2)分别单独接种幼套球囊霉(Glomus etunicatum)、摩西球囊霉(G. mosseae)、根内球囊霉(G. intraradices)以及同时接种三种AMF均增加了南美蟛蜞菊的茎节数目和地上部分的干重,同时显著的改变了南美蟛蜞菊地下生物量和地上生物量的比值。(3)植物的全根长受到土壤养分和AMF处理的影响。在低营养处理下的南美蟛蜞菊相对于高营养处理下的南美蟛蜞菊具有更长的全根长;未接种AMF的南美蟛蜞菊相对于接种了AMF的南美蟛蜞菊而言具有更长的全根长。(4)通过对接种AMF以及没有接种AMF的南美蟛蜞菊生物量的干重进行计算,我们发现南美蟛蜞菊的菌根依赖性较低,普遍在120%-170%之间。(5)相对于低营养处理而言,高营养处理下的南美蟛蜞菊根部具有更多的AMF孢子,尤其是对于G.i.菌和Mix处理,两种营养状况下的孢子数目差别尤其显著。
     4.为了更深入的从机制上解释南美蟛蜞菊与AMF之间的作用,我们设计了严格无菌的体外孢子萌发验证实验。首先利用AMFRi-T发根共培养体系繁殖获得了大量无菌的根内球囊霉(G. intraradices G.i.)孢子,然后通过培养皿中的体外孢子萌发实验研究南美蟛蜞菊的浸提物和根系分泌物的几种化学成份对G.i.孢子萌发率和菌丝生长的影响,进一步探讨南美蟛蜞菊对AMF的作用原理。这6种化学成份分别是:南美蟛蜞菊的根系分泌物的水相提取液和有机相提取液,从南美蟛蜞菊根系分泌物中通过GC-MS测定分离鉴定出的邻苯二甲酸二异丁酯、邻苯二甲酸二异辛酯,以及从南美蟛蜞菊全株浸提液中获得的3#纯化物、10#纯化物。实验结果发现:(1)南美蟛蜞菊根系分泌物的水相提取物对G.i.孢子萌发和菌丝生长没有显著的抑制作用和促进作用,平均萌发率都维持在70%左右;根系分泌物的有机相提取物在高浓度下抑制了G.i.孢子的萌发和菌丝生长。(2)邻苯二甲酸二异丁酯抑制了G.i.孢子萌发和菌丝生长;邻苯二甲酸二异辛酯对对G.i.孢子萌发和菌丝生长没有显著的影响。(3)3#纯化物在低浓度时对孢子萌发和菌丝生长没有显著影响,在高浓度时抑制了G.i.孢子萌发和菌丝生长。10#纯化物对G.i.孢子萌发和菌丝生长没有显著的影响。
     5.本课题从野外的取样调查入手,发现南美蟛蜞菊入侵显著的增加了根际真菌群落的丰度,揭示了土壤真菌群落在入侵植物的入侵过程中可能与土壤真菌有很强的相互联系。在接下来的试验田实验中发现使用苯菌灵抑制AMF和其他真菌会降低南美蟛蜞菊的生物量,说明AMF或其他真菌与南美蟛蜞菊的生长有密切的联系。然后设计菌根依赖性实验,验证南美蟛蜞菊生长过程中对AMF的依赖程度,研究结果显示虽然AMF可以在一定程度上促进南美蟛蜞菊的生长,但南美蟛蜞菊是一种低菌根依赖性的植物。为了进一步解释南美蟛蜞菊与AMF的作用机制,我们研究了南美蟛蜞菊根系分泌物和组织提取物对AMF孢子萌发和菌丝生长的影响,结果显示南美蟛蜞菊根系分泌物和组织提取物中某些成份会抑制纯培养的AMF孢子萌发与菌丝发育。综合以上研究结果,南美蟛蜞菊入侵会增加土壤真菌群落的丰度,但是南美蟛蜞菊的某些根系分泌物和组织提取物成份会抑制AMF的生长,并且AMF在南美蟛蜞菊生长中具有一定的促进作用,我们认为南美蟛蜞菊是不仅仅依赖与AMF共生而入侵新环境的,其入侵过程可能依赖于与其他真菌和环境的相互作用。
Biological invasion has become one of the top five global environmental issues of the21st century. It not only does cause serious harm to the environment, but also caused incalculable damage to human health and economy. Scientists have put a lot of effort to the study of biological invasion mechanisms and prevention methods and found that there is a close link between microbial and plant invasion. Arbuscular mycorrhizal fungi (AMF) is a widely distributed fungi in farmland, grassland, forests and other terrestrial ecosystems, which play an important role in the regulation of nutrient, maintaining ecosystem stability and improving plant resistance. As AMF could forming a symbiotic relationship with more than90%plants, which including most of the exotic invasive plants, thus the relationship between invasive plants and AMF has become a hot research. Several studies have been conducted with common garden experiments or field experiments, however it is one-side and incomplete just to use one of the two experiments. We developed an experimental system which including field experiment, common garden experiment and in vitro experiment to avoid these problems. According to current reports, this experiment is a comprehensive and systematic research methods to study the relationship of AMF and invasive plants.
     Wedelia trilobata, an typical invasive plant caused serious ecological harm in south China, was studied in field experiment, common garden experiment and in vitro experiment in this paper. The the effects of W. trilobata invasions on rhizosphere microbial communities, the effects of AMF on W. trilobata phenotypic plasticity and allometry, the mycorrhizal dependency, the effect of extracts and root exudates of W. trilobata on AMF spore germination and mycelial growth was invested in this study, with the aim to provide a complete relationship between AMF and plant invasions. The main results were as follows:
     1. Rhizospheric soils of Wedelia trilobata with different degrees of invasion (uninvaded, low-degree, and high-degree using its coverage in the invaded ecosystems) were collected from five discrete areas in Hainan Province. Soil physicochemical properties and the community structure of the soil microorganisms were assessed. Low degrees of W. trilobata invasion significantly increased soil pH values whereas high degrees of invasion did not significantly affected soil pH values. Moreover, the degree of W. trilobata invasion exerted significant effects on soil Ca concentration but did not significantly change other indices of soil physicochemical properties. Low and high degrees of W. trilobata invasion increased the richness of the soil fungal community but did not pose obvious effects on the soil bacterial community. W. trilobata invasion also exerted obvious effects on the community structure of soil microorganisms that take part in soil nitrogen cycling. These changes in soil physicochemical properties and community structure of soil microbial communities mediated by different degrees of W. trilobata invasion may present significant functions in further facilitating the invasion process.
     2. An experiment was conducted in Hainan Island, to verify the effects of density and AMF on the typical invasive clone plant W. trilobata. Two AMF levels were obtained by applying a fungicide that suppresses the AMF naturally present in soil. Plant sowing density was set to25or50seedlings m-2. Samples were collected at30,60,90, and120d after planting. The colonization rate of W. trilobata was promoted by high-density and high-AMF treatments. Both density and AMF treatments affected the phenotypic plasticity and allometry of W. trilobata, and the effect of AMF on plant phenotypic plasticity and allometry varied at different densities. Low-density and high-AMF treatments increased plant total biomass, whereas high AMF treatment reduced belowground biomass allocation. To the best of our knowledge, this study is the first to test the effects of AMF and density on the phenotypic plasticity and allometry of invasive clonal plants. The results of this study could serve as reference to elucidate the mechanism of clonal plant invasion.
     3. A common garden experiment, which with two soil nutrition treatments and five AMF treatments, was conducted in Jiangsu University to study the mycorrhizal dependency of W. trilobata. Samples were harvested at120d after planting. W. trilobata could symbiosis with many AMF, and high infection rate was found with high and low soil nutrition treatments. Inoculated independently or together with Glomus etunicatum, Glomus mosseae, Glomus intraradices all increased the shoot biomass and significant changed the proportion of rate of root/shoot. Low nutrient and AMF inoculation reduced the length of plant roots. W. trilobata showed a low mycorrhizal dependency of120%-170%in this study. Relative to the low nutrient treatments, AMF grows more spore in the high nutrient treatments.
     4. An in vitro system using Ri T-DNA transformed roots and AMF was used to obtain the spore of G.i. first. Then the effects of root exudates and plant extractives of W. trilobata on spore germination and hyphae growth of G.i. were examined. Root exudates aqueous extracts did not affect the spore germination and hyphae growth, while the root exudates organic phase extracts inhibited germination rate and hyphae growth. Isobutyl phthalate inhibited spore germination and hyphal growth. Iso-octyl phthalate did not affect the spore germination and hyphae growth. Spore germination and hyphae growth were not affected by the10#purified composition of plant extractives, while were inhibited by3#purified composition of plant extractives.
     5. In the field experiment, we found that W. trilobata invasion increased the richness of the soil fungal community. The study results suggest that W. trilobata invasion may have close contact with soil fungi.Ini the common garden experiment, the use of fungal inhibitors affected the growth of W. trilobata. The following mycorrhizal dependency experiment, W. trilobata showed a low mycorrhizal dependency. And some root exudates and plant extractives of W. trilobata inhibited pure cultured AMF spore germination and hyphae growth.In summary, W. trilobata invade new environments may be not only dependent on AMF symbiosis but also associated with other soil fungi and environment factors.
引文
[1]Trevors J, Saier M. Regulation of Pollution [J]. Water, Air, & Soil Pollution,2010,205(1): 19-20.
    [2]李堃宝.生物污染[J].上海环境科学,1994,13(4):37-9.
    [3]胡定金.警惕生物污染的全球化[J].中国人口资源与环境,2000,10(2):96-7.
    [4]Horan R D, Perrings C, Lupi F, et al. Biological pollution prevention strategies under ignorance:the case of invasive species [J]. American Journal of Agricultural Economics, 2002,1303-1310.
    [5]Elliott M. Biological pollutants and biological pollution-an increasing cause for concern [J]. MarPollut Bull,2003,46(3):275-280.
    [6]Enserink M. Biological invaders sweep in [J]. Science,1999,285(5435):1834-1836.
    [7]陈慧丽,李玉娟,李博,et a1.外来植物入侵对土壤生物多样性和生态系统过程的影响[J].生物多样性,2005,13(6):555-565.
    [8]Klironomos J N. Feedback with soil biota contributes to plant rarity and invasiveness in communities [J]. Nature,2002,417(6884):67-70.
    [9]Reinhart K O, Callaway R M. Soil biota and invasive plants [J]. New Phytol,2006,170(3): 445-57.
    [10]于文清,周文,万方浩,等.丛枝菌根真菌(AMF)对外来植物入侵反馈机制的研究进展[J].生物安全学报,2012,21(1):1-8.
    [11]唐建军,张倩,杨如意,等.外来植物加拿大一枝黄花对入侵地丛枝菌根真菌(AMF)的影响[J].科技通报,2009,25(2):233-237.
    [12]吴强盛,邹英宁,王贵元.丛枝菌根真菌生态学研究进展[J]. Journal of Yangtze University (Nat Sci Edit) Agri Sci VJ un,2007,4(2):76-85.
    [13]Wilson G W, Rice C W, Rillig M C, et al. Soil aggregation and carbon sequestration are tightly correlated with the abundance of arbuscular mycorrhizal fungi:results from long-term field experiments [J]. Ecol Lett,2009,12(5):452-461.
    [14]Rillig M C. Arbuscular mycorrhizae and terrestrial ecosystem processes [J]. Ecol Lett, 2004,7(8):740-754.
    [15]Giovannetti M, Avio L, Fortuna P, et al. At the root of the wood wide web:self recognition and nonself incompatibility in mycorrhizal networks [J]. Plant signaling & behavior,2006, 1(1):1-5.
    [16]Sun X, Gao C, Guo L D. Changes in arbuscular mycorrhizal fungus community along an exotic plant Eupatorium adenophorum invasion in a Chinese secondary forest [J]. J Microbiol,2013,51(3):295-300.
    [17]Sanon A, Beguiristain T, Cebron A, et al. Changes in soil diversity and global activities following invasions of the exotic invasive plant, Amaranthus viridis L., decrease the growth of native sahelian Acacia species [J]. Fems Microbiol Ecol,2009,70(1):118-131.
    [18]Batten K M, Scow K M, Davies K F, et al. Two invasive plants alter soil microbial community composition in serpentine grasslands [J]. Biol Invasions,2006,8(2):217-230.
    [19]Vogelsang K M, Bever J D. Mycorrhizal densities decline in association with normative plants and contribute to plant invasion [J]. Ecology,2009,90(2):399-407.
    [20]Jin L, Gu Y, Xiao M, et al. The history of Solidago canadensis invasion and the development of its mycorrhizal associations in newly-reclaimed land [J]. Funct Plant Biol, 2004,31(10):979-986.
    [21]Hawkes C V, Belnap J, D'antonio C, et al. Arbuscular mycorrhizal assemblages in native plant roots change in the presence of invasive exotic grasses [J]. Plant Soil,2006,281(1-2): 369-380.
    [22]Mummey D L, Rillig M C. The invasive plant species Centaurea maculosa alters arbuscular mycorrhizal fungal communities in the field [J]. Plant Soil,2006,288(1-2): 81-90.
    [23]于文清.丛枝菌根真菌对外来植物紫茎泽兰入侵的反馈及其机制[D].阿拉尔市:塔里木大学,2010.
    [24]Shah M A, Reshi Z A, Rasool N. Plant invasions induce a shift in Glomalean spore diversity [J]. Trap Ecol,2010,51(2):317-323.
    [25]Richardson D M, Allsopp N, D'antonio C M, et al. Plant invasions-the role of mutualisms [J]. Biol Rev,2000,75(1):65-93.
    [26]Marler M J, Zabinski C A, Callaway R M. Mycorrhizae indirectly enhance competitive effects of an invasive forb on a native bunchgrass [J]. Ecology,1999,80(4):1180-1186.
    [27]Harner M J, Mummey D L, Stanford J A, et al. Arbuscular mycorrhizal fungi enhance spotted knapweed growth across a riparian chronosequence [J]. Biol Invasions,2010,12(6): 1481-1490.
    [28]Kisa M, Sanon A, Thioulouse J, et al. Arbuscular mycorrhizal symbiosis can counterbalance the negative influence of the exotic tree species Eucalyptus camaldulensis on the structure and functioning of soil microbial communities in a sahelian soil [J]. Fems Microbiol Ecol,2007,62(1):32-44.
    [29]Pringle A, Bever J D, Gardes M, et al. Mycorrhizal symbioses and plant invasions [J]. Annual Review of Ecology, Evolution, and Systematics,2009,40(1):699-715.
    [30]Stinson K A, Campbell S A, Powell J R, et al. Invasive plant suppresses the growth of native tree seedlings by disrupting belowground mutualisms [J]. Plos Biol,2006,4(5): e140.
    [31]Mummey D L, Rillig M C, Holben W E. Neighboring plant influences on arbuscular mycorrhizal fungal community composition as assessed by T-RFLP analysis [J]. Plant Soil, 2005,271(1-2):83-90.
    [32]Helgason T, Merryweather J, Denison J, et al. Selectivity and functional diversity in arbuscular mycorrhizas of co-occurring fungi and plants from a temperate deciduous woodland [J]. J Ecol,2002,90(2):371-384.
    [33]Zhao Y, Yang X, Xi X, et al. Phenotypic Plasticity in the Invasion of Crofton Weed (Eupatorium adenophorum) in China [J]. Weed Sci,2012,60(3):431-439.
    [34]Zhang Q, Zhang L, Weiner J, et al. Arbuscular mycorrhizal fungi alter plant allometry and biomass-density relationships [J]. Ann Bot,2011,107(3):407-413.
    [35]Zhang Q, Xu L, Tang J, et al. Arbuscular mycorrhizal mediation of biomass-density relationship of Medicago sativa L. under two water conditions in a field experiment [J]. Mycorrhiza,2011,21(4):269-277.
    [36]李红丽,智颖飙,赵磊,等.多菌灵处理对克隆植物大米草(Spartina anglica)表型可塑性的影响[J].生态学报,2008,28(1):76-83.
    [37]Stampe E D, Daehler C C. Mycorrhizal species identity affects plant community structure and invasion:a microcosm study [J]. Oikos,2003,100(2):362-372.
    [38]Bever J D. Host-specificity of AM fungal population growth rates can generate feedback on plant growth [J]. Plant Soil,2002,244(1-2):281-290.
    [39]Callaway R M, Cipollini D, Barto K, et al. Novel weapons:invasive plant suppresses fungal mutualists in America but not in its native Europe [J]. Ecology,2008,89(4): 1043-1055.
    [40]Akiyama K, Matsuzaki K, Hayashi H. Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi [J]. Nature,2005,435(7043):824-827.
    [41]Pamiske M. Plant-fungal associations:Cue for the branching connection [J]. Nature,2005, 435(7043):750-751.
    [42]Song L Y, Li C H, Peng S L. Elevated CO2 increases energy-use efficiency of invasive Wedelia trilobata over its indigenous congener [J]. Biol Invasions,2010,12(5): 1221-1230.
    [43]Wu W, Zhou R C, Huang H R, et al. Development of microsatellite loci for the invasive weed Wedelia Trilobata (Asteraceae) [J]. Am J Bot,2010,97(11):E114-E116.
    [44]Lowe S, Browne M, Boudjelas S.100 of the world's worst invasive alien species:a selection from the global invasive species database [M]. Invasive Species Specialist Group Auckland, New Zealand,2000.
    [45]Xie L J, Zeng R S, Bi H H, et al. Allelochemical mediated invasion of exotic plants in China [J]. Allelopathy J,2010,25(1):31-50.
    [46]Qiang Y, Du D L, Chen Y J, et al. Ent-kaurane diterpenes and further constituents from Wedelia trilobata [J]. Helvetica Chimica Acta,2011,94(5):817-823.
    [47]Sureshkumar S, Kanagasabail R, Sivakumar T, et al. Antimicrobiological studies on different essential oils of Wedelia species (W-chinensis, W-trilobata and W-biflora) and Eclipta alba (Asteraceae) [J]. Asian J Chem,2007,19(6):4674-4678.
    [48]Wu Y, Hu Y, Chen J. Reproductive characteristics of alien plant Wedelia trilobata [J]. Acta Scientiarum Naturalium Universitatis Sunyatseni,2005,44(6):93-96.
    [49]Hulme P E, Pysek P, Nentwig W, et al. Will threat of biological invasions unite the European Union [J]. Science,2009,324(5923):40-1.
    [50]Hickman J E, Wu S, Mickley L J, et al. Kudzu (Pueraria montana) invasion doubles emissions of nitric oxide and increases ozone pollution [J]. Proceedings of the National Academy of Sciences,2010,107(22):10115-10119.
    [51]Gurevitch J, Fox G, Wardle G, et al. Emergent insights from the synthesis of conceptual frameworks for biological invasions [J]. Ecol Lett,2011,14(4):407-418.
    [52]Powell K I, Chase J M, Knight T M. Invasive plants have scale-dependent effects on diversity by altering species-area relationships [J]. Science,2013,339(6117):316-318.
    [53]Kulmatiski A, Beard K H, Stevens J R, et al. Plant-soil feedbacks:a meta-analytical review [J]. Ecol Lett,2008,11(9):980-992.
    [54]Van Kleunen M, Weber E, Fischer M. A meta-analysis of trait differences between invasive and non-invasive plant species [J]. Ecol Lett,2010,13(2):235-245.
    [55]Schmidt J P, Drake J M. Why are some plant genera more invasive than others? [J]. Plos One,2011,6(4):e18654.
    [56]Laungani R, Knops J M. Species-driven changes in nitrogen cycling can provide a mechanism for plant invasions [J]. Proceedings of the National Academy of Sciences,2009, 106(30):12400-12405.
    [57]Kiers E T, Duhamel M, Beesetty Y, et al. Reciprocal rewards stabilize cooperation in the mycorrhizal symbiosis [J]. Science,2011,333(6044):880-882.
    [58]Suding K N, Stanley Harpole W, Fukami T, et al. Consequences of plant-soil feedbacks in invasion [J]. J Ecol,2013,101(2):298-308.
    [59]Svensson J R, Nylund G M, Cervin G, et al. Novel chemical weapon of an exotic macroalga inhibits recruitment of native competitors in the invaded range [J]. J Ecol,2013, 101(1):140-148.
    [60]Catford J A, Daehler C C, Murphy H T, et al. The intermediate disturbance hypothesis and plant invasions:Implications for species richness and management [J]. Perspectives in Plant Ecology, Evolution and Systematics,2012,14(3):231-241.
    [61]Wilson S D, Pinno B D. Environmentally-contingent behaviour of invasive plants as drivers or passengers [J]. Oikos,2013,122(1):129-35.
    [62]Theoharides K A, Dukes J S. Plant invasion across space and time:factors affecting nonindigenous species success during four stages of invasion [J]. New Phytol,2007, 176(2):256-273.
    [63]Weihua L, Chongbang Z, Jieyun L, et al. Characteristics of nitrogen metabolism and soil nitrogen of invasive plants [J]. Journal of Tropical and Subtropical Botany,2008,16(4): 321-327.
    [64]柯展鸿,邱佩霞,胡东雄,等.三裂叶蟛蜞菊入侵对土壤酶活性和理化性质的影响[J].生态环境学报,2013,22(3):432-436.
    [65]Feng Y-L, Lei Y-B, Wang R-F, et al. Evolutionary tradeoffs for nitrogen allocation to photosynthesis versus cell walls in an invasive plant [J]. Proceedings of the National Academy of Sciences,2009,106(6):1853-1856.
    [66]Jones R 0, Chapman S K. The roles of biotic resistance and nitrogen deposition in regulating non-native understory plant diversity [J]. Plant Soil,2011,345(1-2):257-269.
    [67]Jiang J-P, Xiong Y-C, Jiang H-M, et al. Soil microbial activity during secondary vegetation succession in semiarid abandoned lands of Loess Plateau [J]. Pedosphere,2009,19(6): 735-747.
    [68]Si C-C, Dai Z-C, Lin Y, et al. Local adaptation and phenotypic plasticity both occurred in Wedelia trilobata invasion across a tropical island [J]. Biol Invasions,1-15.
    [69]Fu Q, Liu C, Ding N, et al. Soil microbial communities and enzyme activities in a reclaimed coastal soil chronosequence under rice-barley cropping [J]. J Soil Sediment, 2012,12(7):1134-1144.
    [70]Muyzer G, Brinkhoff T, Nubel U, et al. Denaturing gradient gel electrophoresis (DGGE) in microbial ecology [J]. Molecular microbial ecology manual Volumes 1 and 2,2004, 1(Ed. 2):743-769.
    [71]May L A, Smiley B, Schmidt M G. Comparative denaturing gradient gel electrophoresis analysis of fungal communities associated with whole plant corn silage [J]. Can J Microbiol,2001,47(9):829-841.
    [72]Hoshino Y T, Morimoto S. Comparison of 18S rDNA primers for estimating fungal diversity in agricultural soils using polymerase chain reaction-denaturing gradient gel electrophoresis [J]. Soil Sci Plant Nutr,2008,54(5):701-710.
    [73]Roesti D, Gaur R, Johri B, et al. Plant growth stage, fertiliser management and bio-inoculation of arbuscular mycorrhizal fungi and plant growth promoting rhizobacteria affect the rhizobacterial community structure in rain-fed wheat fields [J]. Soil Biology and Biochemistry,2006,38(5):1111-1120.
    [74]Ikenaga M, Guevara R, Dean A L, et al. Changes in community structure of sediment bacteria along the Florida coastal everglades marsh-mangrove-seagrass salinity gradient [J]. Microb Ecol,2010,59(2):284-295.
    [75]Pielou E. The measurement of diversity in different types of biological collections [J]. J Theor Biol,1966,13:131-144.
    [76]Vivas A, Moreno B, Del Val C, et al. Metabolic and bacterial diversity in soils historically contaminated by heavy metals and hydrocarbons [J]. J Environ Monitor,2008,10(11): 1287-1296.
    [77]Ehrenfeld J G, Kourtev P, Huang W. Changes in soil functions following invasions of exotic understory plants in deciduous forests [J]. Ecol Appl,2001,11(5):1287-1300.
    [78]Sharma G P, Raghubanshi A. Effect of Lantana camara L. cover on local depletion of tree population in the Vindhyan tropical dry deciduous forest of India [J]. Applied Ecology and Environmental Research,2007,5(1):109-121.
    [79]Fan L, Chen Y, Yuan J-G, et al. The effect of Lantana camara Linn, invasion on soil chemical and microbiological properties and plant biomass accumulation in southern China [J]. Geoderma,2010,154(3):370-378.
    [80]Kuebbing S E, Classen A T, Simberloff D. Two co-occurring invasive woody shrubs alter soil properties and promote subdominant invasive species [J]. J Appl Ecol,2014,51(1): 124-133.
    [81]陈彤,刘文莉,张崇邦,等.加拿大一枝黄花入侵对本土植物群落动态的影响及其机制[J].植物生态学报,2012,36(3):253-261.
    [82]Hackl E, Pfeffer M, Donat C, et al. Composition of the microbial communities in the mineral soil under different types of natural forest [J]. Soil Biology and Biochemistry, 2005,37(4):661-671.
    [83]Hogberg M N, Hogberg P, Myrold D D. Is microbial community composition in boreal forest soils determined by pH, C-to-N ratio, the trees, or all three? [J]. Oecologia,2007, 150(4):590-601.
    [84]Li W-H, Zhang C-B, Jiang H-B, et al. Changes in soil microbial community associated with invasion of the exotic weed, Mikania micrantha HBK [J]. Plant Soil,2006,281(1-2): 309-324.
    [85]Booth M S, Caldwell M M, Stark J M. Overlapping resource use in three Great Basin species:implications for community invasibility and vegetation dynamics [J]. J Ecol,2003, 91(1):36-48.
    [86]Wood Y A, Meixner T, Shouse P J, et al. Altered ecohydrologic response drives native shrub loss under conditions of elevated nitrogen deposition [J]. J Environ Qual,2006, 35(1):76-92.
    [87]Huebner C D, Tobin P C. Invasibility of mature and 15-year-old deciduous forests by exotic plants [J]. Plant Ecol,2006,186(1):57-68.
    [88]Chytry M, Maskell L C, Pino J, et al. Habitat invasions by alien plants:a quantitative comparison among Mediterranean, subcontinental and oceanic regions of Europe [J]. J Appl Ecol,2008,45(2):448-58.
    [89]Yelenik S, Stock W, Richardson D. Ecosystem level impacts of invasive Acacia saligna in the South African fynbos [J]. Restor Ecol,2004,12(1):44-51.
    [90]Mclean M, Huhta V. Temporal and spatial fluctuations in moisture affect humus microfungal community structure in microcosms [J]. Biol Fert Soils,2000,32(2):114-119.
    [91]Papatheodorou E, Argyropoulou M, Stamou G. The effects of large-and small-scale differences in soil temperature and moisture on bacterial functional diversity and the community of bacterivorous nematodes [J]. Appl Soil Ecol,2004,25(1):37-49.
    [92]Dijkstra F A, Cheng W. Moisture modulates rhizosphere effects on C decomposition in two different soil types [J]. Soil Biology and Biochemistry,2007,39(9):2264-2274.
    [93]Thorpe A S, Archer V, Deluca T H. The invasive forb, Centaurea maculosa, increases phosphorus availability in Montana grasslands [J]. Appl Soil Ecol,2006,32(1):118-122.
    [94]Weidenhamer J D, Callaway R M. Direct and indirect effects of invasive plants on soil chemistry and ecosystem function [J]. J Chem Ecol,2010,36(1):59-69.
    [95]Scharfy D, Gusewell S, Gessner M O, et al. Invasion of Solidago gigantea in contrasting experimental plant communities:effects on soil microbes, nutrients and plant-soil feedbacks [J]. J Ecol,2010,98(6):1379-1388.
    [96]Herr-Turoff A, Zedler J B. Does wet prairie vegetation retain more nitrogen with or without Phalaris arundinacea invasion? [J]. Plant Soil,2005,277(1-2):19-34.
    [97]Windham L, Ehrenfeld J G. Net impact of a plant invasion on nitrogen-cycling processes within a brackish tidal marsh [J]. Ecol Appl,2003,13(4):883-896.
    [98]Te Beest M, Stevens N, Olff H, et al. Plant-soil feedback induces shifts in biomass allocation in the invasive plant Chromolaena odorata [J]. J Ecol,2009,97(6):1281-1290.
    [99]Wardle D A, Bardgett R D, Callaway R M, et al. Terrestrial ecosystem responses to species gains and losses [J]. Science,2011,332(6035):1273-1277.
    [100]Van Der Wal R, Truscott A, Pearce I S, et al. Multiple anthropogenic changes cause biodiversity loss through plant invasion [J]. Global Change Biol,2008,14(6):1428-1436.
    [101]Butchart S H, Walpole M, Collen B, et al. Global biodiversity:indicators of recent declines [J]. Science,2010,328(5982):1164-1168.
    [102]Callaway R M, Thelen G C, Rodriguez A, et al. Soil biota and exotic plant invasion [J]. Nature,2004,427(6976):731-733.
    [103]Sanon A, Beguiristain T, Cebron A, et al. Differences in nutrient availability and mycorrhizal infectivity in soils invaded by an exotic plant negatively influence the development of indigenous Acacia species [J]. J Environ Manage,2012,95:S275-S279.
    [104]Lorenzo P, Rodriguez-Echeverria S, Gonzalez L, et al. Effect of invasive Acacia dealbata Link on soil microorganisms as determined by PCR-DGGE [J]. Appl Soil Ecol,2010, 44(3):245-251.
    [105]Davidson A M, Jennions M, Nicotra A B. Do invasive species show higher phenotypic plasticity than native species and, if so, is it adaptive? Ameta-analysis [J]. Ecol Lett,2011, 14(4):419-431.
    [106]Ehrenfeld J G. Effects of exotic plant invasions on soil nutrient cycling processes [J]. Ecosystems,2003,6(6):503-523.
    [107]Howard T G, Gurevitch J, Hyatt L, et al. Forest invasibility in communities in southeastern New York [J]. Biol Invasions,2004,6(4):393-410.
    [108]Asner G P, Vitousek P M. Remote analysis of biological invasion and biogeochemical change [J]. P Natl Acad Sci USA,2005,102(12):4383-4386.
    [109]Hawkes C V, Wren I F, Herman D J, et al. Plant invasion alters nitrogen cycling by modifying the soil nitrifying community [J]. Ecol Lett,2005,8(9):976-985.
    [110]Liao C, Peng R, Luo Y, et al. Altered ecosystem carbon and nitrogen cycles by plant invasion:a meta-analysis [J]. New Phytol,2008,177(3):706-714.
    [111]Elgersma K J, Ehrenfeld J G, Yu S, et al. Legacy effects overwhelm the short-term effects of exotic plant invasion and restoration on soil microbial community structure, enzyme activities, and nitrogen cycling [J]. Oecologia,2011,167(3):733-745.
    [112]Zou J, Rogers W E, Dewalt S J, et al. The effect of Chinese tallow tree (Sapium sebiferum) ecotype on soil-plant system carbon and nitrogen processes [J]. Oecologia,2006,150(2): 272-281.
    [113]Niu H-B, Liu W-X, Wan F-H, et al. An invasive aster (Ageratina adenophora) invades and dominates forest understories in China:altered soil microbial communities facilitate the invader and inhibit natives [J]. Plant Soil,2007,294(1-2):73-85.
    [114]Cui Q-G, He W-M. Soil biota, but not soil nutrients, facilitate the invasion of Bidens pilosa relative to a native species Saussurea deltoidea [J]. Weed Res,2009,49(2):201-206.
    [115]Dassonville N, Guillaumaud N, Piola F, et al. Niche construction by the invasive Asian knotweeds (species complex Fallopia):impact on activity, abundance and community structure of denitrifiers and nitrifiers [J]. Biol Invasions,2011,13(5):1115-1133.
    [116]Kelly C K. Thoughts on clonal integration:facing the evolutionary context [J]. Evol Ecol, 1995,9(6):575-585.
    [117]Otfinowski R, Kenkel N C. Clonal integration facilitates the proliferation of smooth brome clones invading northern fescue prairies [J]. Plant Ecol,2008,199(2):235-242.
    [118]Poorter H, Nagel O. The role of biomass allocation in the growth response of plants to different levels of light, CO2, nutrients and water:a quantitative review [J]. Funct Plant Biol,2000,27(12):1191-1191.
    [119]Hahn M A, Van Kleunen M, Muller-Scharer H. Increased phenotypic plasticity to climate may have boosted the invasion success of polyploid Centaurea stoebe [J]. Plos One,2012, 7(11):e50284.
    [120]Jia X, Pan X-Y, Li B, et al. Allometric growth, disturbance regime, and dilemmas of controlling invasive plants:a model analysis [J]. Biol Invasions,2009,11(3):743-752.
    [121]Molina-Montenegro M A, Penuelas J, Munne-Bosch S, et al. Higher plasticity in ecophysiological traits enhances the performance and invasion success of Taraxacum officinale (dandelion) in alpine environments [J]. Biol Invasions,2011,14(1):21-33.
    [122]Matesanz S, Horgan-Kobelski T, Sultan S E. Phenotypic plasticity and population differentiation in an ongoing species invasion [J]. Plos One,2012,7(9):e44955.
    [123]陆霞梅,周长芳,安树青.植物的表型可塑性,异速生长及其入侵能力[J].生态学杂志,2007,26(9):1438-1444.
    [124]Sudova R. Different growth response of five co-existing stoloniferous plant species to inoculation with native arbuscular mycorrhizal fungi [J]. Plant Ecol,2009,204(1): 135-143.
    [125]Streitwolf-Engel R, Boller T, Wiemken A, et al. Clonal growth traits of two Prunella species are determined by co-occurring arbuscular mycorrhizal fungi from a calcareous grassland [J]. J Ecol,1997,85(2):181-191.
    [126]Streitwolf-Engel R, Van Der Heijden M, Wiemken A, et al. The ecological significance of arbuscular mycorrhizal fungal effects on clonal reproduction in plants [J]. Ecology,2001, 82(10):2846-2859.
    [127]Du J, Yu F H, Alpert P, et al. Arbuscular mycorrhizal fungi reduce effects of physiological integration in Trifolium repens [J]. Ann Bot,2009,104(2):335-344.
    [128]Bever J D, Morton J B, Antonovics J, et al. Host-dependent sporulation and species diversity of arbuscular mycorrhizal fungi in a mown grassland [J]. J Ecol,1996,84(1): 71-82.
    [129]Hetrick B D, Kitt D G, Wilson G T. Mycorrhizal dependence and growth habit of warm-season and cool-season tallgrass prairie plants [J]. Canadian Journal of Botany,1988, 66(7):1376-1380.
    [130]Habte M, Manjunath A. Categories of vesicular-arbuscular mycorrhizal dependency of host species [J]. Mycorrhiza,1991,1(1):3-12.
    [131]Van Der Heij den M G, Boller T, Wiemken A, et al. Different arbuscular mycorrhizal fungal species are potential determinants of plant community structure [J]. Ecology,1998,79(6): 2082-2091.
    [132]Van Der Heijden M G, Wiemken A, Sanders I R. Different arbuscular mycorrhizal fungi alter coexistence and resource distribution between co-occurring plant [J]. New Phytol, 2003,157(3):569-578.
    [133]Koch A M, Croll D, Sanders I R. Genetic variability in a population of arbuscular mycorrhizal fungi causes variation in plant growth [J]. Ecol Lett,2006,9(2):103-110.
    [134]Van Kleunen M, Fischer M. Effects of four generations of density-dependent selection on life history traits and their plasticity in a clonally propagated plant [J]. J Evolution Biol, 2003,16(3):474-484.
    [135]Ogden J. The Reproductive Strategy of Higher Plants:II. The Reproductive Strategy of Tussilago Farfara L [J]. The Journal of Ecology,1974,62(1):291-324.
    [136]Loehle C. Partitioning of reproductive effort in clonal plants:a benefit-cost model [J]. Oikos,1987,49(2):199-208.
    [137]Callaway R M, Thelen G C, Barth S, et al. Soil fungi alter interactions between the invader Centaurea maculosa and North American natives [J]. Ecology,2004,85(4):1062-1071.
    [138]Pimienta-Barrios E, Del Castillo-Aranda M E G, Mu oz-Urias A, et al. Effects of benomyl and drought on the mycorrhizal development and daily net CO2 uptake of a wild Platyopuntia in a rocky semi-arid environment [J]. Ann Bot-London,2003,92(2): 239-245.
    [139]Warton D I, Wright I J, Falster D S, et al. Bivariate line-fitting methods for allometry [J]. Biol Rev,2006,81(2):259-291.
    [140]Paul N, Ayres P, Wyness L. On the use of fungicides for experimentation in natural vegetation [J]. Funct Ecol,1989,3(6):759-769.
    [141]Daleo P, Alberti J, Canepuccia A, et al. Mycorrhizal fungi determine salt-marsh plant zonation depending on nutrient supply [J]. J Ecol,2008,96(3):431-437.
    [142]Helgason T, Merryweather J W, Young J P W, et al. Specificity and resilience in the arbuscular mycorrhizal fungi of a natural woodland community [J]. J Ecol,2007,95(4): 623-630.
    [143]Bouvet J-M, Vigneron P, Saya A. Phenotypic plasticity of growth trajectory and ontogenic allometry in response to density for Eucalyptus hybrid clones and families [J]. Ann Bot-London,2005,96(5):811-821.
    [144]Casper B B, Cahill J F, Hyatt L A. Above-ground competition does not alter biomass allocated to roots in Abutilon theophrasti [J]. New Phytol,1998,140(2):231-238.
    [145]Shumway D, Koide R. Size and reproductive inequality in mycorrhizal and nonmycorrhizal populations of Abutilon theophrasti [J]. J Ecol,1995,83(4):613-620.
    [146]Plenchette C, Fortin J, Furlan V. Growth responses of several plant species to mycorrhizae in a soil of moderate P-fertility [J]. Plant Soil,1983,70(2):199-209.
    [147]Mandak B, Py Ek P. How does density and nutrient stress affect allometry and fruit production in the heterocarpic species Atriplex sagittata (Chenopodiaceae)? [J]. Canadian Journal of Botany,1999,77(8):1106-1119.
    [148]Litton C M, Ryan M G, Tinker D B, et al. Belowground and aboveground biomass in young postfire lodgepole pine forests of contrasting tree density [J]. Canadian Journal of Forest Research,2003,33(2):3513-63.
    [149]Veresoglou S D, Menexes G, Rillig M C. Do arbuscular mycorrhizal fungi affect the allometric partition of host plant biomass to shoots and roots? A meta-analysis of studies from 1990 to 2010 [J]. Mycorrhiza,2012,22(3):227-235.
    [150]Hermans C, Hammond J P, White P J, et al. How do plants respond to nutrient shortage by biomass allocation? [J]. Trends Plant Sci,2006,11(12):610-617.
    [151]Aerts R, Boot R, Van Der Aart P. The relation between above-and belowground biomass allocation patterns and competitive ability [J]. Oecologia,1991,87(4):551-559.
    [152]Chapin F S, Bloom A J, Field C B, et al. Plant responses to multiple environmental factors [J]. Bioscience,1987,37(1):49-57.
    [153]Weiner J. Allocation, plasticity and allometry in plants [J]. Perspectives in Plant Ecology, Evolution and Systematics,2004,6(4):207-215.
    [154]Mitchell C E, Power A G. Release of invasive plants from fungal and viral pathogens [J]. Nature,2003,421(6923):625-627.
    [155]Bray S R, Kitajima K, Sylvia D M. Mycorrhizae differentially alter growth, physiology, and competitive ability of an invasive shrub [J]. Ecol Appl,2003,13(3):565-574.
    [156]Carey E V, Marler M J, Callaway R M. Mycorrhizae transfer carbon from a native grass to an invasive weed:evidence from stable isotopes and physiology [J]. Plant Ecol,2004, 172(1):133-141.
    [157]Mchugh J M, Dighton J. Influence of mycorrhizal inoculation, inundation period, salinity, and phosphorus availability on the growth of two salt marsh grasses, Spartina alterniflora Lois, and Spartina cynosuroides (L.) Roth., in nursery systems [J]. Restor Ecol,2004, 12(4):533-545.
    [158]Gange A C, Brown V K, Aplin D M. Ecological specificity of arbuscular mycorrhizae: evidence from foliar-and seed-feeding insects [J]. Ecology,2005,86(3):603-611.
    [159]于文清,刘万学,万方浩.外来植物紫茎泽兰入侵对菌根菌群落的影响[J].中国生态农业学报,2011,19(4):883-889.
    [160]于文清,刘万学,桂富荣,等.外来植物紫茎泽兰入侵对土壤理化性质及丛枝菌根真菌(AMF)群落的影响[J].生态学报,2012,32(22):7027-7035.
    [161]弓明钦,王凤珍.西南桦对菌根的依赖性及其接种效应研究[J].林业科学研究,2000,13(1):8-14.
    [162]Torrey J G, Clarkson D T. The development and function of roots [M]. Academic Press., 1975.
    [163]Menge J, Johnson E. Mycorrhizal dependency of several citrus cultivars under three nutrient regimes [J]. New Phytol,1978,81(3):553-559.
    [164]Baon J, Smith S, Alston A. Mycorrhizal responses of barley cultivars differing in P efficiency [J]. Plant Soil,1993,157(1):97-105.
    [165]Van Der Heijden M G, Klironomos J N, Ursic M, et al. Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity [J]. Nature,1998, 396(6706):69-72.
    [166]Janos D P. Plant responsiveness to mycorrhizas differs from dependence upon mycorrhizas [J]. Mycorrhiza,2007,17(2):75-91.
    [167]Hall I. Endomycorrhizas of Metrosideros umbellata and Weinmannia racemosa [J]. New Zeal J Bot,1975,13(3):463-472.
    [168]柏艳芳,郭绍霞,李敏.入侵植物与丛枝菌根真菌的相互作用[J].应用生态学报,2011,2(9):2457-2463.
    [169]Anderson R, Hetrick B, Wilson G. Mycorrhizal dependence of Andropogon gemrdii and Schizachyrium scoparium in two prairie soils [J]. Am Midi Nat,1994,132(2):366-376.
    [170]Ndoye F, Kane A, Bakhoum N, et al. Response of Acacia Senegal (L.) Willd. to inoculation with arbuscular mycorrhizal fungi isolates in sterilized and unsterilized soils in Senegal [J]. Agroforest Syst,2013,87(4):941-952.
    [171]Carrenho R, Trufem S F B, Bononi V L R, et al. The effect of different soil properties on arbuscular mycorrhizal colonization of peanuts, sorghum and maize [J]. Acta Bot Bras, 2007,21(3):723-730.
    [172]Cavalcante U M T, Maia L C, Costa C, et al. Mycorrhizal dependency of passion fruit (Passiflora edulis f.flavicarpa) [J]. FRUITS-PARIS,2001,56(5):317-324.
    [173]Crush J. Plant growth responses to vesicular-arbuscular mycorrhiza vii. growth and modulation of some herbage legumes [J]. New Phytol,1974,73(4):743-749.
    [174]Milberg P, Lamont B B, Perez-Fernandez M A. Survival and growth of native and exotic composites in response to a nutrient gradient [J]. Plant Ecol,1999,145(1):125-132.
    [175]黄栋,桑卫国,朱丽,等.氮碳添加和丛枝菌根对外来入侵植物豚草的影响[J].应用生态学报,2010,21(12):3056-3062.
    [176]Wang B, Qiu Y-L. Phylogenetic distribution and evolution of mycorrhizas in land plants [J]. Mycorrhiza,2006,16(5):299-363.
    [177]陆耀东,赵鸿杰,田雪琴,等.10种绿化苗木对VA菌根的依赖性及其接种效应[J].热带亚热带植物学报,2007,15(3):237-243.
    [178]姚青,冯固,李晓林.不同作物对VA菌根真菌的依赖性差异[J].作物学报,2000,26(6):874-878.
    [179]Nemec S. Response of six citrus root-stocks to three species of Glomus, a mycorrhizal fungus; proceedings of the Proc Fla State Hort Sci, F,1978 [C].
    [180]Seifert E K, Bever J D, Maron J L. Evidence for the evolution of reduced mycorrhizal dependence during plant invasion [J]. Ecology,2009,90(4):1055-1062.
    [181]王满莲,冯玉龙.紫茎泽兰和飞机草的形态,生物量分配和光合特性对氮营养的响应[J].植物生态学报,2005,29(5):697-705.
    [182]Roberts K J, Anderson R C. Effect of Garlic mustard [Alliaria petiolata (Beib. Cavara & Grande)] extracts on plants and arbuscular mycorrhizal (AM) fungi [J]. The American Midland Naturalist,2001,146(1):146-152.
    [183]Si C, Liu X, Wang C, et al. Different degrees of plant invasion significantly affect the richness of the soil fungal community [J]. Plos One,2013,8(12):e85490.
    [184]Barto E K, Antunes P M, Stinson K, et al. Differences in arbuscular mycorrhizal fungal communities associated with sugar maple seedlings in and outside of invaded Garlic Mustard forest patches [J]. Biol Invasions,2011,13(12):2755-2762.
    [185]李静霞,贺学礼,李建恒,等.土壤因子对入侵植物黄顶菊AM真菌的影响[J].安徽农业科学,2012,40(16):8922-8925.
    [186]Upadhyaya M K, Bainard L D, Brown P D. Inhibitory effect of tall hedge mustard (Sisymbrium loeselii) allelochemicals on rangeland plants and arbuscular mycorrhizal fungi [J]. Weed Sci,2009,57(4):386-393.
    [187]陈贤兴,丁炳扬,沈夕良,等.南美蟛蜞菊对几种经济作物的生化他感作用[J].甘肃科学学报,2005,17(4):15-17.
    [188]Wu J-R, Peng S-L, Zhao H-B, et al. Allelopathic effects of Wedelia trilobata residues on lettuce germination and seedling growth [J]. Allelopathy J,2008,22(1):197-203.
    [189]Dakora F D, Phillips D A. Root exudates as mediators of mineral acquisition in low-nutrient environments [J]. Plant Soil,2002,245(1):35-47.
    [190]Bucking H, Abubaker J, Govindarajulu M, et al. Root exudates stimulate the uptake and metabolism of organic carbon in germinating spores of Glomus intraradices [J]. New Phytol,2008,180(3):684-695.
    [191]Tahat M, Sijam K, Othman R. The Role of tomato and corn root exudates on Glomus mosseae spores germination and Ralstonia solanacearum growth in vitro [J]. Int J Plant Pathol,2010,1(1):1-12.
    [192]刘建福,杨道茂,欧阳明安,等.澳洲坚果根系溶提物对AM真菌孢子萌发和菌丝生长的影响[J].植物生态学报,2006,29(6):1038-1042.
    [193]Doner L W, Becard G. Solubilization of gellan gels by chelation of cations [J]. Biotechnology techniques,1991,5(1):25-28.
    [194]Xiao X, Chen H, Si C, et al. Influence of biosurfactant-producing strain Bacillus subtilis BS1 on the mycoremediation of soils contaminated with phenanthrene [J]. Int Biodeter Biodegr,2012,75(11):36-42.
    [195]李杨,赵斌.类黄酮对AM真菌孢子萌发和早期生长的影响[J].土壤学报,2008,45(4):710-717.
    [196]Scervino J M, Ponce M A, Erra-Bassells R, et al. Flavonoids exclusively present in mycorrhizal roots of white clover exhibit a different effect on arbuscular mycorrhizal fungi than flavonoids exclusively present in non-mycorrhizal roots of white clover [J]. J Plant Interact,2005,1(1):15-22.
    [197]马宁,徐海滨.邻苯二甲酸二异丁酯的毒理学研究进展[J].中国食品卫生杂志,2010,22(5):467-470.
    [198]杜照奎,李钧敏,钟章成.空心莲子草水浸提液的化感作用及化感物质分析[J].西 南大学学报,2012,34(8):53-60.
    [199]程智慧,徐鹏.百合根系分泌物的GC-MS鉴定闭.西北农林科技大学学报(自然科学版),2012,40(9):202-208.
    [200]缪丽华,王媛,高岩,等.再力花地下部水浸提液对几种水生植物幼苗的化感作用[J].生态学报,2012,32(14):4488-4495.
    [201]周宝利,陈丰,刘娜,等.邻苯二甲酸二异丁酯对茄子黄萎病及其幼苗生长的化感作用[J].西北农业学报,2010,19(4):179-183.
    [202]张玉虎,刘梅芳,凌铁军,等.三裂蟛蜞菊中的倍半萜内酯成分及其化感作用[J].热带亚热带植物学报,2004,12(6):533-537.
    [203]黄雪松,欧仕益,唐书泽,等.气相色谱法同时测定蟛蜞菊中的蟛蜞菊倍半萜内酯A和B[J].色谱,2006,24(5):499-502.
    [204]Akiyama K, Matsuzaki K-I, Hayashi H. Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi [J]. Nature,2005,435(7043):824-827.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700