用户名: 密码: 验证码:
粒子群算法的研究及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
粒子群算法(Particle swarm optimization, PSO)是基于种群的优化算法。由于其具有快速收敛和操作简单等特点,在工程、经济管理等诸多领域得到广泛应用,成为智能计算领域研究的新热点。
     然而,与其它进化算法一样,PSO也有早熟收敛现象;同时,由于要解决的实际问题,大多都包含约束条件,或者含有多个目标的优化问题,而PSO在提出时,仅针对单目标优化问题,不具备处理约束条件和多目标的机制。鉴于这些不足,本论文的主要研究工作如下,
     (1)对粒子的运动轨迹和PSO的收敛性进行分析
     首先,构造线性离散动态系统方程,对单个粒子的状态变化进行分析;其次,采用李亚普诺夫意义下稳定的充分必要条件,给出粒子运动稳定的条件,为算法的改进提供理论支持。
     (2)提出两种改进的单目标粒子群算法
     ①提出基于动态邻居和广义学习的粒子群算法(DNMPSO)。首先,提出一种动态邻居拓扑结构,并分析了这种结构的优势及动态邻居拓扑结构重新构建的间隔代数对算法的影响;其次,提出一种广义学习策略,从搜索行为上对其进行分析;然后,对种群陷入局部最优解的原因进行分析,提出一种水平水合变异操作,使每个粒子能更好的进行局部搜索,提升种群向全局最优解飞行的概率;最后,为进一步提升DNMPSO算法求解复杂优化问题的能力,引入局部搜索算法,并对局部搜索算法的实现进行了分析。仿真结果表明DNMPSO在求解精度和鲁棒性方面具有一定优势。
     ②提出基于K均值聚类的动态多种群粒子群算法(KDMSPSO)。首先,提出一种基于K均值聚类算法构建多种群策略,为增强子群间的信息交流,采取动态组建子群策略;其次,对种群多样性进行分析,以确定动态多种群的优势所在,并分析动态多种群的重新构建代数对算法的影响;然后,通过对粒子学习样本的分析,提出一种改进的学习策略,即“社会部分”学习样本不是种群中运行最优的粒子,而是粒子所在子群的中心粒子;最后,考虑到动态多种群KDMSPSO算法的优势,将其用来求解带有约束条件的优化问题,为实现对约束条件的处理,研究每个子群的任务分配策略(将约束条件看作任务),每个子群成员确定策略,粒子间的优劣比较规则,进而提出一种求解约束优化问题的改进粒子群算法(DMCPSO)。仿真结果表明DMCPSO算法用较少的函数评价次数可获得较优的最优解。
     (3)提出两种多目标粒子群算法,并提出三种提升算法运行效率的策略
     ①提出ACG-MOPSO算法。首先,分析PSO求解多目标优化问题的关键点(学习样本的选取和外部存档的规模控制),针对两个关键问题的解决,采用自适应网格对粒子的密度信息和拥挤距离进行研究,并研究外部存档规模控制策略;其次,研究如何通过密度信息和拥挤距离信息来确定全局最优粒子作为“社会部分”的学习样本;然后,从如何充分利用每个粒子历史最优位置的信息角度出发,研究粒子自身最优位置更新策略;最后,提出一种基于自适应网格和拥挤距离的多目标粒子群算法(ACG-MOPSO)。仿真结果表明ACG-MOPSO算法在处理Pareto前沿为凸、凹、不连续和多峰问题时,在解的多样性和收敛性上相比其它算法有更好的表现。
     ②提出εDMOPSO算法。为提升PSO求解多目标优化问题的效率,采用一种对经典的Pareto占优关系改进的ε占优来研究粒子间的优劣,该方法不仅保证外部存档中非劣解的收敛性和分布性,而且能根据ε取值自动限制外部档案的规模,不需额外策略,极大地提升了算法的运行效率。并对DNMPSO算法的广义学习策略进行修改以适应多目标优化问题,使得种群多样性得到提升,进而提升种群向真实Pareto前沿飞行的概率。仿真结果表明εDMOPSO算法相比其它算法获得了较高的运行效率和质量更高的非劣解。
     ③提出改进算法运行效率的三种策略。首先,提出并分析种群正交初始化,对远离Pareto前沿的所有非劣解的变异操作,对Pareto前沿的边界点和稀疏部分采取基于均匀设计的交叉操作三种策略;其次,研究三种策略的混合作用,即正交初始化+变异操作,正交初始化+均匀交叉操作,正交初始化+变异操作+均匀交叉操作;最后,在ACG-MOPSO和εDMOPSO算法中引入三种策略,并在有代表意义的高维测试函数DTLZ1,DTLZ2,DTLZ3和DTLZ7上进行仿真实验,并对实验结果从统计学角度进行分析。仿真结果表明这些策略在提升解的分布性和收敛性方面有积极的作用。
     (4)本文提出的几种改进PSO在解决实际问题中的应用研究DNMPSO算法在土壤水分运动曲线的Van Genuchten方程中的应用;研究基于K均值聚类策略并带有约束处理技术的粒子群算法(DMCPSO)求解带有资产数量和边界约束的CCMV模型;研究εDMOPSO算法求解带有风险约束的投资组合模型。仿真结果表明本文提出的改进算法能有效地求解上述三个实际问题。
Particle swarm optimization (PSO) is a kind of optimization algorithm based on swarm. Because of its fast convergence and simple operation, etc, PSO is widely used in many fields such as engineering and business management. Now it has become a hot topic in intelligence research.
     However, similar to other intelligence algorithms, PSO is also vulnerable to premature convergence, and PSO originally proposed for single objective optimization problems has no mechanisms of dealing with constraint conditions and many objectives. In order to solve these problems, this paper mainly includes the following parts:
     (1) The analysis of particle trajectory and PSO convergence behavior Firstly, the state change of single particle is analyzed by linear discrete dynamic system equations; secondly, adopting necessary and sufficient condition of Lyapunov stability sense gives the conditions of particle motion stability and defines the condition of PSO convergence to provide theoretical support for PSO algorithm improvement.
     (2) The research of two improved single objective PSO PSO based on dynamic neighborhood and comprehensive learning strategy (DNMPSO) is proposed. The DNMPSO thought is the following: firstly, a dynamic topology is proposed, and the advantages of dynamic neighborhood topology and the effect of the interval iteration of reconstructing neighborhood on the algorithm are analyzed, respectively; secondly, a comprehensive learning strategy is proposed and the learning strategy is analyzed from the search behavior; thirdly, by analyzing the reason that PSO gets into the local optima, a parallel hybrid mutation is used to work for local search, which will improve the ability of escaping from local optima; finally, to further enhance the DNMPSO ability at solving complicated multi-modal problems, the local search algorithm is introduced and the realization of the local algorithm is also analyzed. Simulation results show that DNMPSO is better than the others in accuracy and robustness.
     The dynamic multi-swarm PSO based on K-means clustering algorithm (KDMSPSO) is proposed. The KDMSPSO thought is the following: firstly, a dynamic multi-swarm strategy is proposed based on K-means clustering algorithm and to increase the message exchange of sub-swarms, the sub-swarm is dynamically constructed;secondly, the diversity of population is analyzed and the effect of interval iteration of reconstructing multi-swarm on PSO is discussed; thirdly, by analyzing the learning exemplar of each particle, an improved learning strategy is proposed, i.e., the learning exemplar of social part for each particle is not the best performing particle in each sub-swarm but the center particle in the corresponding sub-swarm; finally, in view of the advantage of dynamic multi-swarm, KDMSPSO is used to solve the optimization problem with constraint conditions. In order to deal with the constraint condition, the task allocation strategy of each sub-swarm (here, the constraint conditions represent the optimization task), the choice strategy of the members for each sub-swarm and the particle comparative rules between particles are discussed, respectively, as a result, a solving constraint optimization PSO is proposed (DMCPSO). Simulation results show that DMCPSO may obtain the better optimal solution in less function evaluation times.
     (3) The research of two multi-objective PSO and three strategies to improve PSO performance efficiency
     ACG-MOPSO is proposed. The thought is the following: firstly, according to the key points (learning exemplar selection and size control of the external archive) for solving multi-objective problem, the adaptive grid is used to research density message, crowding distance and the strategy of size control of the external archive; secondly, how to determine the global best particle by the information of density and crowding distance is discussed; thirdly, from how to make full use of the best previous position of each particle (pbest), the update strategy of pbest is discussed; finally, a new multi-objective particle swarm optimization (ACG-MOPSO) is proposed based on adaptive grid and the crowding distance. Simulation results show that ACG-MOPSO obtains the better distributivity and convergence property of solution compared with other algorithms in dealing with, convex, concave, discontinuous and multi-peak problems of Pareto front.
     εDMOPSO is proposed. To improve the efficiency of PSO in multi-objective optimization problem, a multi-objective PSO (εDMOPSO) is proposed. The algorithm has the following characteristics: firstly, the classic Pareto dominant improvement,εdominance is used to discuss dominant relationship of particles, which not only ensures the distributivity and convergence property of solution in the external archive but also automatically limits the size of external archive byεvalue that improve algorithm efficiency; secondly, the modification DNMPSO learning strategy for multi-objective problems is adopted to improve diversity of swarm, further to improve the swarm flight probability to the true Pareto front. Simulation results show thatεDMOPSO obtains higher efficiency and quality higher solution compared with other algorithms.
     Three strategies to improve PSO performance are proposed, they are orthogonal initialization swarm, the mutation operator of the non-dominated solutions away from Pareto front, and the crossover of the boundary points and sparse parts on Pareto front based on uniform design. The mixing of the three strategies are also studied, namely, orthogonal initialization + mutation, orthogonal initialization + uniform crossover, and orthogonal initialization + mutation operation + uniform crossover operation. At last, three strategies are introduced in ACG-MOPSO andεDMOPSO, respectively, and the simulation experiment is conducted in a high dimensional test functions DTLZ1, DTLZ2, DTLZ3 and DTLZ7. Simulation results show that these strategies have a positive effect on improvement of distributivity and convergence property.
     (4) The practical application of the proposed PSO in this paper This part mainly includes three applications, namely, DNMPSO application in curve of soil water movement (Van Genuchten equations), PSO with constraint handling techniques based on K means clustering strategy (denoted as DMCPSO) in solving the CCMV model with the boundary constraints and the number of assets, andεDMOPSO application in solving portfolio model with risk constraints. Simulation results show that the proposed improvement PSO can effectively solve the above three practical problems.
引文
[1] Kennedy J, Eberhart C. Particle swarm optimization [C]. In Proceedings of IEEE International Conference on Neural Networks, Washington, 1995: 1942-1948.
    [2] Van D B F. An Analysis of Particle Swarm Optimizers [D]. University Of Pretoria(Ph.D), 2001.
    [3] Clerc M, Kennedy J. The particle swarm - Explosion, stability, and convergence in a multidimensional complex space [J]. IEEE Transactions on Evolutionary Computation, 2002, 6(1): 58-73.
    [4] Trelea I C. The particle swarm optimization algorithm: convergence analysis and parameter selection [J]. Information Processing Letters, 2003, 85(6): 317-325.
    [5] Cui Z H, Zeng J C. A guaranteed global convergence particle swarm optimizer [C]. In the 4th International Conference on Rough Sets and Current Trends in Computing, Uppsala, Sweden, 2004: 762-767.
    [6] Zeng J C. Guaranteed global convergence Particle swam optimization [J]. Computer Research and Development, 2004, 41(7): 1333-1338.
    [7] Jiang M, Luo Y P, Yang S Y. Stochastic convergence analysis and parameter selection of the standard particle swarm optimization algorithm [J]. Information Processing Letters, 2007, 102(1): 8-16.
    [8]胡旺,李志蜀.一种更简化而高效的粒子群优化算法[J].软件学报, 2007(4): 861-868.
    [9] Chen X, Li Y M. On convergence and parameter selection of an improved particle swarm optimization [J]. International Journal of Control Automation and Systems, 2008, 6(4): 559-570.
    [10] Latiff A, Tokhi M O. Fast Convergence Strategy for Particle Swarm Optimization using Spread Factor [C]. In IEEE Congress on Evolutionary Computation, Trondheim, Norway, 2009: 2693-2699.
    [11]高雷阜,刘旭旺.基于混沌的弹性粒子群全局优化算法[J].控制与决策, 2009, 24(10): 1545-1548.
    [12] Yang L, Jiang M Y. Dynamic Group Decision Making Consistence Convergence Rate Analysis Based on Inertia Particle Swarm Optimization Algorithm [C]. In Proceedings of First Iita International Joint Conference on Artificial Intelligence, Hainan Island, China, 2009: 492-496.
    [13] Fang W, Sun J, Xie Z P. Convergence analysis of quantum-behaved particle swarm optimization algorithm and study on its control parameter [J]. Acta Physica Sinica, 2010, 59(6): 3686-3694.
    [14] Wei J X, Wang Y P. An Infeasible Elitist Based Particle Swarm Optimization for Constrained Multiobjective Optimization and Its Convergence [J]. International Journal of Pattern Recognition and Artificial Intelligence, 2010, 24(3): 381-400.
    [15] Kennedy J. Small Worlds and Mega-minds:Effects of Neighborhood Topology on Particle Swarm Performance. [C]. In IEEE Congress on Evolutionary Computation, Piscataway, NJ, 1999:1931-1938.
    [16] Mendes R, Kennedy J, Neves J. The fully informed particle swarm: Simpler, maybe better [J]. IEEE Transactions on Evolutionary Computation, 2004, 8(3): 204-210.
    [17] Parsopoulos K E, Vrahatis M N. Unified particle swarm optimization in dynamic environments [C]. In Proceedings of Applications on Evolutionary Computing - EvoWorkshops: EvoBIO, EvoCOMNET, EvoHOT, EvoIASP, EvoMUSART, and EvoSTOC, Lausanne, Switzerland, 2005:590-599.
    [18] Elshamy W, Emara H M, Bahgat A. Clubs-based Particle Swarm Optimization [C]. In IEEE Swarm Intelligence Symposium, Honolulu, HI, United states, 2007: 289-296.
    [19] Emara H M. Adaptive Clubs-based Particle Swarm Optimization [C]. In American Control Conference, St. Louis, MO, United states, 2009: 5628-5634.
    [20] Li X D. Niching Without Niching Parameters: Particle Swarm Optimization Using a Ring Topology [J]. IEEE Transactions on Evolutionary Computation, 2010, 14(1): 150-169.
    [21] Luh G C, Lin C Y. A Binary Particle Swarm Optimization for Structural Topology Optimization [C]. In the Third International Joint Conference on Computational Science and Optimization Huangshan, Anhui, China, 2010: 395-399.
    [22] Miyagawa E, Saito T. Particle Swarm Optimizers with Growing Tree Topology [J]. IEICE Transactions on Fundamentals of Electronics Communications and Computer Sciences, 2009, 92(9): 2275-2282.
    [23] Akat S B, Gazi V. Particle Swarm Optimization with Dynamic Neighborhood Topology: Three Neighborhood Strategies and Preliminary Results [C]. In IEEE Swarm Intelligence Symposium, St. Louis, MO, United states, 2008: 152-159.
    [24] Zhao S Z, Liang J J, Suganthan P N. Dynamic Multi-Swarm Particle Swarm Optimizer with Local Search for Large Scale Global Optimization [C]. In IEEE Congress on Evolutionary Computation, St. Louis, MO, United states, 2008: 3845-3852.
    [25] Min H, Jianchao F. Particle swarm optimization using dynamic neighborhood topology for large scale optimization [C]. In 8th World Congress on Intelligent Control and Automation, Jinan, China, 2010: 3138-3142.
    [26]刘衍民,赵庆祯,隋常玲.一种基于动态邻居和变异因子的粒子群算法[J].控制与决策, 2010, 25(7): 968-974.
    [27] Ratnaweera A, Halgamuge S K, Watson H C. Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients [J]. IEEE Transactions on Evolutionary Computation, 2004, 8(3): 240-255.
    [28] Li C, Yang S X. An Adaptive learning particle swarm optimizer for function optimization [C]. In IEEE Congress on Evolutionary Computation, Trondheim, Norway, 2009: 381-388.
    [29] Van D B F, Engelbrecht A P. A cooperative approach to particle swarm optimization [J]. IEEE Transactions on Evolutionary Computation, 2004, 8(3): 225-239.
    [30] Liang J J, Qin A K, Suganthan P N. Comprehensive learning particle swarm optimizer for global optimization of multimodal functions [J]. IEEE Transactions on Evolutionary Computation, 2006, 10(3): 281-295.
    [31] Wang Y, Li B, Yuan B. Hybrid of comprehensive learning particle swarm optimization and SQP algorithm for large scale economic load dispatch optimization of power system [J]. Science China-Information Sciences, 2010, 53(8): 1566-1573.
    [32] Zhan Z H, et al. Orthogonal Learning Particle Swarm Optimization [J]. IEEE Transactions on Evolutionary Computation, 2010, PP(99): 1-1.
    [33] Mahadevan K, Kannan P S. Comprehensive learning particle swarm optimization for reactive power dispatch [J]. Applied Soft Computing, 2010, 10(1): 641-652.
    [34] Wolpert D H, Macready W G. No free lunch theorems for optimization [J]. IEEE Transactions on Evolutionary Computation 1997, 1(2): 67-82.
    [35]陶新民,徐晶,杨立标.一种改进的粒子群和K均值混合聚类算法[J].电子与信息学报, 2010, 32(1): 92-97.
    [36] Wei B, Zhao Z. An improved particle swarm optimization algorithm based k-means clustering analysis [J]. Journal of Information and Computational Science, 2010, 7(3): 511-518.
    [37] Qin J, Yin Y X, Ban X J. A Hybrid of Particle Swarm Optimization and Local Search for Multimodal Functions [C]. In Advances in Swarm Intelligence - First International Conference, Beijing, China, 2010: 589-596.
    [38] Ling S H, et al. Hybrid Particle Swarm Optimization With Wavelet Mutation and Its Industrial Applications [J]. Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on, 2008, 38(3): 743-763.
    [39] Hui W, Hui L, Yong L. Opposition-based particle swarm algorithm with cauchy mutation [C]. In IEEE Congress on Evolutionary Computation, Singapore, 2007: 4750-4756.
    [40] Wang X P, Tang L X. An Improved Particle Swarm Optimization for Permutation Flowshop Scheduling Problem with Total Flowtime Criterion [C]. In Advances in Swarm Intelligence - First International Conference, Beijing, China, 2010: 144-151.
    [41] Hu C Y, Wu X N, Wang Y J. Multi-swarm Particle Swarm Optimizer with Cauchy Mutation for Dynamic Optimization Problems [J]. International Journal of Innovative Computing and Applications, 2009, 2(2): 443-453.
    [42] Deligkaris K V, et al. Thinned Planar Array Design Using Boolean PSO With Velocity Mutation [J]. Ieee Transactions on Magnetics, 2009, 45(3): 1490-1493.
    [43] Lee K, Baek, Kim J H. Particle Swarm Optimization driven by Evolving Elite Group [C]. In IEEE Congress on Evolutionary Computation, Trondheim, Norway, 2009: 2114-2119.
    [44] Ling S H, Lu H H C. Hybrid particle swarm optimization with wavelet mutation and its industrial applications [J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 2008, 38(3): 743-763.
    [45] Behnamian J, Ghomi S M T F. Development of a PSO-SA hybrid metaheuristic for a new comprehensive regression model to time-series forecasting [J]. Expert Systems with Applications, 2010, 37(2): 974-984.
    [46] Savsani V, Rao R V, Vakharia D P. Optimal weight design of a gear train using particle swarm optimization and simulated annealing algorithms [J]. Mechanism and Machine Theory, 2010, 45(3): 531-541.
    [47] Alavandar S, Jain T, Nigam M J. Hybrid bacterial foraging and particle swarm optimisation for fuzzy precompensated control of flexible manipulator [J]. International Journal of Automation and Control, 2010, 4(2): 234-251.
    [48] Saber A Y, Venayagamoorthy G K. Economic Load Dispatch using Bacterial Foraging Technique with Particle Swarm Optimization Biased Evolution [C]. In IEEE Swarm Intelligence Symposium, St. Louis, MO, United states, 2008: 103-110.
    [49] Olesen J R, Cordero H J, Zeng Y F. Auto-Clustering Using Particle Swarm Optimization and Bacterial Foraging [C]. In 4th International Workshop on Agents and Data Mining Interaction, Budapest, Hungary, 2009: 69-83.
    [50] Muller S, et al. Optimization based on bacterial chemotaxis [J]. IEEE Transactions on Evolutionary Computation, 2002, 6(1): 16-29.
    [51] Shu J, Li J. A Hybrid of Differential Evolution and Particle Swarm Optimization for GlobalOptimization [C]. In Third International Symposium on Intelligent Information Technology Application, NanChang, China, 2009: 138-141.
    [52] Xin B, et al. An adaptive hybrid optimizer based on particle swarm and differential evolution for global optimization [J]. Science China-Information Sciences, 2010, 53(5): 980-989.
    [53] Xing X, et al. A novel differential evolution scheme combined with particle swarm intelligence [C]. In IEEE Congress on Evolutionary Computation, Hong Kong, China, 2008: 1057-1062.
    [54] Nakano S, Ishigame A, Yasuda K. Particle Swarm Optimization based on the concept of Tabu Search [C]. In IEEE Congress on Evolutionary Computation, Singapore, 2007: 3258-3263.
    [55] Wang Y X, Xiang Q L, Zhao Z D. Particle swarm optimizer with adaptive tabu and mutation: A unified framework for efficient mutation operators [J]. ACM Transactions on Autonomous and Adaptive Systems, 2010, 5(1): 69-78.
    [56] Li Z C, Zheng D J, Hou H J. A Hybrid Particle Swarm Optimization Algorithm Based on Nonlinear Simplex Method and Tabu Search [C]. In 7th International Symposium on Neural Networks, Shanghai, China, 2010: 126-135.
    [57] Badamchizadeh M A, Madani K. Applying Modified Discrete Particle Swarm Optimization Algorithm and Genetic Algorithm for system identification [C]. In Computer and Automation Engineering (ICCAE), 2010 The 2nd International Conference on, 2010: 354-358.
    [58] Sadeghierad M, et al. Optimal design of the generator of microturbine using genetic algorithm and PSO [J]. International Journal of Electrical Power & Energy Systems, 2010, 32(7): 804-808.
    [59] Rashid M, Baig A R. Psogp: A Genetic Programming Based Adaptable Evolutionary Hybrid Particle Swarm Optimization [J]. International Journal of Innovative Computing Information and Control, 2010, 6(1): 287-296.
    [60] Kaveh A, Talatahari S. Particle swarm optimizer, ant colony strategy and harmony search scheme hybridized for optimization of truss structures [J]. Computers & Structures, 2009, 87(5): 267-283.
    [61] Niknam T. An efficient hybrid evolutionary algorithm based on PSO and ACO for distribution feeder reconfiguration [J]. European Transactions on Electrical Power, 2010, 20(5): 575-590.
    [62] Marinakis Y, et al. Ant colony and particle swarm optimization for financial classification problems [J]. Expert Systems with Applications, 2009, 36(7): 10604-10611.
    [63] Niknam T, Amiri B. An efficient hybrid approach based on PSO, ACO and k-means for cluster analysis [J]. Applied Soft Computing, 2010, 10(1): 183-197.
    [64] Jun S, Wei F, Wenbo X. A Quantum-Behaved Particle Swarm Optimization With Diversity-Guided Mutation for the Design of Two-Dimensional IIR Digital Filters [J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2010, 57(2): 141-145.
    [65] Yang K Q, Maginu K, Nomura H. Cultural algorithm-based quantum-behaved particle swarm optimization [J]. International Journal of Computer Mathematics, 2010, 87(10): 2143-2157.
    [66] Fang W, et al. A Review of Quantum-behaved Particle Swarm Optimization [J]. Iete Technical Review, 2010, 27(4): 336-348.
    [67] Coelho L D. Gaussian quantum-behaved particle swarm optimization approaches for constrained engineering design problems [J]. Expert Systems with Applications, 2010, 37(2): 1676-1683.
    [68] Yin P Y, et al. Cyber Swarm Algorithms - Improving particle swarm optimization using adaptive memory strategies [J]. European Journal of Operational Research, 2010, 201(2): 377-389.
    [69] Zhen Z, Wang D, Li M. Improved particle swarm optimizer based on adaptive random learning approach [C]. In IEEE Congress on Evolutionary Computation, Trondheim, Norway, 2009:1045-1048.
    [70] Zhao Q L. The Research of the Niche Particle Swarm Optimization Based on Self-adaptive Radius Technology [C]. In Asia-Pacific Conference on Information Processing, Shenzhen, China, 2009: 97-100.
    [71] Lin C J, Chen C H, Lin C T. A hybrid of cooperative particle swarm optimization and cultural algorithm for neural fuzzy networks and its prediction applications [J]. IEEE Transactions on Systems, Man and Cybernetics Part C: Applications and Reviews, 2009, 39(1): 55-68.
    [72] Juang C F, Wang C Y. A self-generating fuzzy system with ant and particle swarm cooperative optimization [J]. Expert Systems with Applications, 2009, 36(3): 5362-5370.
    [73] Eberhart R C, Shi Y. Evolving Artificial Neural Networks [C]. In Proceeding of International Conference on Neural Networks and Brain, Piscataway, NJ, 1998: 5-13.
    [74] Wei H L, Zhao Y F, Guo L Z. Lattice dynamical wavelet neural networks implemented using particle swarm optimization for spatio-temporal system identification [J]. IEEE Transactions on Neural Networks, 2009, 20(1): 181-185.
    [75] Liu C H, Hsu Y Y. Design of a Self-Tuning PI Controller for a STATCOM Using Particle Swarm Optimization [J]. IEEE Transactions on Industrial Electronics, 2010, 57(2): 702-715.
    [76] Wai R, Lee J, Chuang K. Real-Time PID Control Strategy for Maglev Transportation System Via Particle Swarm Optimization [J]. IEEE Transactions on Industrial Electronics, 2010, 58(2): 629-646.
    [77] Sharma K D, Chatterjee A, Rakshit A. A Hybrid Approach for Design of Stable Adaptive Fuzzy Controllers Employing Lyapunov Theory and Particle Swarm Optimization [J]. Fuzzy Systems, IEEE Transactions on, 2009, 17(2): 329-342.
    [78] Jun S, Wei F, Wenbo X. A Quantum-Behaved Particle Swarm Optimization With Diversity-Guided Mutation for the Design of Two-Dimensional IIR Digital Filters [J]. Circuits and Systems II: Express Briefs, IEEE Transactions on, 2010, 57(2): 141-145.
    [79] Hao G, et al. Multilevel Thresholding for Image Segmentation Through an Improved Quantum-Behaved Particle Swarm Algorithm [J]. Instrumentation and Measurement, IEEE Transactions on, 2010, 59(4): 934-946.
    [80] Scriven I, Junwei L, Lewis A. Electromagnetic Noise Source Approximation for Finite-Difference Time-Domain Modeling Using Near-Field Scanning and Particle Swarm Optimization [J]. IEEE Transactions on Electromagnetic Compatibility 2010, 52(1): 89-97.
    [81] Voumvoulakis E M, Hatziargyriou N D. A Particle Swarm Optimization Method for Power System Dynamic Security Control [J]. IEEE Transactions on Power Systems, 2010, 25(2): 1032-1041.
    [82] Karanki S B, Mishra M K, Kumar B K. Particle Swarm Optimization-Based Feedback Controller for Unified Power-Quality Conditioner [J]. IEEE Transactions on Power Delivery, 2010, 25(4): 2814-2824.
    [83] Biswal B, Dash P K, Panigrahi B K. Power Quality Disturbance Classification Using Fuzzy C-Means Algorithm and Adaptive Particle Swarm Optimization [J]. IEEE Transactions on Industrial Electronics, 2009, 56(1): 212-220.
    [84] AlRashidi M R, El-Hawary M E. A Survey of Particle Swarm Optimization Applications in Electric Power Systems [J]. IEEE Transactions on Evolutionary Computation, 2009, 13(4): 913-918.
    [85] Yang S, Li C. A Clustering Particle Swarm Optimizer for Locating and Tracking Multiple Optima in Dynamic Environments [J]. IEEE Transactions on Evolutionary Computation, 2010, 14(6): 959-974.
    [86] Pourmousavi S A, et al. Real-Time Energy Management of a Stand-Alone Hybrid Wind-Microturbine Energy System Using Particle Swarm Optimization [J]. IEEE Transactions on Sustainable Energy, 2010, 1(3): 193 - 201.
    [87] Ho S Y, Lin H S, Liauh W H. OPSO: Orthogonal Particle Swarm Optimization and Its Application to Task Assignment Problems [J]. IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems and Humans, 2008, 38(2): 288-298.
    [88] Fei T, Dong M, Hu Y F. Resource Service Composition and Its Optimal-Selection Based on Particle Swarm Optimization in Manufacturing Grid System [J]. IEEE Transactions on Industrial Informatics, 2008, 4(4): 315-327.
    [89] Park J B, Jeong Y W, Shin J R. An Improved Particle Swarm Optimization for Nonconvex Economic Dispatch Problems [J]. IEEE Transactions on Power Systems, 2010, 25(1): 156-166.
    [90] Ke M, Wang H G, Dong Z Y. Quantum-Inspired Particle Swarm Optimization for Valve-Point Economic Load Dispatch [J]. IEEE Transactions on Power Systems, 2010, 25(1): 215-222.
    [91] Cura T. Particle swarm optimization approach to portfolio optimization [J]. Nonlinear Analysis-Real World Applications, 2009, 10(4): 2396-2406.
    [92] Chen W, Zhang W G. The admissible portfolio selection problem with transaction costs and an improved PSO algorithm [J]. Physica a-Statistical Mechanics and Its Applications, 2010, 389(10): 2070-2076.
    [93] Li Y, et al. ISAR imaging of multiple targets using particle imaging of multiple targets using particle swarm optimisation - adaptive joint time frequency approach [J]. Signal Processing, IET, 2010, 4(4): 343-351.
    [94] Li Q, et al. Parameter identification for PEM Fuel Cell Mechanism Model Based on Effective Informed Adaptive Particle Swarm Optimization [J]. Industrial Electronics, IEEE Transactions on, 2010, PP(99): 1-1.
    [95] Broilo M, De Natale F G B. A Stochastic Approach to Image Retrieval Using Relevance Feedback and Particle Swarm Optimization [J]. Multimedia, IEEE Transactions on, 2010, 12(4): 267-277.
    [96] Yeh W C, Lin Y C, Chung Y Y. A Particle Swarm Optimization Approach Based on Monte Carlo Simulation for Solving the Complex Network Reliability Problem [J]. IEEE Transactions on Reliability, 2010, 59(1): 212-221.
    [97] Kulkarni R V, Venayagamoorthy G K. Particle Swarm Optimization in Wireless-Sensor Networks: A Brief Survey [J]. IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews, 2010, PP(99): 1-7.
    [98] Wai R J, Chuang K L, Lee J D. On-Line Supervisory Control Design for Maglev Transportation System via Total Sliding-Mode Approach and Particle Swarm Optimization [J]. IEEE Transactions on Automatic Control, 2010, 55(7): 1544-1559.
    [99] Juang C, Chang Y, Hsiao C. Evolving Gaits of A Hexapod Robot by Recurrent Neural Networks With Symbiotic Species-based Particle Swarm Optimization [J]. Industrial Electronics, IEEE Transactions on, 2010, PP(99): 1-1.
    [100] Sheng C, Xia H, Harris C J. Particle Swarm Optimization Aided Orthogonal Forward Regressionfor Unified Data Modeling [J]. IEEE Transactions on Evolutionary Computation, 2010, 14(4): 477-499.
    [101] Jing H, Dejia S, Li W. An adaptive discrete particle swarm optimization for TSP problem [C]. In Asia-Pacific Conference on Computational Intelligence and Industrial Applications, Wuhan, China, 2009: 393-396.
    [102] Wang C, Zeng M M, Li J. Solving traveling salesman problems with time windows by genetic particle swarm optimization [C]. In IEEE Congress on Evolutionary Computation, Hong Kong, China, 2008: 1752-1755.
    [103] Marinakis Y, Marinaki M. A Hybrid Multi-Swarm Particle Swarm Optimization algorithm for the Probabilistic Traveling Salesman Problem [J]. Computers and Operations Research, 2010, 37(3): 432-442.
    [104] Chen W N, et al. A Novel Set-Based Particle Swarm Optimization Method for Discrete Optimization Problems [J]. IEEE Transactions on Evolutionary Computation, 2010, 14(2): 278-300.
    [105] Marinakis Y, Marinaki M, Dounias G. A hybrid particle swarm optimization algorithm for the vehicle routing problem [J]. Engineering Applications of Artificial Intelligence, 2010, 23(1): 463-472.
    [106]吴斌,蔡红,樊树海.双倍体差分进化粒子群算法在VRPSDP中的应用研究[J].系统工程理论与实践, 2010, 30(3): 520-526.
    [107] Kao Y C, Lee S Y. Combining K-means and particle swarm optimization for dynamic data clustering problems [C]. In IEEE International Conference on Intelligent Computing and Intelligent Systems, Shanghai, China, 2009: 757-761.
    [108] Chiu C Y, Kuo T. Applying honey-bee mating optimization and particle swarm optimization for clustering problems [J]. Journal of the Chinese Institute of Industrial Engineers, 2009, 26(5): 426-431.
    [109] Jarboui B, Cheikh M, Siarry P. Combinatorial particle swarm optimization (CPSO) for partitional clustering problem [J]. Applied Mathematics and Computation, 2007, 192(2): 337-345.
    [110] Schaffer J D. Multiple objective optimization with vector evaluated genetic algorithms [C]. In IEEE international conference on genetic algorithms, Pittsburgh, USA, 1985: 93-100.
    [111] Deb K, Pratap A. A Fast and Elitist Multiobjective Genetic Algorithm: NSGA–II [J]. IEEE Transactions on Evolutionary Computation, 2002, 6(2): 182-197.
    [112] Coello C A C, Pulido G T, Lechuga M S. Handling multiple objectives with particle swarm optimization [J]. Ieee Transactions on Evolutionary Computation, 2004, 8(3): 256-279.
    [113] Li X D. A Non-dominated Sorting Particle Swarm Optimizer for multiobjective optimization [C]. In Proceedings of the international conference on Genetic and evolutionary computation, Atlanta, GA, United states, 2003: 37-48.
    [114] Mostaghim S, Teich J. Strategies for finding good local guides in multi-objective particle swarm optimization (MOPSO) [C]. In Proceedings of IEEE Swarm Intelligence Symposium, Piscataway, NJ, 2003: 26-33.
    [115] Huang V L, Suganthan P N, Liang J J. Comprehensive learning particle swarm optimizer for solving multiobjective optimization problems [J]. International Journal of Intelligent Systems, 2006, 21(2): 209-226.
    [116] Sierra M R, Coello C A C. Improving PSO-Based multi-objective optimization using crowding,mutation and epsilon-dominance [J]. Lecture Notes in Computer Science, 2005, 3410: 505-519.
    [117] Reddy M J, Kumar D N. An Efficient Multi-objective Optimization Algorithm based on Swarm Intelligence for Engineering Design [J]. Engineering Optimization, 2007, 39(6): 49–68.
    [118] Leong W F, Yen G G. PSO-based multiobjective optimization with dynamic population size and adaptive local archives [J]. IEEE Transactions on Systems Man and Cybernetics Part B:Cybernetics, 2008, 38(5): 1270-1293.
    [119] Yen G G, Leong W F. Dynamic Multiple Swarms in Multiobjective Particle Swarm Optimization [J]. IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems and Humans, 2009, 39(4): 890-911.
    [120] Sharaf A M, El-Gammal A A A. A Novel Discrete Multi-Objective Particle Swarm Optimization (MOPSO) of Optimal Shunt Power Filter [C]. In IEEE/PES Power Systems Conference and Exposition, Seattle, WA, United states, 2009: 1120-1126.
    [121] Daneshyari M, Yen G G. Cultural-Based Multiobjective Particle Swarm Optimization [J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 2010, PP(99): 1-15.
    [122] Abido M A. Multiobjective particle swarm optimization with nondominated local and global sets [J]. Natural Computing, 2010, 9(3): 747-766.
    [123] Pawar P J, Rao R V, Davim J P. Multiobjective optimization of grinding process parameters using particle swarm optimization algorithm [J]. Materials and Manufacturing Processes, 2010, 25(6): 424-431.
    [124] Hu X H, Eberhart R. Multiobjective optimization using dynamic neighborhood Particle Swarm Optimization [C]. In IEEE Congress on Evolutionary Computation, Piscataway, NJ, 2002: 1677-1681.
    [125] Parsopoulos K E, Tasoulis D K, Vrahatis M N. Multiobjective optimization using parallel vector evaluated particle swarm optimization [C]. In Proceedings of the IASTED International Conference on Artificial Intelligence and Applications, Innsbruck, Austria, 2004: 823-828.
    [126] Baumgartner U, Magele C, Renhart W. Pareto optimality and particle swarm optimization [J]. Ieee Transactions on Magnetics, 2004, 40(2): 1172-1175.
    [127] Ray T, Liew K M. A swarm metaphor for multiobjective design optimization [J]. Engineering Optimization, 2002, 34(2): 141-153.
    [128] Singh S, Fieldsend J E. A multi-objective algorithm based upon particle swarm optimisation, an efficient data structure and turbulence [C]. In The U.K. Workshop on Computational Intelligence, Birmingham, UK, 2002: 34-44.
    [129] Pulido G T, Coello C A C. Using clustering techniques to improve the performance of a multi-objective particle swarm optimizer [C]. In Genetic and Evolutionary Computation Conference, Seattle, USA, 2004: 225-237.
    [130] Zhao B, Cao Y J. Multiple objective particle swarm optimization technique for economic load dispatch [J]. Journal of Zhejiang University Science, 2005, 6(5): 420-427.
    [131] Yang J J, et al. A novel strategy of pareto-optimal solution searching in multi-objective particle swarm optimization (MOPSO) [J]. Computers & Mathematics with Applications, 2009, 57(11): 1995-2000.
    [132] Tsai S J, et al. An improved multi-objective particle swarm optimizer for multi-objective problems [J]. Expert Systems with Applications, 2010, 37(8): 5872-5886.
    [133] Elhossini A, Areibi S, Dony R. Strength Pareto Particle Swarm Optimization and Hybrid EA-PSOfor Multi-Objective Optimization [J]. Evolutionary Computation, 2010, 18(1): 127-156.
    [134] Wang Y J, Yang Y P. Particle swarm with equilibrium strategy of selection for multi-objective optimization [J]. European Journal of Operational Research, 2010, 200(1): 187-197.
    [135] Grobler J, Engelbrecht A P. Hybridizing PSO and DE for improved vector evaluated multi-objective optimization [C]. In IEEE Congress on Evolutionary Computation, Trondheim, Norway, 2009: 1255-1262.
    [136] Benameur L, Alami J, El Imrani A. A New Hybrid Particle Swarm Optimization Algorithm for Handling Multiobjective Problem Using Fuzzy Clustering Technique [C]. In International Conference on Computational Intelligence, Modelling and Simulation, Brno, Czech republic, 2009: 48-53.
    [137] Parsopoulos K E, Vrahatis M N. Particle Swarm Optimization method for Constrained Optimization problems [C]. In Proceedings of the Euro-International Symposium on Computational Intelligence, Kosice, Slovak, 2002: 214-220.
    [138] Pulido G T, Coello C A C. A constraint-handling mechanism for particle swarm optimization [C]. In IEEE Congress on Evolutionary Computation, Portland, USA, 2004: 1396-1403.
    [139] Cabrera J C F, Coello C A C. Handling constraints in particle swarm optimization using a small population size [C]. In 6th Mexican International Conference on Artificial Intelligence, Aguascalientes, Mexico, 2007: 41-51.
    [140] Krohling R A, Coelho L D. Coevolutionary particle swarm optimization using Gaussian distribution for solving constrained optimization problems [J]. IEEE Transactions on Systems Man and Cybernetics Part B-Cybernetics, 2006, 36(6): 1407-1416.
    [141] Liu H, Cai Z X, Wang Y. Hybridizing particle swarm optimization with differential evolution for constrained numerical and engineering optimization [J]. Applied Soft Computing, 2010, 10(2): 629-640.
    [142] Venter G, Haftka R T. Constrained particle swarm optimization using a bi-objective formulation [J]. Structural and Multidisciplinary Optimization, 2010, 40(1): 65-76.
    [143] Mohemmed A W, Sahoo N C, Geok T K. Hybrid co-evolutionary particle swarm optimization and noising metaheuristics for the delay constrained least cost path problem [J]. Journal of Heuristics, 2010, 16(4): 593-616.
    [144] Shi Y, Eberhart C. A modified particle swarm optimizer [C]. In IEEE Congress on Evolutionary Computation, Piscataway, NJ, 1998: 69-73.
    [145] De Castro L N, Von Zuben F J. The clonal selection algorithm with engineering applications [C]. In Proceedings of GECCO, Workshop on Artificial Immune Systems and Their Applications, Las Vegas, Nevada, USA , 2000: 160-172.
    [146]邢文训.现代优化学计算方法(第2版)最优化基础—模型与方法[M].北京:清华大学出版社, 2002.9.
    [147]张丽平.粒子群优化算法的理论及实践[D].杭州:浙江大学(博士), 2005.
    [148]郑大钟.线性系统理论(第2版) [M].北京:清华大学出版社, 2002.
    [149] Riget J, Vesterstroem J S. A Diversity Guided Particle Swarm Optimizer-the ARPSO [R]. Denmark: University of Aarhus, 2002.
    [150] Peram T, Veeramachaneni K, Mohan C K. Fitness-distance-ratio based particle swarm optimization [C]. In IEEE Swarm Intelligence Symposium, Piscataway, NJ, 2003: 174-181.
    [151] Andrews P S. An investigation into mutation operators for Particle Swarm Optimization [C]. InIEEE Congress on Evolutionary Computation, Vancouver, BC, Canada, 2006: 1029-1036.
    [152] Parsopoulos E, Vrahatis M N. Parameter selection and adaptation in unified particle swarm optimization [J]. Mathematical and computer modeling, 2007, 46(3): 198-213.
    [153] Salomon R. Reevaluating genetic algorithm performance under coordinate rotation of benchmark functions [J]. BioSystems, 1996, 39(1): 263–278.
    [154] Broyden C G. The Convergence of a Class of Double-rank Minimization Algorithms [J]. Journal of the Institute of Mathematics and Applications, 1970, 6(2): 76-90.
    [155] Fletcher R, Powell M J D. A Rapidly Convergent Descent Method for Minimization [J]. Computer Journal, 1963, 6(2): 163-168.
    [156] Liang J J, Suganthan P N, Deb K. Novel Composition Test Functions for Numerical Global Optimization [C]. In IEEE Swarm Intelligence Symposium, Pasadena, CA, United states, 2005:
    [157] Liang J J, Suganthan P N. Dynamic multi-swarm particle swarm optimizer [C]. In IEEE Swarm Intelligence Symposium, Pasadena, CA, United states, 2005: 124-129.
    [158] Li J L, Xiao X P. Multi-Swarm and Multi-Best Particle Swarm Optimization Algorithm [C]. In 7th World Congress on Intelligent Control and Automation, Chongqing, China, 2008: 6281-6286.
    [159] Niu B, Xue B, Li L. Symbiotic Multi-swarm PSO for Portfolio Optimization [C]. In the 5th International Conference on Intelligent Computing, Ulsan, Korea, 2009: 776-784.
    [160] Peng J M, Xia Y. A new theoretical framework for K-means clustering [M]Springer Verlag, 2005.
    [161] Charles S E. Animal ecology [M]University of Chicago Press, 2001.
    [162] Homaifar A, Lai S H Y, X Q. Constrained optimization via genetic algorithms.Simulation [J]. 1994, 62(4): 242-254.
    [163] Huang F, Wang L. An effective co-evolutionary differential evolution for constrained optimization [J]. Applied Mathematics and computation, 2007, 186(1): 340-356.
    [164]王勇,蔡自兴.约束优化进化算法[J].软件学报, 2009, 20(1): 11-29.
    [165] Deb K. An Efficient Constraint Handling Method for Genetic Algorithms [J]. Computer Methods in Applied Mechanics and Engineering, 2000, 186(2): 311-338.
    [166] Liang J J, Suganthan P N. Dynamic multi-swarm particle swarm optimizer with a novel constraint-handling mechanism [C]. In IEEE Congress on Evolutionary Computation, Vancouver, BC, 2006: 9-16.
    [167] Wang Y, Cai Z. A hybrid multi-swarm particle swarm optimization to solve constrained optimization problems [J]. Frontiers of Computer Science in China, 2009, 3(2): 38-52.
    [168] Efren M M, Coello C A C. A simple multimembered evolution strategy to solve constrained optimization problems [J]. IEEE Transactions on Evolutionary Computation, 2005, 9(1): 1-17.
    [169] Runanarsson T P, Yao X. Stochastic ranking for constrained evolutionary optimization [J]. IEEE Transactions on Evolutionary Computation, 2000, 4(3): 248-254.
    [170]公茂果,焦李成,杨咚咚.进化多目标优化算法研究[J].软件学报, 2009, 20(2): 271-289.
    [171] Zitzler E, Thiale L. Multi-Objective evolutionary algorithms: A comparative case study and the strength Pareto approach [J]. IEEE Transactions on Evolutionary Computation, 1999, 3(4): 257-271.
    [172] Yen G G, Lu H. Dynamic multiobjective evolutionary algorithm: Adaptive cell-based rank and density estimation [J]. IEEE Transactions on Evolutionary Computation, 2003, 7(3): 253-274.
    [173]张利彪.基于粒子群和微分进化的优化算法研究[D].长春:吉林大学(博士), 2007.
    [174] Veldhuizen D V. Multiobjective evolutionary algorithms: Classifications, analyses, and newinnovations [D]. Ohio: Department of Electrical and Computer Engineering, Graduate School of Engineering, Air Force Institute of Technology, Wright-Patterson AFB(PhD ), 1999.
    [175] Zitzler E. Evolutionary Algorithms for Multiobjective Optimization:Methods and Applications [D]. Zurich,Switzerland: Swiss Federal Inst.Technol.(Ph.D), 1999.
    [176] Knowles J D, Thiele L, Zitzler E. A tutorial on performance assessment of stochastic multiobjective optimizers [R]. Zurich, Switzerland: Comput. Eng. Netw.Lab., ETH Zurich, 2006.
    [177] Zitzler E, Thiele L. Multiobjective Evolutionary Algorithms: A Comparative Case Study and the Strength Pareto Approach [J]. IEEE Transactions on Evolutionary Computation, 1999, 3(4): 257-271.
    [178] Padhye N. Topology optimization of compliant mechanism using multi-objective particle swarm optimization [C]. In Genetic and Evolutionary Computation Conference, New York, USA, , 2008: 1831-1834.
    [179] Deb K, Goldberg D E. An investigation of niche and species formation in genetic function optimization [C]. In the Third International Conference on Genetic Algorithms, Piscataway, NJ, 1989: 42-50.
    [180] Li X D. Better spread and convergence: Particle swarm multiobjective optimization using the maximin fitness function [C]. In Genetic and Evolutionary Computation Conference, Washington, D.C., 2004: 117-128.
    [181] Branke J, Mostaghim S. About selecting the personal best in multi-objective particle swarm optimization [C]. In the 9th International Conference on Parallel Problem Solving from Nature, Reykjavik, Iceland, 2006: 523-532.
    [182] Mostaghim S, Teich J. The role of epsilon-dominance in multi objective particle swarm optimization methods [C]. In IEEE Congress on Evolutionary Computation, Vancouver, BC, 2003: 1764-1771.
    [183] Raquel C R, Naval P C. An effective use of crowding distance in multiobjective particle swarm optimization [C]. In Genetic and Evolutionary Computation Conference, Washington, D.C., 2005: 257-264.
    [184] Lu H M, Yen G G. Rank-Density-Based Multiobjective Genetic Algorithm and Benchmark Test Function Study [J]. IEEE Transactions on Evolutionary Computation, 2003, 7(4): 256-279.
    [185] Laumanns M, et al. Combining convergence and diversity in evolutionary multiobjective optimization [J]. Evolutionary computation, 2002, 10(3): 263-282.
    [186]丛琳,焦李成,沙宇恒.一种量化正交免疫克隆粒子群数值优化算法[J].模式识别与人工智能, 2007, 20(5): 583-592.
    [187] Stacey A, Jancic M, Grundy I. Particle Swarm Optimization with mutation [C]. In IEEE Congress on Evolutionary Computation, Vancouver, BC, 2003: 1425-1430.
    [188] Deb K, Goyal M. A combined genetic adaptive search (GeneAS) for engineering design [J]. Computer Science and Informatics, 1996, 26(4): 30-45.
    [189] Arumugam M S, Rao M V C. On the improved performances of the particle swarm optimization algorithms with adaptive parameters, cross-over operators and root mean square (RMS) variants for computing optimal control of a class of hybrid systems [J]. Applied Soft Computing, 2008, 8(1): 324-336.
    [190] Deep K, Bansal J C. Optimization of directional overcurrent relay times using laplace crossover particle swarm optimization (LXPSO) [C]. In 2009 World Congress on Nature and BiologicallyInspired Computing, Coimbatore, India, 2009: 288-293.
    [191] Xie J, Yang J. A Novel Crossover Operator for Particle Swarm Algorithm [C]. In International Conference on Machine Vision and Human-Machine Interface, Kaifeng, China, 2010: 161-164.
    [192] Fang K T, Wang Y. Number-Theoretic Method in Statistics [M]Chapman and Hall, London, 1994.
    [193] Wang Y P, Dang C Y. A clustering multi-objective evolutionary algorithm based on orthogonal and uniform design [C]. In IEEE Congress on Evolutionary Computation, Trondheim, 2009: 2927 - 2933
    [194] Chang L, Liu N, Sun X J. The research and application on parameter identification of hydraulic turbine regulating system based on Particle Swarm Optimization and Uniform Design [C]. In the 3rd IEEE International Conference on Computer Science and Information Technology, Chengdu, China, 2010: 605-608.
    [195] Jiang S H, et al. The Application of Uniform Design in Parameter Establishment of Particle Swarm Optimization [C]. In 7th World Congress on Intelligent Control and Automation, Shang hai, 2008: 3150-3154.
    [196] Deb K, Thiele L, Laumanns M. Advanced Information and Knowledge Processing [M]. Springer, 2005.
    [197] Van Genuchten M T. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils [J]. Soil Science Society of America Journal, 1980, 44(5): 892-898.
    [198] Shao M A, Robert H. Integral method for estimating soil hydraulic properties [J]. Soil Science Society of America Journal, 1998, 62(3): 585-592.
    [199]王金生,杨志峰.包气带土壤水分滞留特征研究[J].水利学报, 2000, 10(2):1-6.
    [200]马英杰,沈冰.利用阻尼最小二乘法求解Van Genuchten方程参数[J].农业工程学报, 2005, 21(8): 179-180.
    [201]陈大春,马英杰.基于随机粒子群算法的Van Genuchten方程参数优化求解[J].农业工程学报, 2006, 22(12): 82-85.
    [202]廖林仙,邵孝侯,徐俊增.基于智能算法推求Van Genuchten方程的参数[J].水力学报, 2007, 10(1): 696-670.
    [203] Markowitz H. Portfolio Selection [J]. Journal of Finance, 1952, 7(1): 77-91.
    [204] Konno H, Yamazaki H. Mean-absolute deviation portfolio in optimization model and its application to Tokyo stock market [J]. Management Science, 1991, 37(5): 519-531.
    [205] Lin C C, Liu Y T. Genetic algorithms for portfolio selection problems with minimum transaction lots [J]. European Journal of Operational Research, 2008, 185(1): 393-404.
    [206] Vijayalakshmi Pai G A, Michel T. Evolutionary Optimization of Constrained k-means Clustered Assets for Diversification in Small Portfolios [J]. IEEE Transactions on Evolutionary Computation, 2009, 13(5): 1030-1053.
    [207] Fernandez A, Gomez S. Portfolio selection using neural networks [J]. Computers & Operations Research, 2007, 34(4): 1177-1191.
    [208] Rockafellar R T, Uryasev S. Optimization of Conditional Value at Risk [J]. Journal of Risk, 2000, 2(3): 21-41.
    [209] Krokhmal P, Palmquist J, Uryasev S C. Portfolio Optimization with Conditional Value-at-risk Objective and Constraints [J]. Journal of Risk, 2002, 4(2): 43-68.
    [210] Alexander G J, Baptista A M. Economic Implications of Using a Mean-VaR Model for Portfolio Selection: a Comparison with Mean-Variance analysis [J]. Journal of EconomicDynamics&Control, 2002, 26(3): 1159-1193.
    [211]常先英,李荣钧.改进粒子群优化算法及其在CVaR模型中的应用[J].统计与决策, 2009, 8(2): 144-146.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700