用户名: 密码: 验证码:
重组人骨形态形成蛋白-2缓释体预防人工关节无菌性松动实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分微米级磨损微粒刺激溶骨性细胞因子表达的实验研究
     目的建立大鼠人工关节无菌性松动air pouch模型,观察钛合金和超高分子量聚乙烯两种微米级磨损微粒在模型体内的生物反应,比较其对溶骨性细胞因子表达的影响。方法大鼠背部皮下注射过滤后的空气3ml,每2天1次,共6次。1周后,囊腔内分别注射微粒悬液(A组为钛合金,B组为超高分子量聚乙烯)和生理盐水(C组)。1周后取囊腔组织称重,进行肉眼及光镜下观察,测定血清AKP含量,免疫组化法检测IL-6及TNF-α的表达,实时定量(real-time)PCR法检测细胞外基质金属蛋白酶诱导因子(EMMPRIN)的mRNA含量。结果肉眼观察囊腔组织位于皮下,有明显的境界,约蚕豆大小。表面可以见到增生的小血管,部分区域可见纤维状组织,类似于无菌性松动假体周围的界膜组织。B组囊腔组织重量明显高于C组(P<0.05)。光镜下,实验组可见大量吞噬细胞,而对照组未见明显组织细胞反应。实验组血清AKP含量均明显高于对照组(P<0.05)。实验组IL-6的表达均高于对照组,且B组高于A组。实验组EMMPRIN的mRNA含量均高于对照组。结论大鼠air pouch模型能够代表人工关节无菌性松动的组织学和生物学特性,是人工关节无菌性松动机制研究中较为理想的动物模型。钛合金和超高分子量聚乙烯微粒均能引起组织学反应,刺激溶骨性细胞因子的产生及活性升高,诱导溶骨反应,形成人工关节无菌性松动。
     第二部分RhBMP-2缓释体在大鼠air pouch中生物学反应实验研究
     目的观察rhBMP-2缓释体在大鼠皮下air pouch中的生物学反应,探讨rhBMP-2促进成骨及抑制骨溶解的生物活性的可能机制。方法于鼠背部皮下注射过滤后的空气3ml,每2天1次,共6次。1周后,分别于囊腔内注射rhBMP-2缓释体悬液(A组)和生理盐水(B组)。分别于1和2周后取囊腔组织称重,进行肉眼及光镜下观察,测定血清AKP含量,免疫组化法检测IL-6及TNF-α的表达,real-time PCR法检测EMMPRIN的mRNA含量,以及Western blotting法测定EMMPRIN的蛋白表达。结果肉眼观察囊腔组织表面可以见到增生的小血管,部分区域可见纤维状组织,类似于无菌性松动假体周围的界膜组织。其中A组囊腔组织增厚,内含韧性较大的小结节,是骨组织形成。A组第2周囊腔组织的重量与A组第1周及B组相比,差别具有显著意义(P<0.05)。光镜下,A组与B组均未见明显组织细胞反应。A组第1周血清AKP含量与A组第2周及B组相比,差别具有显著意义(P<0.05),A组第2周较B组略低。A组IL-6的表达低于B组。A组EMMPRIN的mRNA含量明显低于B组,而且第2周含量小于第1周。A组EMMPRIN的蛋白表达明显低于B组,而且第2周含量小于第1周。结论RhBMP-2缓释体一方面可能刺激成骨/成骨样细胞的趋化性,调节整合素的表达,加速细胞增殖速度,使成骨细胞整合到ECM成分,从而促进新骨的形成;另一方面抑制了溶骨性细胞因子的产生及活性,从而抑制溶骨反应。实验结果为rhBMP-2用于人工关节松动的早期预防提供了可能。
     第三部分RhBMP-2缓释体预防人工关节无菌性松动的可行性研究
     目的用rhBMP-2缓释体早期干预大鼠人工关节无菌性松动模型,研究rhBMP-2促进成骨,抑制微米级磨损微粒介导的溶骨性细胞因子表达,从而抑制骨溶解的生物活性,探讨其早期应用预防人工关节无菌性松动的可行性。方法于鼠背部皮下注射过滤后的空气3ml,每2天1次,共6次。1周后,分别于注射了钛合金和超高分子量聚乙烯微粒的囊腔内注射RhBMP-2缓释体悬液和生理盐水。分别于1和2周后取囊腔组织称重,进行肉眼及光镜下观察,测定血清AKP含量,免疫组化法检测IL-6及TNF-α的表达,real-time PCR法检测EMMPRIN的mRNA含量,以及Western blotting法测定EMMPRIN的蛋白表达。结果肉眼观察囊腔组织有明显的境界,约蚕豆大小。实验组A、C组囊腔组织增厚,内含韧性较大的小结节,是骨组织形成。各组第2周囊腔组织的重量与第1周对比差异具有显著意义(P<0.05)。光镜下,A组与C组均未见明显组织细胞反应,对照组B、D组可见大量吞噬细胞。A组血清AKP含量与B组,C组血清AKP含量与D组不同时间段相比,差异均具有显著意义(P<0.05)。A组IL-6的表达低于B组,C组IL-6的表达低于D组。A组EMMPRIN的mRNA含量明显低于B组,C组明显低于D组,而且第2周含量小于第1周。A组EMMPRIN的蛋白表达明显低于B组,C组明显低于D组,而且第2周含量小于第1周。结论RhBMP-2缓释体一方面促进新骨的形成,另一方面抑制微米级磨损微粒介导的溶骨性细胞因子表达,早期应用RhBMP-2预防人工关节无菌性松动是可行的。
PART ONE An experimental study of the expression of osteolytic cytokines stimulated by micrometer-diameter wear particles
     Objective: To investigate the biological reaction of micrometer-diameter wear particles ( Ti-6Al-4V and UHMWPE ) in vivo in a rat subcutaneous air pouch model of aseptic loosening, and evaluate the influence of the expression of osteolytic cytokines induced by the two wear particles. Methods: Filtration air was injected subcutaneously into rats’back 6 times ( 3ml qod ). Air pouch tissue treated with wear debris was obtained from rats killed after day 14. Tissue was also taken from physiological saline treated pouches ( control group ) at day 14. Pouch tissues were weighted, wax embedded and stained with hematoxylin and eosin, observed under microscope. AKP of serium, IL-6 and TNF-a expression with immunohistochemical method, and mRNA expression of EMMPRIN with real time PCR method were measured. Results: Air pouch tissues situated in subcutaneous tissues, with distinct border, horsebean-size, small proliferous blood vessels in the surface, and fibroid tissues in some fields, similar to limiting membrane of periprothesis tissue in the cases of aseptic loosening. As to pouch tissue weight, there was a significant increase in group B than in group C (p<0.05). Microscopy illustrated a large amount of phagocytes in group A and B, compared with no tissular and cellular reaction in group C. Evaluating AKP of serium, there was a significant increase in group A、B than in group C (p<0.05). With immunohistochemical method, there was a significant increase with IL-6 expression in group A、B than in group C. With real time PCR method, there was a significant increase with mRNA expression of EMMPRIN in group A、B than in group C. Conclusions: The rat air pouch model was an optical animal model studying aseptic loosening , which reflected the tissular and biological properties of aseptic loosening.The two wear particles both can cause tissular reactions, modulate the production and expression of osteolytic cytokines, induce osteolytic reactions, lead to aseptic loosening.
     PART TWO An experimental study of the biological reactions induced by rhBMP-2 slow release formulation in the rat air pouch tissue
     Objective: To investigate the subcutaneous biological reaction of rhBMP-2 slow release formulation in the rat air pouch model, analysis the possible mechanism of new bone ingrowth and the inhibition of osteolysis indueced by rhBMP-2. Methods: Filtration air was injected subcutaneously into rats’back 6 times(3ml qod).Air pouch tissue treated with rhBMP-2 slow release formulation was obtained from rats killed after day 7,day 14. Tissue was also taken from physiological saline treated pouches (control group) at day 7,day 14. Pouch tissues were weighted,wax embedded and stained with hematoxylin and eosin,observed under microscope. AKP of serium,IL-6 and TNF-a expression with immunohistochemical method, mRNA expression of EMMPRIN with real time PCR method and protein expression of EMMPRIN with westrern blotting method were measured. Results: Air pouch tissues situated in subcutaneous tissues, with distinct border, horsebean-size, small proliferous blood vessels in the surface, and fibroid tissues in some fields, similar to limiting membrane of periprothesis tissue in the cases of aseptic loosening. Air pouch tissues were incrassate in group A, it contained a small flexible nodule, which indicated the new bone ingrowth. As to pouch tissue weight,there was a significant difference between group A(day 14) and group A(day 7),group B(p<0.05). Microscopy illustrated no tissular and cellular reaction in both group A and group B.Evaluating of AKP of serium, there was a significant difference between group A(day 7) and group A(day 14),group B(p<0.05). With immunohistochemical method, there was a significant decrease with IL-6 expression in group A than in group B. With real time PCR method,there was a significant decrease with mRNA expression of EMMPRIN in group A than in group B,and in group A(day 14) than in group A(day 7). With western blotting method,there was a significant decrease with protein expression of EMMPRIN in group A than in group B,and in group A(day 14) than in group A(day 7). Conclusions: In one hand, rhBMP-2 slow release formulation stimulated the chemotaxis of osteoblasts/osteoblastlike cells, modulated expression of integrin, increased the speed of cell proliferation, so as to integrate osteoblasts into extracellular matrix, lead to new bone ingrowth;In the other hand, rhBMP-2 slow release formulation inhibited the production and activities of osteolytic cytokines, so as to inhibit osteolytic reaction.It afforded the possibility of using rhBMP-2 in the early prevetion of aseptic loosening.
     PART THREE The experimental study of the feasibility of using rhBMP-2 slow release formulation to prevent prothetic aseptic loosening
     Objective: To investigate the subcutaneous biological reaction interfered with rhBMP-2 slow release formulation in vivo in the rat air pouch model of aseptic loosening, analysis the biological activities of using rhBMP-2 to improve new bone ingrowth and inhibit the production and activities of osteolytic cytokines, so as to inhibit osteolytic reaction, evaluate the feasibility of early using rhBMP-2 in prevetion of aseptic loosening. Methods: Filtration air was injected subcutaneously into rats’back 6 times(3ml qod).Air pouch tissue treated with wear debris and interfered with rhBMP-2 slow release formulation was obtained from rats killed after day 7,day 14. Tissue was also taken from wear debris and physiological saline treated pouches (control group) at day 7,day 14. Pouch tissues were weighted,wax embedded and stained with hematoxylin and eosin,observed under microscope. AKP of serium,IL-6 and TNF-a expression with immunohistochemical method, mRNA expression of EMMPRIN with real time PCR method and protein expression of EMMPRIN with western blotting method were measured. Results: Air pouch tissues situated in subcutaneous tissues, with distinct border, horsebean-size. Air pouch tissues were incrassate in group A and group C, it contained a small flexible nodule, which indicated the new bone ingrowth.As to pouch tissue weight,there was a significant decrease in day 14 than in day 7 in each group(p<0.05). Microscopy illustrated a large amount of phagocytes in group B and D, compared with no tissular and cellular reaction in group A and group C.Evaluating AKP of serium, there was a significant difference in group A than in group B,in group C than in group D(p<0.05) in different stage of time. With immunohistochemical method, there was a significant decrease with IL-6 expression in group A than in group B,in group C than in group D. With real time PCR method,there was a significant decrease with mRNA expression of EMMPRIN in group A than in group B, in group C than in group D,and decrease in day 14 than in day 7. With western blotting method,there was a significant decrease with protein expression of EMMPRIN in group A than in group B, in group C than in group D,and decrease in day 14 than in day 7.Conclusions: RhBMP-2 slow release formulation improved new bone ingrowth, inhibited the expression of osteolytic cytokines mediated by wear particles. It indicated that early using rhBMP-2 to prevent prothetic aseptic loosening was feasible.
引文
[1] Harris WH, Schiller AL,Scholler JM, et al. Extensive localized bone resorption in the femur following total hip replacement. J Bone Joint Surg (Am) 1976,58:612-618.
    [2] Schmalzried TP, Jasty M, Harris WM. Periprosthetic bone loss in total hip arthroplasty. Polyethylene wear debris and the concept of the effective joint space. J Bone Joint Surg(Am) 1992, 74:849-863.
    [3] Willert HQ,Semlich M. Reactions of the articular capsule to wear products of artificial joint prostheses. J Biomed Mater Res 1977, 11: 157-164.
    [4] Goldring SR, Schiller AL, Roelke M, et al.The synovial-like membrane at the bone-cement interface in losse total hip replacements and its proposed role in bone lysis. J Bone Joint Surg(Am) 1983,65:575-584.
    [5] Takei I, Takagi M, Santavirta S, et al. Matrix metalloproteinases and tissue inhibitors of metalloproteinases in joint fluid of the patients with loose artificial hip joints. J Biomed Mater Res 1999, 45:175-183.
    [6] Chiba J, Rubash HE, Kim KJ, et al. The characterization of cytokines in the interface tissue obtained from failed cementless total hip arthroplasty with and without femoral osteolysis. Clin Orthop 1994,300: 304-312.
    [7] Dowd JE, Schwendeman LJ, Macaulay W, et al. Aseptic loosening in uncemented total hip arthroplasty in a canine model. Clin Orthop 1995, 319:106-121.
    [8]范卫民,王青,陶松年等.人工关节松动病因的研究.中华骨科杂志,1998,9: 518-521.
    [9] Fujikawa Y, Quinn JM, Sabokbar A, et al. The human osteoclast precursor circulates in the monocyte fraction. Endocrinology 1996, 137:4058-4060.
    [10] Lassus J, Salo J, Jiranek,et al. Macrophage activation results in bone resorption. Clin orthop 1998, 352:7-15.
    [11] Liu HW, Chen CH, Tsai CL,et al. Targeted delivery system for juxtacrine signaling growth factor based on rhBMP-2-mediated carrier-protein conjugation. Bone 2006; 39: 825–836.
    [12] Canalis E,Economides AN,Gazzerro E.Bone morphogenetic proteins, their antagonists, and the skeleton,Endocr Rev 2003,24:218–235.
    [13] Tang CH,Yang RS,Liou HC,et al.Enhancement of fibronectin synthesis andfibrillogenesis by BMP-4 in cultured rat osteoblast.J. Bone Miner. Res. 2003;18:502–511.
    [14] Koide M, Murase Y, Yamato K,et al. Bone morphogenetic protein-2 enhances osteoclast formation mediated by interleukin-1 alpha through upregulation of osteoclast differentiation factor and cyclooxygenase-2. Biochem Biophys Res Commun 1999: 259: 97–102.
    [15] Kim CS, Kim JI, Kim J,et al. Ectopic bone formation associated with recombinant human bone morphogenetic proteins-2 using absorbable collagen sponge and beta tricalcium phosphate as carriers. Biomaterials 2005;26:2501–2507.
    [1] Ingham E,Fisher J.Biological reactions to wear debris in total joint replacement.Proc Inst Mech Engr(H) J Eng Med 2000;214:21-37.
    [2] Archibeck MJ,Jacobs JJ,Roebuck KA,Glant TT.The basic science of periprosthetic osteolysis.J Bone Joint Surg (Am) 2000;82:1478-1489.
    [3] McKellop HA, Campbell P, Park SH, et al.The origin of submicron polyethylene wear debris in total hip arthroplasty. Clin Orthop 1995;311:3-20.
    [4] Olof C,Vesa S.Analysis of polyethylene particals produced in different wear conditions in vitro. Clin Orthop 2002 ; 399: 219-230.
    [5] Cronstein BN, Naime D,Ostad E. The antiinflammatory mechanism of methotrexate: increased adenosine release at inflamed sites diminishes leukocyte accumulation in an in vivo model of inflammation.J Clin Invest 1993;92:2675-2682.
    [6] Ellis L, Gilston V,Soo CC,et al. Activation of the transcription factor NF-[kappa]B in the rat air pouch model of inflammation.Annals of the Rheumatic Diseases 2000; 59: 303-307.
    [7] Yang S,Wu B,Mayton L,et al. IL-1Ra and vIL-10 gene transfer using retroviral vectors ameliorates particle-associated inflammation in the murine air pouch model. Inflamm Res 2002; 51:342-350.
    [8] Ren W,Yang SY,Wooley PH. A novel murine model of orthopaedic wear-debris associated osteolysis. Scand J Rheumatol 2004;33:349-357.
    [9] Wooley PH,Schwarz EM. Aseptic loosening. Gene Therapy 2004; 11: 402-407.
    [10]史冬泉,蒋青.人工关节无菌性松动动物模型研究.国际骨科学杂志2006;27(5):282-284.
    [11] Matthews JB, Green TR, Stone MH, et al.Comparison of the response of primary murine peritoneal macrophages and the U937 human histiocytic cell line to challenge with in vitro generated clinically relevant UHMWPE particles. Biomed Mater Eng 2000;10:229–240.
    [12] Schwarz EM, Lu AP, Goater JJ, et al.Tumor necrosis factor-alpha/nuclear transcription factor-kappaB signaling in periprosthetic osteolysis. J Orthop Res 2000; 18:472–480.
    [13] Zysk SP,Gebhard HH,Kalteis T,et al. Particles of all sizes provokeinflammatory responses in vivo.Clin Orthop Res 2005;433:258-264.
    [14] Kobayahsi A,Freeman MA.Number of polyethylene particles and osteolysis in total joint replacements. J Bone Joint Surg (Am) 1997 ; 79:844-848.
    [15]王晓庆,朱振安,孙月华等。骨保护素和骨保护素配体在假体周围骨溶解中作用的实验研究.中华创伤骨科杂志,2006,8:747-750.
    [16] Li TF.Extracellular and pericellular matrix proteins in the synovial membreane-like interface tissue from aseptic loosening of total hip replacement. Thesis,University of Helsinki ,2000,1-48.
    [17] Matthew VS,Michael JL,Andrew SI,et al. Inhibition of the PI3K-Akt signaling pathway reduces tumor necrosis factor-αp?roduction in response to Titanium particles in vitro. J Bone Joint Surg (Am) 2007 ; 89:1019-1027.
    [18] Taki N, Tatro JM, Nalepka JL, et al. Polyethylene and titanium particles induce osteolysis by similar, lymphocyte- independent mechanisms. J Orthop Res 2005; 23:376-83.
    [19] Childs LM, Goater JJ, O’Keefe RJ,et al. Effect of anti-tumor necrosis factor-αgene therapy on wear debris-induced osteolysis. J Bone Joint Surg(Am) 2001; 83:1789-1797.
    [20] Wilkinson JM, Wilson AG, Stockley I, et al. Variation in the TNF gene promoter and risk of osteolysis after total hip arthroplasty. J Bone Miner Res 2003;18:1995-2001.
    [21] Akisue T, Bauer TW, Farver CF, et al. The effect of particle wear debris on NFkappaB activation and pro-inflammatory cytokine release in differentiated THP-1 cells. J Biomed Mater Res 2002;59:507-15.
    [22] Vermes C, Chandrasekaran R, Jacobs JJ, et al.The effects of particulate wear debris, cytokines, and growth factors on the functions of MG-63 osteoblasts. J Bone Joint Surg (Am) 2001;83:201-211.
    [23] Bi Y, Van DM, Ragab AA, et al.Titanium particles stimulate bone resorption by inducing differentiation of murine osteoclasts. J Bone Joint Surg(Am) 2001;83:501-508.
    [24] Zhang ZH, Heulsmann A, Tondravi MM, et al.Tumor necrosis factor-alpha (TNF) stimulates RANKL induced osteoclastogenesis via coupling of TNF type 1 receptor and RANK signaling pathways. J Biol Chem 2001;276:563-568.
    [25] Thomas WB.Particles and periimplant bone resorption. Clin Orthop 2002; 405:138–143.
    [26] Stea S, Visentin M, Granchi D,et al. Cytokines and osteolysis around total hip prostheses. Cytokine 2000;12:1575-1579.
    [27] Shanbhag AS, Jacobs JJ, Black J, et al. Cellular mediators secreted by interfacial membranes obtained at revision total hip arthroplasty.J Arthroplasty 1995; 10:498-506.
    [28] Konttinen YT, Xu JW, Waris E, et al. Interleukin-6 in aseptic loosening of total hip replacement prostheses.Clin Exp Rheumatol 2002; 204:485-490.
    [29] Streich NA, Breusch SJ, Schneider U. Serum levels of interleukin-6 (IL-6), granulocyte - macrophage colony stimulating factor(GM-CSF) and elastase in aseptic prosthetic loosening.Int Orthop 2003;275:267-271.
    [30] Largo R,Alvarez SM,Diez OI,etal. Glucosamine inhibits IL-1beta-induced NFkappaB activation in human osteoarthritic chondrocytes. Osteoarthritis Cartilage 2003; 11: 290-298.
    [31] Kwan TS, Padrines M, Theoleyre S, et al. IL-6, RANKL, TNF-α/IL-1: interrelations in bone resorption pathophysiology . Cytokine Growth Factor Rev 2004;15:49-60.
    [32] Ishihara K, Hirano T. IL-6 in autoimmune disease and chronic inflammatory proliferative disease. Cytokine Growth Factor Rev 2002 ; 13:357-368.
    [33] Brenner SS, Klotz U, Alscher DM, et al. Osteoarthritis of the knee clinical assessments and inflammatory markers. Osteoarthritis Cartilage 2004;12:469-475.
    [34] Arun SS,Adam MK,Koichiro H,et al. Assessing osteolysis with use of high throughput protein chips. J Bone Joint Surg (Am) 2007;89:1081-1089.
    [35] Yang SY,Nasser S,Markel DC,et al. Human periprosthetic tissues implanted in severe combined immunodeficient mice respond to gene transfer of a cytokine inhibitor.J Bone Joint Surg (Am) 2005 ; 87:1088-1097.
    [36] Jennifer W,Kenneth PP,Erin LB. Increased cytokine secretion in patients with failed implants compared with patients with primary implants.Clin Orthop Res 2005;434:170-176.
    [37] Hernigou P, Intrator L, Bahrami T, et al. Interleukin-6 in the blood of patients with total hip arthroplasty without loosening. Clin Orthop Relat Res 1999; 366: 147-154.
    [38] ?eljka HH,Marko P,Miroslav H,et al. Plasma cytokines as markers of asepticprosthesis loosening.Clin Orthop Res 2006;453:299-304.
    [39]林远方,辛本忠,卿茂盛等.人工关节周围界膜IL-6的表达及健骨二仙丸的干预效应.中国组织工程研究与临床康复.2007;11(25):4887-4890.
    [40] Konttinen YT,Zhao DH,Beklen A,et al.The microenvironment around total hip replacement protheses. Clincal orthopaedics and related research 2005;430:28-38.
    [41]黄必留,余楠生.松动人工关节界膜显微结构的观察分析.广东医学,2004,25:655-656.
    [42] Edwards JC, Sedgwick AD, Willoughby DA. The formation of a structure with the features of synovial lining by subcutaneous injection of air: an in vivo tissue culture system. J Pathol 1981;134:147-156.
    [43]费震宇,张新民,王文健等.补肾中药骨密片防治继发性骨质疏松症实验研究.中国骨质疏松杂志,2000;6(3):62-65.
    [44]郭三萍,李晓红,戴晓霞等.镓盐对颌骨骨质疏松大鼠骨代谢的影响.第四军医大学学报2004 ;25 (24):2248-2250.
    [45] Bramono DS,Richmond JC,Weitzel PP,et a1.Matrix metalloproteinases and their clinical applications in orthopaedics. Clin Orthop 2004;428:272-285.
    [46] Carl AD,Joshua JJ.Trends in Joint Arthroplasty.Minimally Invasive Surgery, Wear-Resistant Materials, and Biologics. Journal of Clinical Rheumatology 2007;13:153-159.
    [47] Pugner KM,Scott DI,Holmes JW,et al.The costs of rheumatoid arthritis: an international long-term view.Semin Arthritis Rheum 2000;29:305-320.
    [48] Syggelos SA,Eleftheriou SC,Giannopoulou E,et a1.Gelatinolytic and collagenolytic activity in periprosthetic tissues from loose hip endoprostheses. J Rheumatol 2001;28:1319-1329.
    [49] Takagi M, Santavirta S,Ida H,et a1.Matrix metalloproteinases and tissue inhibitors of metalloproteinases in loose artificial hip joints. Clin Orthop,1998;352:35-45.
    [50]吕厚山主编.现代人工关节外科学.1版.北京,人民卫生出版社.2006,113.
    [51]张亚峰,蒋青,王骏飞等.基质金属蛋白酶与骨科疾病.国际骨科学杂志,2006;2 7(4):251-254.
    [52] Berditchevski F, Chang S, Bodorova J, et al. Generation of monoclonal antibodies to integrin-associated proteins. J Biol Chem 1997; 272:29174-29180.
    [53] Biswas C, Zhang Y, Decastro R, et al. The human tumor cell-derived collagenase stimulatory factor(renamed EMMPRIN) is a member of the immunoglobulin superfamily,Cancer Res 1995;55:434-439.
    [54] Kaname T, Miyauchi T, Kuwano A. Mapping basigin (BSG), a member of the immunoglobulin superfamily, to 19p13.3. Cytogenet. Cell Genet 1993; 64:195-197.
    [55] Guo HM, Gopa M, Timothy CJ. Characterization of the gene for human EMMPRIN , a tumor cell surface inducer of matrix metalloproteinases. Gene 1998;220:99-108.
    [56] Kasinrerk W, Fiebiger E, Stefanova I. Human leukocyte activation antigen M6, a member of the Ig superfamily, is the species homologue of rat OX-47, mouse basigin, and chicken HT7 molecule, J. Immunol 1992;149:847–854.
    [57] Decastro R, Zhang Y, Guo H. Human keratinocytes express EMMPRIN, an extracellular matrix metalloproteinase inducer, J. Invest. Dermatol 1996; 106: 1260–1265.
    [58] Marmorstein AD, Gan YC, Bonilha VL.Apical polarity of N-CAM and EMMPRIN in retinal pigment epithelium resulting from suppression of basolateral signal recognition, J. Cell Biol 1998;142:697–710.
    [59] Major TC, Liang L, Lu X. Extracellular matrix metalloproteinase inducer (EMMPRIN) is induced upon monocyte differentiation and is expressed in human atheroma, Arterioscler. Thromb. Vasc. Biol 2002;22: 1200–1207.
    [60] Noguchi Y, Sato T, Hirata M. Identification and characterization of extracellular matrix metalloproteinase inducer in human endometrium during the menstrual cycle in vivo and in vitro, J. Clin. Endocrinol. Metab 2003;88: 6063–6072.
    [61] Young WY, Hyuck MK, Hwang KC. Upstream regulation of matrix metalloproteinase by EMMPRIN;extracellular matrix metalloproteinase inducer in advanced atherosclerotic plaque, Atherosclerosis 2005; 180:37–44.
    [62] Kanekura T, Chen X, Kanzaki T. Basigin (CD147) is expressed on melanoma cells and induces tumor cell invasion by stimulating production of matrix metalloproteinases by fibroblasts, Int. J. Cancer 2002; 99: 520–528.
    [63] Toole BP. EMMPRIN (CD147), a cell surface regulator of matrix metalloproteinase production and function.Curr Top Dev Biol 2003; 54: 371–389.
    [64] Tang Y, Kesavan P, Nakada MT, et al. Tumor–stroma interaction: positive feedback regulation of extracellular matrix metalloproteinase inducer (EMMPRIN) expression and matrix metalloproteinasedependent generation of soluble EMMPRIN. Mol Cancer Res 2004;2:73-80.
    [65] Nagase H. Activation mechanisms of matrix metalloproteinase. Biol Chem 1997;378:151–160.
    [66]金群华,吕厚山,陈占昆等.金属蛋白酶诱导因子表达增加在人工关节无菌性松动中的作用及意义.中华外科杂志,2004,42:1232-1235.
    [1] Salgado AJ,Coutinho OP,Reis RL. Bone tissue engineering: State of the art and future trends. Macromol.Biosci. 2004;4: 743.
    [2] Reddi AH. Bone morphogenetic proteins: from basic science to clinical applications. J Bone Joint Surg Am 2001;83A(Suppl 1):1–6.
    [3] Chen D, Zhao M, Mundy GR. Bone morphogenetic proteins. Growth Factors 2004; 22:233–241.
    [4] Sampath TK, Maliakal JC, Hauschka PV, et al. Recombinant human osteogenic protein-1 (hOP-1) induces new bone formation in vivo with a specific activity comparable with natural bovine osteogenic protein and stimulates osteoblast proliferation and differentiation in vitro. J Biol Chem 1992; 267: 20352–20362.
    [5] Schmitt JM, Hwang K, Winn SR, et al. Bone morphogenetic proteins: an update on basic biology and clinical relevance. J Orthop Res 1999; 17:269–278.
    [6] Wozney JM. The bone morphogenetic protein family and osteogenesis. Mol Reprod Dev 1992; 32:160–167.
    [7] Zlotolow DA, Vaccaro AR, Salamon ML, et al. The role of human bone morphogenetic proteins in spinal fusion. J Am Acad Orthop Surg 2000; 8: 3–9.
    [8] Hoffmann A, Gross G.BMP signaling pathways in cartilage and bone formation, Crit. Rev. Eukaryot. Gene Expr 2001,11:23-45.
    [9] Canalis E,Economides AN,Gazzerro E.Bone morphogenetic proteins, their antagonists, and the skeleton,Endocr Rev 2003,24:218-235.
    [10] Termaat MF, Den Boer FC, Bakker FC, et al. Bone morphogenetic proteins: development and clinical efficacy in the treatment of fractures and bone defects. J Bone Joint Surg [Am] 2005;87-A:1367-1378.
    [11] Jadlowiec JA, Celil AB, Hollinger JO. Bone tissue engineering: Recent advances and promising therapeutic agents. Expert Opin Biol Ther 2003; 3: 409.
    [12] Isefuku S,Joyner CJ,Reed AA,et al.Distraction osteogenesis in the Cbfa-1﹢/﹢mouse. J Ortho Res 2004; 22: 1276.
    [13] Tang GH ,Rabie AB . Runx2 regulates endochondral ossification in condyle during mandibular advancement. J Dent Res 2005;84: 166.
    [14] Li RH, Bouxsein ML, Blake CA,et al.rhBMP-2 injected in a calcium phosphate paste (alpha-BSM) accelerates healing in the rabbit ulnar osteotomy model.JOrthop Res 2003;21:997-1004.
    [15] Einhorn TA, Majeska RJ, Mohaideen A,et al.A single percutaneous injection of recombinant human bone morphogenetic protein-2 accelerates fracture repair.J Bone Joint Surg Am 2003;85:1425-1435.
    [16] Southwood LL, Frisbie DD, Kawcak CE,et al.Evaluation of Ad-BMP-2 for enhancing fracture healing in an infected defect fracture rabbit model. J Orthop Res 2004;22:66-72.
    [17] Sumner DR, Turner TM, Urban RM,et al.Locally delivered rhBMP-2 enhances bone ingrowth and gap healing in a canine model.J Orthop Res 2004;22:58-﹢65.
    [18] Schmoekel HG, Schense JC, Weber FE,et al.Bone healing in the rat and dog with nonglycosylated BMP-2 demonstrating low solubility in fibrin matrices.J Orthop Res 2004;22:376-381.
    [19] Schmokel HG, Weber FE, Seiler G,et al.Treatment of nonunions with nonglycosylated recombinant human bone morphogenetic protein-2 delivered from a fibrin matrix.Vet Surg 2004;33:112-118.
    [20] Liu HW, Chen CH, Tsai CL,et al. Targeted delivery system for juxtacrine signaling growth factor based on rhBMP-2-mediated carrier-protein conjugation. Bone 2006; 39: 825-836.
    [21] Friedlaender GE, Perry CR, Cole JD, et al. Osteogenic protein-1 (bone morphogenetic protein-7) in the treatment of tibial non-unions. J Bone Joint Surg Am 2001;83(suppl 1, pt 2):151-158.
    [22] Burkus JK, Gornet MF, Dickman CA,et al. Anterior lumbar interbody fusion using rhBMP-2 with tapered interbody cages. J Spinal Disord Tech 2002;15:337-349.
    [23] Simpson AH, Mills L, Noble B. The role of growth factors and related agents in accelerating fracture healing. J Bone Joint Surg [Br] 2006,88:701-705.
    [24] Christopher HE, Randy NR. Molecular biology in Orthopaedics:the advent of molecular orthopaedics. J Bone Joint Surg 2005; 87-A: 2550-2565.
    [25] Ellis L, Gilston V,Soo CC,et al. Activation of the transcription factor NF-[kappa]B in the rat air pouch model of inflammation.Annals of the Rheumatic Diseases 2000 ; 59:303-307.
    [26] Yang S,Wu B,Mayton L,et al. IL-1Ra and vIL-10 gene transfer using retroviral vectors ameliorates particle-associated inflammation in the murine air pouchmodel.Inflamm Res 2002;51:342-350.
    [27] Ren W,Yang SY,Wooley PH. A novel murine model of orthopaedic wear-debris associated osteolysis. Scand J Rheumatol 2004;33:349-357.
    [28] Wientraub S,Reddi AH.Influence of irradiation on the osteoinductive potential of demineralized bone matrix.Calcif Tissue Int 1988, 42: 255-258.
    [29] Wohlfart UM, Waltenberger J, Hausser H, et al. Vascular endothelial growth factor stimulates chemotactic migration of primary human osteoblasts, Bone 2002;30:472-477.
    [30] Tang CH,Yang RS,Liou HC,et al.Enhancement of fibronectin synthesis and fibrillogenesis by BMP-4 in cultured rat osteoblast.J. Bone Miner. Res. 2003;18:502-﹢511.
    [31] Tsukasa S,Takafumi U,Akira M,et al.Bone morphogenetic protein-2 promotes the haptotactic migration of murine osteoblastic and osteosarcoma cells by enhancing incorporation of integrinβ1 into lipid rafts. Expremental cell research 2006; 312: 3927-3938.
    [32] Zou XN, Li HS, Chen L, et al.Stimulation of porcine bone marrow stromal cells by hyaluronan,dexamethasone and rhBMP-2,Biomaterials 2004;25:5375-5385.
    [33] Koide M, Murase Y, Yamato K,et al. Bone morphogenetic protein-2 enhances osteoclast formation mediated by interleukin-1 alpha through upregulation of osteoclast differentiation factor and cyclooxygenase-2. Biochem Biophys Res Commun 1999: 259: 97-102.
    [34]游鸿波,陈安民,孙淑珍.骨基质明胶防治人工关节无菌性松动的实验研究.中国矫形外科杂志,2000;7(8):770-773.
    [35] Eckhardt H, Ding M, Lind M, et al. Recombinant human vascular endothelial growth factor enhances bone healing in an experimental nonunion model. J Bone Joint Surg [Br] 2005;87-B:1434-1438.
    [36] Klein P, Schell H, Streitparth F, et al. The initial phase of fracture healing is specifically sensitive to mechanical conditions. J Orthop Res 2003;21:662-669.
    [37] Brownlow HC, Reed A, Simpson AH. The vascularity of atrophic non-unions. Injury 2002;33:145-150.
    [38]付德皓,杨述华,肖宝钧等.骨形态发生蛋白一2对原代鼠胚成骨细胞血管内皮生长因子表达的影响.中华创伤骨科杂志,2006,8(8):751-754.
    [39] King GN, Cochran DL. Factors that modulate the effects of bonemorphogenetic protein-induced periodontal regeneration: a critical review. J Periodontol 2002;73:925-936.
    [40] Pang EK, Im SU, Kim CS, et al. Effect of recombinant human bone morphogenetic protein-4 dose on bone formation in rat calvarial defects. J Periodontol 2004;75:1364-1370.
    [41] Liang G,Yang YZ,Oh S,et al. Ectopic osteoinduction and early degradation of recombinant human bone morphogenetic protein-2-loaded porous b-tricalcium phosphate in mice. Biomaterials 2005;26:4265-4271.
    [42] Poynton AR, Lane JM. Safety profile for the clinical use of bone morphogenetic proteins in the spine. Spine 2002; 27 (16):40-48.
    [43] Elliot C, Jeffrey SF.Bone morphogenetic proteins for spinal fusion The Spine Journal 2005;5:240-249.
    [44] McKee MD, Schemitsch EH, Waddell JP, et al. The effect of human recombinant bone morphogenetic protein (rhBMP-7) on the healing of open tibial shaft fractures: results of a multi-center, prospective randomized clinical trial (abstract). Procs Orthopaedic Trauma Association 18th Annual Meeting 2002.
    [45] Govender S, Csimma C, Genant HK, et al. Recombinant human bone morphogenetic protein-2 for treatment of open tibial fractures: a prospective, controlled, randomized study of four hundred and fifty patients. J Bone Joint Surg [Am] 2002;84-A: 2123-2134.
    [46] Luppen CA, Blake CA, Ammirati KM, et al.Recombinant human bone morphogenetic protein-2 enhances osteotomy healing in glucocorticoid-treated rabbits .J Bone Miner Res 2002;17:301-310.
    [47] Boden SD, Zdeblick TA, Sandhu HS, et al.The use of rhBMP-2 in interbody fusion cages: definitive evidence of osteoinduction in humans: a preliminary report. Spine 2000; 25:376–381.
    [48] Mark M, Lisa M, Moses TM,et al. Time for treating bone fracture using rhBMP-2:A randomised placebo controlled mouse fracture trial. Journal of Orthopaedic Research 2005;23:625-631.
    [49] Henrik E, Knud SC, Martin L ,et al. Recombinant human bone morphogenetic protein 2 enhances bone healing in an experimental model of fractures at risk of non-union. Injury 2005;36:489-494.
    [50] Takashi K, Akira M, Kunio T,et al.Potentiation of the activity of bonemorphogenetic protein-2 in bone regeneration by a PLA-PEG /hydroxyapatite composite.Biomaterials 2005; 26:73-79.
    [51] McKay WF, Peckham SM, Marotta JS. The Science of rhBMP-2. St. Louis,MO: Quality Medical Publishing, Inc; 2006:27-28.
    [52] Lan J, Wang ZF, Shi B,et al. The influence of recombinant human BMP-2 on bone–implant osseointegration: biomechanical testing and histomorphometric analysis,Int. J. Oral Maxillofac. Surg 2007; 36: 345-349.
    [53] Kobayashi M, Takiguchi T, Suzuki R, et al. Recombinant human bone morphogenetic protein-2 stimulates osteoblastic differentiation in cells isolated from human periodontal ligament. J Dent Res 1999;78:1624-1633.
    [54] Gallea S,Lallemand F,Atfi A, et al. Activation of mitogenactivated protein kinase cascades is involved in regulation of bone morphogenetic protein-2-induced osteoblast differentiation in pluripotent C2C12 cells. Bone 2001;28: 491.
    [55] Kim CS, Choi SH, Choi BK,et al. The effect of recombinant human bone morphogenetic protein-4 on the osteoblastic differentiation of mouse calvarial cells affected by Porphyromonas gingivalis. J Periodontol 2002;73:1126-1132.
    [56] Jason R,Brian C,David S,et al. Characterization of Growth and Osteogenic Differentiation of Rabbit Bone Marrow Stromal Cells. Journal of Surgical Research 2006;133:76–83.
    [57] Akisue T, Bauer TW, Farver CF, et al. The effect of particle wear debris on NFkappaB activation and pro-inflammatory cytokine release in differentiated THP-1 cells. J Biomed Mater Res 2002;59:507-515.
    [58] Childs LM, Goater JJ, O’Keefe RJ,et al. Effect of anti-tumor necrosis factor-αgene therapy on wear debris-induced osteolysis. J Bone Joint Surg (Am) , 2001 ; 83 : 1789-1797.
    [59] Arun SS,Adam MK,Koichiro H,et al. Assessing osteolysis with use of high throughput protein chips. J Bone Joint Surg (Am), 2007,89:1081-1089.
    [60]金群华,吕厚山,陈占昆等.金属蛋白酶诱导因子表达增加在人工关节无菌性松动中的作用及意义.中华外科杂志,2004,42:1232-1235.
    [1] Carl TT, Arun SS, Harry ER. Nonsurgical Management of Osteolysis:Challenges and Opportunities. Clin Orthop 2006; 453:254-264.
    [2]高绪仁范卫民李翔等.红霉素抑制人工关节磨屑诱导的骨溶解.江苏医药,2006;32(6):514-515.
    [3] Ren WP,Li XH,Chen BD,etal. Erythromycin inhibits wear debris-induced osteoclastogenesis by modulation of murine macrophage NF-kB activity. Journal of Orthopaedic Research, 2004,22:21-29.
    [4]Ong M,Taylor J.Doxycycline inhibits bone resorption by human- interface membrane cells from aseptically loose hip replacemenrs.J Bone Joint Surg(Br) 2003;85:456-461.
    [5] Preshaw PM,Hefti AF,Jepsen S,et al.Subantimicrobial dose doxycycline as adjunctive treatment for periodontitis.J Clin periodontol 2004;31(9):697-707.
    [6]王洪震,董启榕.降钙素预防人工关节无菌性松动实验研究.博士论文,2004.
    [7]李锋,方忠,熊伟等.降钙素防治骨质疏松模型兔人工关节无菌性松动实验研究.中国矫形外科杂志,2006;14(5):376-340.
    [8]范卫民,付震.药物防治人工关节无菌性松动的研究.博士论文,2005.
    [9] Kevin JM, Neal C,Khaled JS。Potential medical control of periprosthetic bone loss。Current Opinion in Orthopaedics 2005, 16:387-391.
    [10] Looney RJ, Edward MS, Allen B , Periprosthetic osteolysis: an immunologist’s update。Current Opinion in Rheumatology 2006, 18:80–87.
    [11] Carl AD,Joshua JJ.Trends in Joint Arthroplasty.Minimally Invasive Surgery, Wear-Resistant Materials, and Biologics. Journal of Clinical Rheumatology 2007;13:153-159.
    [12]张超,汤亭亭,戴﹢戴.人工关节无菌性松动药物治疗进展.中国矫形外科杂志,2007;15(11):836-839.
    [13] Wang CJ,Wang JW,Ko JY,et al.Three-year changes in bone mineral density around the knee after a six-month couse of oral Alendrnate following total knee arthroplasty. A prospective randomized study. J Bone Joint Surg(Am) 2006; 88:267-272.
    [14] Shanbhag AS,Hasselman CT,Rubash HE.Inhibition of wear debris mediated osteolysis in a canine total hip arthroplasty model. Clin Orthop 1997;344:33-43.
    [15] Nelson BW . Treatment of osteoporosis with bisphosphonates . Endocrinol Metab Clin North Am 1998;27(2):419-435.
    [16]刑智庆,马忠泰,李子荣等.阿仑膦酸钠局部持续使用防治人工关节无菌性松动可行性的细胞学研究.中华骨科杂志,2001,21(9):533-536.
    [17] Hartwig CH ,Esenwein SA ,Pfun dA ,etal. Improved osseointegration of titanium implants of different surface characteristics by the use of bone morphogenetic protein (BMP-3): an animal study performed at the metaphyseal bone bed in dogs.Z Orthop Ihre Grenzgeb ,2003;141: 705-711.
    [18]王岩,王松涛,崔健等.重组人骨形态发生蛋白-2用于人工关节生物固定方法的研究.中华外科杂志,2004;42(4):240-243.
    [19]张煜,范卫民,马益民.骨形态发生蛋白对兔人工关节周围骨长人的影响.江苏医药,2005,31:591-594.
    [20] Marumichi M,Naoto J,Takahashi,etal.Repair of a proximal bone defection dog using a porous surface edprostheses in combination with recombinant BMP-2 and a synthetic polymer carrier. Biomaterials 2003,24:2153-2160.
    [21] Boix T,Morales JG,Burgués JT,et al. Adsorption of recombinant human bone morphogenetic protein rhBMP-2m onto hydroxyapatite. Journal of Inorganic Biochemistry 2005; 99: 1043-1050.
    [22] Kim CS, Kim JI, Kim J,et al. Ectopic bone formation associated with recombinant human bone morphogenetic proteins-2 using absorbable collagen sponge and beta tricalcium phosphate as carriers. Biomaterials 2005;26:2501-2507.
    [23] Okazaki K, Jingushi S, Ikenoue T, et al. Expression of parathyroid hormonerelated peptide and insulin-like growth factor I during rat fracture healing. J Orthop Res 2003;21:511-520.
    [24] Phillips AM. Overview of the fracture healing cascade. Injury 2005;36(Suppl 3):5-7.
    [25] Southwood LL, Frisbie DD, Kawcak CE, et al. Delivery of growth factors using gene therapy to enhance bone healing. Vet Surg 2004;33:565-578.
    [26] Kuroda S, Virdi AS, Dai Y, et al. Patterns and localisation of gene expression during intramembranous bone regeneration in the rat femoral marrow ablation model.Calcif Tissue Int 2005;77:212-225.
    [27] Jeong JC, Lee JW, Yoon CH,et al.Drynariae Rhizoma promotes osteoblast differentiation and mineralization in MC3T3-E1 cells through regulation of bone morphogenetic protein-2, alkaline phosphatase,type I collagen and collagenase-1 Toxicology in Vitro 2004;18:829-834.
    [28] Jason R,Brian C,David Simhaee,et al. Characterization of Growth and Osteogenic Differentiation of Rabbit Bone Marrow Stromal Cells. Journal of Surgical Research 2006;133:76–83.
    [29] Juliette VD, Anja JE, Paul HM,et al.Observations on the effect of BMP-2 on rat bone marrow cells cultured on titanium substrates of different roughness . Biomaterials 2003;24:1853-1860.
    [30] Childs LM, Goater JJ, O’Keefe RJ,et al. Effect of anti-tumor necrosis factor-αgene therapy on wear debris-induced osteolysis. J Bone Joint Surg (Am) 2001; 83 : 1789-1797.
    [31] Arun SS,Adam MK,Koichiro H,et al. Assessing osteolysis with use of high throughput protein chips. J Bone Joint Surg (Am) 2007,89:1081-1089.
    [32]金群华,吕厚山,陈占昆等.金属蛋白酶诱导因子表达增加在人工关节无菌性松动中的作用及意义.中华外科杂志,2004,42:1232-1235.
    [33] Lan J, Wang ZF, Shi B,et al. The influence of recombinant human BMP-2 on bone–implant osseointegration: biomechanical testing and histomorphometric analysis,Int J Oral Maxillofac Surg 2007; 36: 345-349.
    [34] Meinel L, Zoidis E, Zapf J, et al. Localised insulin-like growth factor I delivery to enhance new bone formation.Bone 2003;33:660-672.
    [35] Wang H, Li X, Tomin E, et al. Thrombin peptide (TP508) promotes fracture repair by up-regulating inflammatory mediators, early growth factors and increasing angiogenesis. J Orthop Res 2005;23:671-679.
    [36] Kroese-Deutman HC, RuhéPQ, Spauwen PH,et al. Bone inductive properties of rhBMP-2 loaded porous calcium phosphate cement implants inserted at an ectopic site in rabbits. Biomaterials 2005; 26: 1131–1138.
    [37] Luginbuehl V, Wenk E, Koch A, et al.Insulin-like growth factor I-releasing alginate-tricalciumphosphate composites for bone regeneration. Pharm Res 2005; 22:940–950.
    [38] RuhéPQ, Kroese-Deutman HC, Wolke JG, et al.Bone inductive properties of rhBMP-2 loaded porous calcium phosphate cement implants in cranial defects in rabbits. Biomaterials 2004; 25:2123-2132.
    [39] Xu HH, Quinn JB, Takagi S, et al.Synergistic reinforcement of in situ hardening calcium phosphate composite scaffold for bone tissue engineering. Biomaterials 2004; 25:1029-1037.
    [40] Seeherman HJ, Bouxsein M, Kim H,et al.Recombinant human bone morphogenetic protein-2 delivered in an injectable calcium phosphate paste accelerates osteotomy-site healing in a nonhuman primate model. J Bone Joint Surg Am 2004; 86:1961-1972.
    [41] Mark M, Lisa M, Moses TM,et al. Time for treating bone fracture using rhBMP-2:A randomised placebo controlled mouse fracture trial. Journal of Orthopaedic Research 2005;23:625-631.
    [42] Yoshida K, Bessho K, Fujimura K, et al. Osteoinduction capability of recombinant human bone morphogenetic protein-2 in intramuscular and subcutaneous sites:an experimental study. J Craniomaxillofac Surg 1998; 26: 112-115.
    [43] Okubo Y, Bessho K, Fujimura K, et al.Comparative study of intramuscular and intraskeletal osteogenesis by recombinant human bone morphogenetic protein-2. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 1999;87:34-38.
    [44] Wang DA, Williams CG, Yang F, et al. Bioresponsive phosphoester hydrogels for bone tissue engineering. Tissue Eng 2005; 11:201-213.
    [45] Gamradt SC, Lieberman JR. Genetic modification of stem cells to enhance bone repair. Ann Biomed Eng 2004;32:136–147.
    [46] Seth CG, Nobuhiro A, Matthew E. Bahamonde. Tracking Expression of Virally Mediated BMP-2 in Gene Therapy for Bone Repair. Clin Orthop 2006; 450:238-245.
    [47] Kelpke SS, Zinn KR, Rue LW, et al. Site specfic delivery of acidic fibroblast growth factor stimulates angiogenic and osteogenic responses in vivo. J Biomed Mater Res A 2004;71:316-325.
    [48] RuhéPQ, Boerman OC, Russel FG, et al. Controlled release of rhBMP-2 loaded poly (dl-lactic-co-glycolic acid)/calcium phosphate cement composites in vivo. J Control Release 2005;106:162-171.
    [49] Edwards RB 3rd, Seerherman HJ, Bogdanske JJ, et al. Percutaneous injection of recombinant human bone morphogenetic protein-2 in a calcium phosphate paste accelerates healing of a canine tibial osteotomy. J Bone Joint Surg [Am] 2004; 86-A:1425-1438.
    [50] Keskin DS, Texcaner A, Korkusuz P, et al. Collagen-chondroitin sulfate-based PLLA-SAIB-coated rhBMP-2 delivery system for bone repair. Biomaterials 2005; 26:4023-34.
    [51] Geiger M, Li RH, Friess W. Collagen sponges for bone regeneration with rhBMP-2. Adv Drug Deliv Rev 2003; 55: 1613–1629.
    [52] Burkus JK, Heim SE, Gornet MF,et al. The effectiveness of rhBMP-2 in replacing autograft: an integrated analysis of three human spine studies. Orthopedics 2004;27:723–728.
    [53] http:// www . fda . gov / cdrh / pdf / P000058 . html , FDA information on InFUSETM, 8 May ,2003.
    [54] Chen FM, Wu ZF, Sun HH , et al.Release of bioactive BMP from dextran-derived microspheres:A novel delivery concept. International Journal of Pharmaceutics 2006;307:23–32.
    [55] Poynton AR, Lane JM. Safety profile for the clinical use of bone morphogenetic proteins in the spine. Spine 2002; 27:40–48.
    [56] Elliot C, Jeffrey SF.Bone morphogenetic proteins for spinal fusion The Spine Journal 2005;5:240-249.
    [57] Shields LB, Raque GH, Glassman SD, et al. Adverse effects associated with high-dose recombinant human bone morphogenetic protein-2 use in anterior cervical spine fusion. Spine 2006; 31:542-547.
    [58] Smucker JD, Rhee JM, Singh k, et al. Increased swelling complications associated with off-label usage of rhBMP-2 in the anterior cervical spine. Spine 2006;31:2813–2819.
    [59] Hansen SM, Sasso RC. Resorptive response of rhBMP2 simulating infection in an anterior lumbar interbody fusion with a femoral ring. J Spinal Disord Tech 2006;19:130–134.
    [60] McClellan JW, Mulconrey DS, Forbes RJ, et al. Vertebral bone resorption after transforaminal lumbar interbody fusion with bone morphogeneticprotein(rhBMP-2). J Spinal Disord Tech 2006;19:483–486.
    [61] Pradhan BB, Bae HW, Dawson EG, et al. Graft resorption with the use of bone morphogenetic protein: lessons from anterior lumbar interbody fusion using femoral ring allografts and recombinant human bone morphogenetic protein-2. Spine 2006;31:277-284.
    [62] Rahul V,Julia C,Anil S,et al.Complications of anterior cervical discectomy and fusion using recombinant human bone morphogenetic protein-2.Eur Spine J 2007;16:1257-1265
    [63] Leah YC, Steven DG,Dylan CB,et al. Adverse Events in Patients Re-Exposed to Bone Morphogenetic Protein for Spine Surgery.SPINE 2008;33(4):391-393.
    [64] Evans CH, Robbins PD. Genetically augmented tissue engineering of the musculoskeletal system. Clin Orthop Relat Res 1999;367 (suppl):410-418.
    [1] Ingham E,Fisher J.Biological reactions to wear debris in total joint replacement.Proc Inst Mech Engr(H) J Eng Med ,2000,214:21-37.
    [2] Olof Calonius,Vesa Saikko.Analysis of polyethylene particals produced in different wear conditions in vitro.Clinical orthopaedics and related research, 2002, 399:219-230.
    [3]蔡贤华,陈安民等.人工关节假体松动相关研究:实验用钛微粒细菌内毒素的去除与检测.中国临床康复,2004,8(32):7236-7237.
    [4] Matthews JB ,Besong AA ,Green TR ,et al. Evaluation of the response of primary human peripheral blood mononuclear phagocytes to challenge with invitro generated clinically relevant UHMWPE particles of known size and dose . J Biomed Mater Res ,2000,52:296-307.
    [5]丁悦,Bertram Barde,刘尚礼等.聚乙烯磨损微粒的大小对人工关节松动的影响.中华实验外科杂志,2004,21(3):353-354.
    [6] Marti A: Cobalt-base alloys used in bone surgery. Injury,2000, 31(suppl 4)18-21.
    [7] Hornez JC,Lefevre A,Joly D,Hilderbrand HF:Multiple parameter cytotoxicity index on dental alloys and pure metals.Biomol Eng,2002,19:103-117
    [8] Yrj? T Konttinen,Desheng Zhao,et al.The microenvironment around total hip replacement protheses. Clincal orthopaedics and related research,2005,430:28-38
    [9] Eschbach L:Nonresorbable polymers in bone surgery.Injury,2000,31(Suppl 4):22-27
    [10] Li TF:Extracellular and pericellular matrix proteins in the synovial membreane-like interface tissue from aseptic loosening of total hip replacement. Thesis,University of Helsinki ,2000,1-48
    [11]陈黎华等.新型耐磨高分子人工关节材料生物相容性研究。上海生物医学工程杂志,1999,20(2):19-21
    [12] Willmann G:The evolution of cermics in total hip replacement.Hip International, 2000,10:193-203
    [13] Didier Hannouche,Moussa Hamadouche,et al.Cermics in total hipreplacement.Clinical orthppaedics and related research,2005,430:62-71
    [14] Archibeck MJ,Jacobs JJ,Roebuck KA,Glant TT.The basic science of periprosthetic osteolysis.J Bone Joint Surg Am,2000,82:1478-1489
    [15] Jiranek W A, Machado M, Jasty M et al. Production of cytokine around loosened cemented acetabular components: analysis with immunohistochemical techniques and insituhybridization [J]. J Bone Joint Surg Am,1993,75(6):863-879.
    [16] Hayness DR,Crotti TN,Potter AE,et al.The osteoclastogenic molecules RANKL and RANK are associated with periprosthetic osteolysis.J Bone Joint Surg Br,2001,83:902-911
    [17]王晓庆,朱振安等.骨保护素和骨保护素配体在假体周围骨溶解中作用的实验研究.中华创伤骨科杂志,2006,8(8):747-750
    [18] Yao J,Cs-Szabo G,Jacobs JJ,et al.Suppression of osteoblast function by titanium particles.J Bone Joint Surg,1997 79A:107-112
    [19] Goodman SB,Aspenberg SP, Song LY, et al.Tissue ingrowth and differentiation in the bone-harvest chamber in the presence of cobalt-chromium-alloy and high-density-polyethylene particles [J]. J Bone and Joint Surg (Am), 1995, 77:1025-1035.
    [20]蔡胥等.不同材料人工关节磨损微粒对假体—骨界面骨形成影响的比较研究.中国生物医学工程学报,2003,22(6):554-558
    [21]王文良等.3种磨损微粒对体外原代培养人成骨细胞的作用.第三军医大学学报,2003,25(24):2237-2239
    [22]卢伟杰等.大微粒聚乙烯对人工关节假体周围组织影响的实验研究.中国修复重建外科杂志,2005,19(1):54-57
    [23]张煜,范卫民等.骨形态发生蛋白对兔人工关节周围骨长入的影响.江苏医药,2005,31(8):591-594
    [24] Schmalzried TP, Jasty M, Harris WH. Periprosthetic bone loss in total hip arthroplasty. Polyethylene wear debris and the concept of the diffective joint space. J Bone Joint Surg (Am), 1992,74(6):849
    [25]付德皓,杨述华等.骨形态发生蛋白-2对原代鼠胚成骨细胞血管内皮生长因子表达的影响.中华创伤骨科杂志,2006,8(8):751-754
    [26] Von Knoch M,Wedemeyer C,Pingsmann A,et al.The decrease ofparticle-induced osteolysis after a single-dose bisphosphonate. Biomaterials, 2005,26:1803-1808
    [27] Wilkinson JM,Eagleton AC,Stockley L,et al.Effect of pamidronate on bone turnover and implant migration after total hip arthroplasty:a randomised trial. J Orthop Res,2005,23:1-8
    [28] Im GL,Qureshi SA,Kenney J,et al.Osteoblast proliferation and maturation by bisphosphonates.Biomaterials 2004,25:4105-4115
    [29] Vermes C,Chandrasekaran R,Dobai JG,et al.The combination of pamidronate and calcitriol reverses partical-and TNF-αinduced altered functions of bone-marrow-derived stromal cells with osteoblastic phenotype.J Bone Joint Surg Br,2004,86:759-770
    [30] Santavirta S,Konttinen YT, Hoikka V et al. Immunopathological response to loose cementless acetabular components [J]. J Bone Joint Surg Br,1991,73(1):38-42.
    [31]金群华,吕厚山等.金属蛋白酶诱导因子表达增加在人工关节无菌性松动中的作用及意义.中华外科杂志,2004,42(20):1232-1235
    [32] Saleh KJ,Schwarz EM.Osteolysis;medical and surgical approaches.Clin Orthop,2004,427:138-147
    [33]王骏骅,赵建宁等.假体周围骨保护素的表达与磨损微粒分布的关系.医学研究生学报,2004,17(4):302-306
    [34]黄必留,余楠生等.松动人工关节界膜显微结构的观察分析.广东医学,2004,25(6):655-656
    [35] Kim KJ, Rubash HE, Wilson SC et al. A histologic and biochemical comparison of the interface tissue in cementless and cement hip prostheses [J]. Clin Orthop,1993,Feb (287):142-152.
    [36] Iwanaga T,Shikichi M,Kitamura,et al.Morphology and functional roles of synoviocytes in the joint.Arch Histol Cytol,2000,63:17-31
    [37] McKellop HA, Campbell P, Park SH, et al.The origin of submicron polyethylene wear debris in total hip arthroplasty. Clin Orthop,1995,(311):3-20.
    [38]史定伟等.假体磨损微粒诱导关节滑膜生物反应电镜观察.中华创伤杂志,2003,19(11):665-669
    [39] Takayanagi H,Ogasawara K,Hida S,et al.T-cell-mediated regulation of osteoclastogenesis by signaling cross-talk between RANK and IFN-gamma[seecomment].Nature,2000,408:600-605
    [40] Taki N,Tatro JM,Nalepka JL,et al.polythylene and titanium particls induce osteolysis by similar,lymphocyte-independent,mechanisms.J Orthop Res , 2005, 23:376-383
    [41] R.John Looney,Edward M.Schwarz,et al.Periprosthetic osteolysis:an immunologist’s update.Current Opinion in Rheumatology,2006,18:80-87
    [42] Kevin J.Mulhall,Neal Chaisson,Khaled J.Saleh. Potential medical control of periprosthetic bone loss.Current Opinion in Orthopaedics,2005,16:387-391
    [43] Khaled J.Saleh,Issada Thongtrangan,et al.Osteolysis.Clinical orthopaedics and related research,2004,427:138-147
    [44] Dunbar MJ,Blackley HRL,Bourne RB.Osteolysis of the femur:principles of management.AAOS Instructional Course Lectures.Vol 50.Rosemont,IL,American Academy of Orthopaedic Surgeons,2001,197-209
    [45] Singha RK,Maloney WJ,Paprosky WG,et al.Surgical treatment of Osteolysis.The Adult Hip.Philadelphia,Lippincott-Raven Publishers,1998,1551-1552
    [46]赵建宁,王骏骅等.磨损微粒在无菌性松动关节假体周围迁移聚积的实验研究.骨与关节损伤杂志,2004,19(1):31-34.
    [1] Celeste AJ, Iannazzi JA, Taylor RC, et al. Identification of transforming growth factor beta family members present in bone-inductive protein purified from bovine bone. Proc Natl Acad Sci U S A 1990; 87:9843–9847.
    [2] Chen D, Zhao M, Mundy GR. Bone morphogenetic proteins. Growth Factors 2004; 22:233–241.
    [3] Sampath TK, Maliakal JC, Hauschka PV, et al. Recombinant human osteogenic protein-1 (hOP-1) induces new bone formation in vivo with a specific activity comparable with natural bovine osteogenic protein and stimulates osteoblast proliferation and differentiation in vitro. J Biol Chem 1992; 267: 20352–20362.
    [4] Schmitt JM, Hwang K, Winn SR, Hollinger JO. Bone morphogenetic proteins: an update on basic biology and clinical relevance. J Orthop Res 1999; 17:269–278.
    [5] Wozney JM. The bone morphogenetic protein family and osteogenesis. Mol Reprod Dev 1992; 32:160–167.
    [6] Zlotolow DA, Vaccaro AR, Salamon ML, Albert TJ. The role of human bone morphogenetic proteins in spinal fusion. J Am Acad Orthop Surg 2000; 8: 3–9.
    [7] Simpson AH, Mills L, Noble B. The role of growth factors and related agents in accelerating fracture healing. J Bone Joint Surg [Br] 2006; 88-B:701-5.
    [8] McKee MD, Schemitsch EH, Waddell JP, et al. The effect of human recombinant bone morphogenetic protein (rhBMP-7) on the healing of open tibial shaft fractures: results of a multi-center, prospective randomized clinical trial. Procs Orthopaedic Trauma Association 18th Annual Meeting 2002.
    [9] Govender S, Csimma C, Genant HK, et al. Recombinant human bone morphogenetic protein-2 for treatment of open tibial fractures: a prospective, controlled, randomized study of four hundred and fifty patients. J Bone Joint Surg [Am] 2002;84-A: 2123-2134.
    [10] Laurencin CT, Yusuf K, Michele K. Tissue Engineering of Bone and Ligament A 15-year Perspective. Clin Orthop 2006;447:221-236
    [11] Musgrave DS, Fu FH, Huard J. Gene therapy and tissue engineering in orthopaedic surgery. J AAOS. 2002;10:6﹢15.
    [12] Huard J, Fu FH. Gene Therapy and Tissue Engineering in Orthopaedic andSports Medicine. Boston MA: Birkh?user; 2000:196﹢212.
    [13] Akeson WH, Bugbee W, Chu C, et al. Differences in mesenchymal tissue repair. Clin Ortho Rel Res. 2001;391:S124﹢S141.
    [14] Davidson JM, Zola O, Liu JM. Modulation of transforming growth factor-beta stimulated elastin and collagen production and proliferation in porcine vascular smooth cells and skin fibroblasts by basic fibroblast growth factor, transforming growth factor-alpha, and insulin-like growth factor-1. Cell Physiol. 1993;155:149﹢156.
    [15] Pittenger MF, Mackay AM, Beck SC, et al. Multilineage potential of adult human mesenchymal stem cells. Tissue Eng. 1999;1: 345-353.
    [16] Smith C, Storms B. Hematopoietic stem cells. Clin Orthop. 2000; 379:S91-S97.
    [17] Erickson DM, Harris SE, Dean DD, et al. Recombinant bone morphogenetic protein (BMP-2) regulates costochondral growth plate chonrocytes and induces expression of BMP-2 and BMP-4 in a cell maturation-dependent manner. J Orthop Res. 1997;15: 371-380.
    [18] Sellers RS, Peluso D, Morris EA. The effect of recombinant human bone morphogenetic protein-2 (rhBMP-2)on the healing of fullthickness defects of articular cartilage. J Bone Joint Surg Am. 1997;79:1452-1463.
    [19] Martinek V, Latterman C, Usas A. Enhancement of tendon-bone integration of anterior cruciate ligament grafts with bone morphogenic protein-2 gene transfer. J Bone Joint Surg Am. 2002;84: 1123-1131.
    [20] Kroese-Deutman HC, Ruhe PQ, Spauwen PH, et al.Bone inductive properties of rhBMP-2 loaded porous calcium phosphate cement implants inserted at an ectopic site in rabbits. Biomaterials 2005; 26: 1131–1138.
    [21].Luginbuehl V, Wenk E, Koch A, et al. Insulin-like growth factor I-releasing alginate-tricalciumphosphate composites for bone regeneration. Pharm Res 2005; 22:940–950.
    [22] Ruhe PQ, Kroese-Deutman HC, Wolke JG, et al. Bone inductive properties of rhBMP-2 loaded porous calcium phosphate cement implants in cranial defects in rabbits. Biomaterials 2004; 25:2123–2132.
    [23] Xu HH, Quinn JB, Takagi S, et al.Synergistic reinforcement of in situ hardening calcium phosphate composite scaffold for bone tissue engineering.Biomaterials 2004; 25:1029–1037.
    [24] Seeherman HJ, Bouxsein M, Kim H, et al. Recombinant human bone morphogenetic protein-2 delivered in an injectable calcium phosphate paste accelerates osteotomy-site healing in a nonhuman primate model. J Bone Joint Surg Am 2004; 86:1961–1972.
    [25] Wang DA, Williams CG, Yang F, et al. Bioresponsive phosphoester hydrogels for bone tissue engineering. Tissue Eng 2005; 11:201–213.
    [26] Boden SD, Zdeblick TA, Sandhu HS, et al. The use of rhBMP-2 in interbody fusion cages: definitive evidence of osteoinduction in humans: a preliminary report. Spine. 2000;25:376–381.
    [27] Friedlaender GE, Perry CR, Cole JD, et al. Osteogenic protein-1 (bone morphogenetic protein-7) in the treatment of tibial nonunions. J Bone Joint Surg Am 2001;83(suppl 1):S151–S158.
    [28] Evans CH, Robbins PD. Genetically augmented tissue engineering of the musculoskeletal system. Clin Orthop Relat Res 1999;367 (suppl):410–418.
    [29] Chen Y. Orthopedic applications of gene therapy. J Orthop Sci 2001;6:199–207.
    [30] Alden TD, Pittman DD, Hankins GR, et al. In vivo endochondral bone formation using a bone morphogenetic protein- 2 adenoviral vector. Hum Gene Ther 1999;10:2245–2253.
    [31] Baltzer AW, Lattermann C, Whalen JD, et al. Genetic enhancement of fracture repair: healing of an experimental segmental defect by adenoviral transfer of the BMP-2 gene. Gene Ther 2000; 7:734–739.
    [32] Yoon ST, Boden SD. Osteoinductive molecules in orthopaedics: basic science and preclinical studies. Clin Orthop Relat Res 2002; 395:33–43.
    [33] Baltzer AW, Lieberman JR. Regional gene therapy to enhance bone repair. Gene Ther 2004;11:344–350.
    [34] Lieberman JR, Ghivizzani SC, Evans CH. Gene transfer approaches to the healing of bone and cartilage. Mol Ther 2002;6:141–147.
    [35] Danthinne X, Imperiale MJ. Production of first generation adenovirus vectors: a review. Gene Ther 2000;7:1707–1714.
    [36] Cheng SL, Lou J, Wright NM, et al. In vitro and in vivo induction of bone formation using a recombinant adenoviral vector carrying the human BMP-2 gene.Calcif Tissue Int 2001;68:87–94.
    [37] Gamradt SC, Lieberman JR. Genetic modification of stem cells to enhance bone repair. Ann Biomed Eng 2004;32:136–147.
    [38] Lee JY, Musgrave D, Pelinkovic D, et al. Effect of bone morphogenetic protein-2-expressing muscle-derived cells on healing of critical-sized bone defects in mice. J Bone Joint Surg Am 2001;83:1032–1039.
    [39] Lieberman JR, Daluiski A, Stevenson S, et al. The effect of regional gene therapy with bone morphogenetic protein-2-producing bone-marrow cells on the repair of segmental femoral defects in rats. J Bone Joint Surg Am 1999;81:905–917.
    [40] Dragoo JL, Choi JY, Lieberman JR, et al.Bone induction by BMP-2 transduced stem cells derived from human fat. J Orthop Res 2003; 21:622–629.
    [41] Gafni Y, Turgeman G, Liebergal M, et al.Stem cells as vehicles for orthopedic gene therapy. Gene Ther 2004;11:417–426.
    [42] Gazit D, Turgeman G, Kelley P, et al.Engineered pluripotent mesenchymal cells integrate and differentiate in regenerating bone: a novel cell-mediated gene therapy. J Gene Med 1999;1:121–133.
    [43] Peng H, Huard J. Muscle-derived stem cells for musculoskeletal tissue regeneration and repair. Transpl Immunol 2004;12:311–319.
    [44] Van Griensven M, Lobenhoffer P, Barke A, et al. Adenoviral gene transfer in a rat fracture model. Lab Anim 2002;36:455–461.
    [45] Scaduto AA, Lieberman JR. Gene therapy for osteoinduction. Orthop Clin North Am 1999;30:625–633.
    [46] Seth CG, Nobuhiro A, Matthew E. Bahamonde. Tracking Expression of Virally Mediated BMP-2 in Gene Therapy for Bone Repair. Clin Orthop Relat Res 2006;450:238-245
    [47] Hannallah D, Peterson B, Lieberman J. Gene therapy in orthopaedic surgery. J Bone Joint Surg Am 2002;84:1046﹢1061.
    [48] Michael JA, Nicholas AS, Daniel AG.Clinical Applications of Bioactive Factors in Sports Medicine(Current Concepts and Future Trends). Sports Med Arthrosc Rev 2006;3:138-145
    [49] Meinel L, Zoidis E, Zapf J, et al.Localised insulin-like growth factor I delivery to enhance new bone formation. Bone 2003;33:660-72.
    [50] Einhorn TA, Majeska RJ, Mohaideen A, et al. A single percutaneous injection of recombinant human bone morphogenetic protein-2 accelerates fracture repair. J Bone Joint Surg Am 2003;85-A:1425-35.
    [51] Wang H, Li X, Tomin E, et al. Thrombin peptide (TP508) promotes fracture repair by up-regulating inflammatory mediators, early growth factors and increasing angiogenesis. J Orthop Res 2005;23:671-9.
    [52] Alkhiary YM, Gerstenfeld C, Krall E, et al. Enhancement of experimental fracturehealing by systemic admistration of recombinant human parathyroid hormone (PTH 1-34). J Bone Joint Surg Am 2005; 87-A:731-41.
    [53] Komatsubara S, Mori S, Mashiba T, et al. Human parathyroid hormone (1-34) accelerates the fracture healing process of woven to lamellar bone replacement and new cortical shell formation in rat femora. Bone 2005;36:678-687.
    [54] Kelpke SS, Zinn KR, Rue LW, Thompson JA. Site specfic delivery of acidic fibroblast growth factor stimulates angiogenic and osteogenic responses in vivo. J Biomed Mater Res A 2004;71:316-325.
    [55] Eckhardt H, Ding M, Lind M, et al. Recombinant human vascular endothelial growth factor enhances bone healing in an experimental nonunion model. J Bone Joint Surg Br 2005;87-B:1434-1438.
    [56] Seerherman HJ, Bouxsein M, Kim H, et al. Recombinant human bone morphogenetic protein-2 delivered in an injectable calcium phosphate paste accelerates osteotomy-site healing in a nonhuman primate model. J Bone Joint Surg Am 2004; 86-A:1961-72.
    [57] Ruje PQ, Boerman OC, Russel FG, et al. Controlled release of rhBMP-2 loaded poly (dl-lactic-co-glycolic acid)/calcium phosphate cement composites in vivo. J Control Release 2005;106:162-71.
    [58] Edwards RB 3rd, Seerherman HJ, Bogdanske JJ, et al. Percutaneous injection of recombinant human bone morphogenetic protein-2 in a calcium phosphate paste accelerates healing of a canine tibial osteotomy. J Bone Joint Surg Am 2004;86-A:1425-38.
    [59] Keskin DS, Texcaner A, Korkusuz P, et al.Collagen-chondroitin sulfate-based PLLA-SAIB-coated rhBMP-2 delivery system for bone repair. Biomaterials 2005;26:4023-34.
    [60] Ueda H, Hong L, Yamamoto M, et al. Use of collagen sponge incorporatingtransforming growth factor-beta 1 to promote bone repair in skull defects in rabbits. Biomaterials 2002;23:1003-10.
    [61] Termaat MF, Den Boer FC, Bakker FC, Patka P, Haarman HJ. Bone morphogenetic proteins: development and clinical efficacy in the treatment of fractures and bone defects. J Bone Joint Surg Am 2005; 87-A:1367-78.
    [62] Shen FH, Visger JM, Balian G, Hurwitz SR, Diduch DR. Systematically administered mesenchymal stromal cells transduced with insulin-like growth factor-I localize to a fracture site and potentiate healing. J Orthop Trauma 2002;16:651-9.
    [63] Okazaki K, Jingushi S, Ikenoue T, et al. Expression of parathyroid hormonerelated peptide and insulin-like growth factor I during rat fracture healing. J Orthop Res 2003;21:511-20
    [64] Phillips AM. Overview of the fracture healing cascade. Injury 2005;36(Suppl 3):5-7.
    [65] Southwood LL, Frisbie DD, Kawcak CE, McIlwraith CW. Delivery of growth factors using gene therapy to enhance bone healing. Vet Surg 2004; 33:565-78.
    [66] Kuroda S, Virdi AS, Dai Y, et al. Patterns and localisation of gene expression during intramembranous bone regeneration in the rat femoral marrow ablation model. Calcif Tissue Int 2005;77:212-25.
    [67] Klein P, Schell H, Streitparth F, et al. The initial phase of fracture healing is specifically sensitive to mechanical conditions. J Orthop Res 2003;21:662-9.
    [68] Brownlow HC, Reed A, Simpson AH. The vascularity of atrophic non-unions. Injury 2002;33:145-50.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700