用户名: 密码: 验证码:
基于类水滑石材料固定酶构筑电化学生物传感器
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生物传感器是一种集微电子学、材料学、生物技术为一体的高新技术产品。它作为一种快速、灵敏的检测技术,正成为食品检测技术研究的新热点。其中基于生物酶构筑的电化学生物传感器的发展在当前生物传感器领域最具代表性。如何选用合适的材料在电极表面有效地固定生物分子,使被固定的生物分子能保持较高的生物活性,并实现对实际样品的检测,对于研制电化学生物传感器具有非常重要的意义,具有广阔的应用前景。
     层状纳米材料具有结构规整、化学组成可调变及可插层组装等特性,已成为国内外材料学科研究的热点之一,而且层状纳米材料剥层后的纳米片具有更开放的结构,为酶的固定化带来了新的契机。本论文分别采用层状水滑石纳米材料氯离子插层镁铝水滑石(Mg-Al-Cl LDHs)固定酪氨酸酶(Tyr)、剥离水滑石纳米片(Mg-Al-LDHNS)固定肌红蛋白(Mb),构筑性能优秀的电化学生物传感器。本论文研究内容主要包括以下几个部分:
     1、采用氯离子插层镁铝水滑石(Mg-Al-Cl LDHs)作为固定Tyr的载体,Mg-Al-Cl LDHs固定的Tyr保持了良好的生物活性。电化学研究发现,Mg-Al-Cl LDHs固定的Tyr修饰玻碳电极,对儿茶酚实现了良好的电流响应。基于苯甲酸对Tyr活性的抑制作用,实现了对食品中苯甲酸的真样检测。在此基础上,将其成功应用于可一次性使用的丝网印刷电极,有望在食品中的苯甲酸快速检测上得到应用。
     2、通过将水滑石剥离重组,合成了Mb-Mg-Al-LDHNS的插层化合物;通过XRD表征,说明Mb-Mg-Al-LDHNS形成了规则的层状结构。大片Mg-Al-LDHNS为Mb提供了适合的分子取向,并实现了Mb与电极之间的直接电子转移。生物分子修饰电极对H2O2保持了催化活力。
Much attention has been devoted to the development of the electrochemical biosensor based on enzymes. It possesses important value in physic, environmental monitoring, food and military. Layered nanomaterials have many specialities, such as orderly structure, adjustable chemical composition, intercalationable, assembliable, and nanosheets obtained from the delamination of layered nanomaterials have a more open structure. Novel electrochemical biosensors have been fabricated based on these layered nanomaterials and nanosheets in this topic. It provides a new idea to develop new type of electrochemical biosensors, and it has broad application prospects.
     In this paper, the nanomaterials (layered double hydroxide compounds and exfoliated nanosheets) were used to immobilize Tyrosinase (Tyr) or Myoglobin (Mb) and investigate the electrochemical properties. The main contents of the thesis are given as follows:
     1. Mg-Al-Cl layered double hydroxide was applied to the immobilization of Tyr as a support matrix. Tyr almost retained bioactivity in the film. The electrochemical results revealed that it can be applied for determination of food preservative, benzoic acid.The detection of benzoic acid was performed via its inhibiting action on the Tyr/Mg-Al-Cl LDHs modified screen-print electrode. This inhibitor biosensor was successfully applied for the determination of benzoic acid in some real samples.
     2. Mb has been intercalated into Mg-Al-LDHNS by delamination and restacking through XRD analysis, and the direct electron transfer between the intercalated Mb and the underlying electrode was studied. Mb intercalated into Mg-Al-LDHNS retained its native secondary structure partly. The Mb-Mg-Al-LDHNS/GCE showed electrocatalytic activity in the reduction of H2O2.
引文
[1]司士辉,生物传感器[M].北京:化学工业出版社,2003,1-3
    [2]Clark L C, Lyons C. Electrode systems for continuous monitoring in cardiovascular surgery[J]. Ann. NY Acad. Sci.,1962,102:29-45
    [3]张先恩.生物传感器[M].第一版.北京:化学工业出版社,2006.7
    [4]Yang Y H, Yang H F, Yang M H, Liu Y L, Shen G L, Yu R Q. Amperometric glucose biosensor based on a surface treated nanopotous ZrO2/Chitosan compsite film as immobilization matrix[J]. Anal. Chim. Acta,2004,525:213-220
    [5]Vidal J C, Esperanza G R, Castillo J R. Recent advances in electropolymerized conducting polymers in amperometric biosensors [J]. Microchim. Acta,2003,143:93-111
    [6]吴金玲.层状纳米材料增强电化学生物传感器的研究[D].北京:北京化工大学,2006
    [7]张玲.无机纳米材料、溶胶凝胶材料在电化学生物传感器中的研究[D].合肥:中国科学技术大学,2007
    [8]布莱恩R.埃金斯著,罗瑞贤,陈亮寰,陈蔼璠译.化学传感器与生物传感器[M].第一版.北京:化学工业出版社,2005.103
    [9]Albery W J, Bartlett P N, Craston D H. Amperometric enzyme electrodes part II. Conducting salts as electrode materials for the oxidation of glucose oxidation [J]. J. Electroanal. Chem.,1985,194:223-235
    [10]Wang J. Glucose biosensors:40 years of advances and challenges [J]. Electroanalysis, 2001,13:983-988
    [11]Khan G F, Ohwa M, Wernet W. Design of a stable charge transfer complex electrode for a third-generation amperometric glucose gensor [J]. Anal. Chem.,1996,68:2939-2945
    12] Tian Y, Mao L, Okajima T, Ohsaka T. Superoxide dismutase-based third-generation biosensor for superoxide anion [J]. Anal. Chem.,2002,74:2428-2434
    [13]Zhang Y, He P L, Hu N F. Horseradish peroxidase immobilized in TiO2 nanoparticale films on pyrolytic graphite electrodes:direct electrochemistry and bioelectrocatalysis [J]. Electrochim. Acta,2004,49:1981-1988
    [14]黎雪莲.新型生物分子固定技术用于构建生物传感器的研究[D].重庆:西南大学,2006
    [15]罗宏等.生物传感器在医学中的应用及发展前景[J].医疗设备信息.2006,11:40-44
    [16]罗贤波等.基于电流型生物传感器的手持式多参数生化检测仪[J].传感技术学报.2005.9
    [17]Jiadong Huang, et al. A highly-sensitive 1-lactate biosensor based on sol-gel film combined with multi-walled carbon nanotubes (MWCNTs) modified electrode[J]. Materials Scienc and Engineering.2007,27:29-34
    [18]Karube,I. et al.,Biotechnol.Bioeng,1977,19:1535-1547
    [19]张悦等.生物传感器快速测定BOD仪的开发[J].高技术通讯.2001,(4):55-57
    [20]J. P. Hart, A. K. Abass, D.Cowell, Biosens. Bioelectron.,2002,17,389-394
    [21]Paul T, Charles, Paul R et al. On-site immunoanalysis of nitrate and nitroaromatic compounds inground-water [J]. Environmental Science and Technology,2000,34(21): 4641-4650
    [22]Shulga O, Kirchhoff J R, An acetylcholinesterase enzyme electrode stabilized by an electrodeposited gold nanoparticle layer [J]. Electrochemistry Communications 2007,9:
    935-940
    [23]韩树波,李新,郭美.化学通报.2000,2,49
    [24]Serban S, Danet A F, El Murr. N. Journal of Agriculture and Food Chemsitry,2004, 52(18):5588-5592
    [25]Barsan M M, Klincar J, Batic M, Brett C M A. Talanta,2007,71(5):1893-1900
    [26]Niculescu M, Erichsen T, Sukharev V, Kerenyi Z,. Anal. Chim. Acta,2002,463(1):39-51
    [27]缪煜清,刘仲明,官建国.纳米技术在生物传感器中的应用[J].传感器技术,2002,21(11):61-64
    [28]谢宗红.新型纳米材料在酶生物传感器中的研究及应用[D].上海:华东师范大学,2007
    [29]耿利娜,相明辉,李娜.化学进展,层状无机化合物-磷酸锆的研究和应用进展,2004,16(5):717-727
    [30]Alberti G, Costantino U. Comprehensive Supramolecular Chemistry. Oxford, UK: Elsevier,1996. Vol 7, Chapter 1,1-24
    [31]Mallouk T E, Gavin J A. Acc. Chem. Res.,1998,31:209-217
    [32]Lu X, Zhou J, Lu W, Liu Q, Li J. Carbon nanofiber-based composites for the construction of mediator-free biosensors[J]. Biosens. Bioelectron.,2008,23:1236-1243
    [33]Zhang H, Fan L, Yang S. Significantly accelerated direct electron-transfer kinetics of hemoglobin in a C60-MWCNT nanocomposite Film[J]. Chem. Eur. J.,2006,12: 7161-7166
    [34]Petit C, Gonzalez-Cortes A, Kauffmann J M. Preparation and characterization of a new enzyme electrode based on solid paraffin and activated graphite particles [J]. Talanta,1995, 42:1783-1789
    [35]Ruan CM, Yang F, Xu JS, Lei CH, Deng JQ. Immobilization of methylene blue using a-zirconium phosphate and its application within a reagentless amperometric hydrogen peroxide biosensor[J]. Electroanal.,1997,15:1180-1184
    [36]Yang F, Ruan CM, Xu JS, Lei HH, Deng JQ. An amperometric biosensor using toluidine blue as an electron transfer mediator intercalated in a-zirconium phosphate-modified horseradish peroxidase immobilization matrix[J]. Fresenius J. Anal. Chem.,1998,361: 115-118
    [37]Malinauskas A, Ruzgas T, Gorton L. Electrocatalytic oxidation of coenzyme NADH at carbon paste electrodes, modified with zirconium phosphate and some redox mediators [J]. J. Colloid Interf. Sci.,2000,224:325-332
    [38]张国荣,王艳玲.新型纳米银-磷酸锆-中性红复合膜修饰电极对过氧化氢电催化还原[J].分析化学,2003,31(12):1421-1424
    [39]Feng JJ, Xu JJ, Chen HY. Synergistic effect of zirconium phosphate and Au nanoparticles on direct electron transfer of hemoglobin on glassy carbon electrode[J]. J. Electroanal. Chem.,2005,585:44-50
    [40]Kumar CV, Chaudhari A. Proteins immobilized at the galleries of layered α-zirconium phosphate:structure and activity studies[J]. J. Am. Chem. Soc.,2000,122:830-837
    [41]Chaudhari A, Kumar CV. Intercalation of proteins into a-zirconium phophonates:turning the binding affinities with phosphonate functions[J]. Micropor. Mesopor. Mater.,2005,77: 175-187
    [42]Kumar C V, Chaudhari A. Efficient Renaturation of immobilized met-hemoglobin at the
    galleries of a-zirconium phosphonate[J]. Chem. Mater.,2001,13:238-240
    [43]Wang QG, Gao QM, Shi JL. Reversible intercalation of large-capacity hemoglobin into in situ prepared titanate interlayers with enhanced thermal and organic medium stabilites[J]. Langmuir,2004:20:10231-10237
    [44]Zhang L, Zhang Q, Lu XH, Li JH. Direct electrochemistry and electrocatalysis based on film of horseradish peroxidase intercalated into layered titanate nano-sheets[J]. Biosens. Bioelectron.,2007,23:102-106
    [45]Zhang L, Zhang Q, Li JH. Layered titanate nanosheets intercalated with myoglobin for direct electrochemistry[J]. Adv. Funct. Mater.,2007,17:1958-1965
    [46]Gao L, Gao QM. Hemoglobin niobate composite based biosensor for efficient determination of hydrogen peroxide in a broad pH range[J]. Biosens. Bioelectron.,2007, 22:1454-1460
    [47]De Melo JV, Cosnier S, Mousty C, Martelet C, Jaffrezic-Renault N. Urea biosensors based on immobilization of urease into two oppositely charged clays(laponite and Zn-Al layered double hydroxides)[J]. Anal. Chem.,2002,74:4037-4043
    [48]Shan D, Cosnier S, Mousty C. HRP/[Zn-Cr-ABTS] redox clay-based biosensor:design and optimization for cyanide detection[J]. Biosens. Bioelectron.,2004,20:390-396
    [49]Shan D, Cosnier S, Mousty C. HRP wiring by redox active layered double hydroxides: application to the mediated H2O2 detection[J]. Anal. Lett.,2003,36:909-922
    [50]Mousty C, Vieille L, Cosnier S. Laccase immobilization in redox active layered double hydroxides:a reagentless amperometric biosensor[J]. Biosens. Bioelectron.,2007,22: 1733-1738
    [51]Shan D, Yao WJ, Xue HG. Amperometic detection of glucose with glucose oxidase immobilized in layered double hydroxides[J]. Electroanalysis,2006,18:1485-1491
    [52]王燕娜,单丹,朱明娟,薛怀国.基于无机新型材料类水滑石(LDHs)的黄嘌呤生物传感器[A].见:第十四次全国电化学会议论文集[C].2007,1011-1012
    [53]Barhoumi H, Maaref A, Rammah M, Martelet C, Jaffrezic N, Mousty C, Vial S, Forano C. Urea biosensor based on Zn3Al-urease layered double hydroxides nanohybrid coated on insulated silicon structures[J]. Mater. Sci. Eng. C,2006,26:328-333
    [54]Vial S, Prevot V, Leroux F, Forano C. Immobilization of urease in ZnAl layered double hydroxides by soft chemistry routes[J]. Micropor. Mesopor. Mater.,2008,107:190-201
    [55]Xu Chen, Chenglin Fu, Yi Wang, Wensheng Yang, David G Evans. Direct electrochemistry and electroatalysis based on film of horseradish peroxidase intercalated into Ni-Al layered double hydroxide nanosheets. Biosensors and Bioelectronics.,2008, 24:356-361
    [56]Lu J, Drazl L, Worden R, Lee I. Simple fabrication of a highly sensitive glucose biosensor using enzymes immobilized in exfoliated graphite nanoplatelets nafion membrane[J]. Chem. Mater.,2007,19:6240-6246
    [57]Lu J, Do I, Drzal L, Worden R, Lee I. Nanometal-decorated exfoliated graphite nanoplatelet based glucose biosensors with high sensitivity [J]. Anal. Chem.,2009,81: 2378-2382
    [58]Chenglin Fu, Wensheng Yang, Xu Chen. Graphite nanoplatelets-based composites for mediator-free biosensor applications. The Analyst,134(10):2135-2140
    [59]Chenglin Fu, Wensheng Yang, Xu Chen, David G Evans. Direct electrochemistry of glucose oxidase on a graphite nanosheet-Nafion composite film modified electrode. Electrochemistry Communications.,2009,11:997-1000
    [60]Rotariu, L.;Bala, C.;Magearu, V. Yeast cells sucrose biosensor based on a potentiometric oxygen electrode. Anal. Chim.Acta 2002,29:215-222
    [61]Kim, M.;Kim, M.-J. Isocitrate annalysis using a potentiometric biosensor with immobilised enzyme in a FIA system. Food Res. Int.2003,36:223-230
    [62]Verma, N.;Singh, M. A disposable microbial based biosensor for quality control in milk. Biosens. Bioelectron.2003,18:1219-1224
    [63]Morales M D, Morante S, Escarpa A et al. Talanta,2002,57(6):1189-1198
    [64]Dzyadevich S V, Soldatkin A P, Shulga A.A., et al. Zhurnal-Analitichskoi-Khimii,1994, 49(9):874-878
    [65]Pan, Z.;Wang, L.;Mo, W. J. Anal. Chim. Acta.,2005,545:218-223
    [66]Dong C., Wang W., Headspace solid-phase microextraction applied to the simultaneous determination of sorbic and benzoic acid in beverages, Anal. Chim. Acta,2006,562: 23-29
    [67]Dong, C.;Mei, Y.;Chen, L. J Chromatogr A.2006,1117:109-114
    [68]Thomassin, M.;Cavalli, E.;Guillaume, Y, J Pharm Biomed Anal,1997,15:831-838
    [69]Labat, L.;Kummer, E.;Dallet, P.;Dubost, J.P. J Pharm Biomed Anal,2000,23:763-769
    [70]Reviejo, A.J.;Fernandez, C.;Liu, F.;Pingarron, J.M.;Wang, J.Anal Chim Acta,1995,315: 93-99
    [71]Deng, Q.;Dong, S.J. Analyst,1996,121:1979-1982
    [72]Streffer, K.;Kaatz, H.;Bauer, C.G., Biochemistry.1999,38:122-133
    [73]Morales, M.D.;Morante, S.;Escatpa, A.;Gonzalez, M.C. Talanta,2002,57:1189-1198
    [74]Topcu, S.;Sezginturk, M.K.;Dinckaya, E. Biosnes. Bioelectron,2004,20:592-597
    [75]Shan, D.;Shi, Q.F.;Zhu, D.B.;Xue, H.G Talanta,2007a,72:1767-1768
    [76]Shan D, Mousty C, Cosnier S. Subnanomolar cyanide detection at polyphenol oxidase/clay biosensors [J]. Anal. Chem.,2004,76:178-183
    [77]Robb D.A.,Tyrosinase, Copper Proteins and Copper Enzymes,1984,2:207-240.
    [78]Friedman M., Food Browning and Its Prevention:An Overview, J. Agric. Food Chem., 1996,44:631-653
    [79]Mosher D.B., Pathak M.A., Fitzpatrick T.B., Vitiligo, Pathogenesis Diagnosis and Treatment. In update:Dermatology in General Medicine. In Fitapatrick, T.B., Eisen, A.Z., Wolff, K., Freedberg, I.M., Austen, K.F., Eds.;McGraw-Hill:New York,1983,205-216
    [80]Maeda K., Fukuda M., In vitro effectiveness of several whitening cosmetic components in human melanocytes, J.Soc.Cosmet.Chem.,1991,42:361-368
    [81]Riley P.A., Tyrosinase kinetics:A semi-quantitative model of the mechanism of oxidation of monohydric and dihydric phenolic substrate-reply, J Theor.Biol.,2000,203:1-12
    [82]Kamahldin H., Eng W.T., Direct spectrophotometric assay of monooxygenase and oxidase activities of mushroom tyrosinase in the prosence of synthetic and natural substrates, Anal.Bioch.,2003,312(1):23-32
    [83]Lorena G.F., Jose N.R., Francisco G., Analysis and interpretation of the action mechanism of mushroom tyrosinase on monophenols and diphenols generating highly unstable o-quinines, Biochim.Biophys. Acta,2001,1548(1):1-22
    [84]Shan, D.;Mousty, C.;Cosnier, S. Anal. Chem.,2004,76:178-183
    [85]Sezginturk, M.K.;Goktug, T.;Dinckaya, E. Food Techno Biotechhol,2005,43:329-334
    [86]Zhao, Q.;Guan, L.;Gu, Z.;huang, Q. Electroanalysis,2005,17:85-88
    [87]Saab, B.;Bari, M.F.;Saleh, M.L.;Ahmad, K.;Talib, M.K.M.J Chromatog A.2005,1073: 393-397
    [88]Li L, Ma R Z, Ebina Y, Lyi N, Sasaki T. Positively charged nanosheets derived via total delamination of layered double hydroxides[J]. Chem. Mater.,2005,17:4386-4391
    [89]De Groot M T, Merkx M, Koper M T M. Heme release in myoglobin-DDAB films and its role in electrochemical NO reduction[J]. J.Am. Chem. Soc.,2005,127:16224-16232
    [90]Guto P M, Rusling J F. Myoglobin retains iron heme and near-native conformation in DDAB films prepared from pH 5 to 7 dispersions [J]. Electrochem. Commun.,2006,8: 455-459
    [91]De Groot M T, Merkx M, Koper M T M. Additional evidence for heme release in myoglobin-DDAB films on pyrolitic graphite[J]. Electrochem. Commun.,2006,8: 999-1004
    [92]Wu Y H, Shen Q C, Hu S S. Direct electrochemistry and electrocatalysis of heme-proteins in regenerated silk fibroin film[J]. Anal. Chim. Acta,2006,558:179-186
    [93]Liu S Q, Ju H X. Electrocatalysis via direct electrochemistry of myoglobin immobilized on colloidal gold nanoparticles[J]. Electroanalysis,2003,15:1488-1493
    [94]Zhang Y H, Chen X, Yang W S. Direct electrochemistry and electrocatalysis of myoglobin immobilized in zirconium phosphate nanosheets film[J]. Sens. Actuators B:Chem.,2008, 130:682-688

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700