用户名: 密码: 验证码:
过渡金属基催化剂在乙醇合成乙酸乙酯反应中催化性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文以工业应用为出发点,致力于合成对乙醇催化脱氢合成乙酸乙酯反应有较高催化性能的催化材料。我们将不同的过渡金属基催化剂应用到该反应中,并详细考察了各种催化剂对反应的催化性能,同时结合多种测试手段对催化剂的结构及表面性质进行了表征,并与催化剂反应性能进行了关联。文中我们还探讨了催化剂的活性中心以及反应机理等问题。
     通过对不同合成条件制备的MoSx/C催化剂的性能考察,我们发现硫化温度为400℃,硫化时间为2 h,以H2O为溶剂,(NH4)6Mo7O24为试剂,由钼酸铵硫化-还原法制备的催化剂对乙醇脱氢合成乙酸乙酯反应有较好的催化性能。通过文献学习以及实验事实,我们认为在该催化剂上,金属钼的配位不饱和中心(CUS)提供反应所需的脱氢活性中心,而催化剂表面的SH–则可以提供反应所需的酸中心。活性碳载体的氧化处理过程可以提高Mo物种在载体表面的分散度,从而可以达到提高催化剂反应活性的目的。
     通过对不同合成条件制备的Cu-Zr-O催化剂的性能考察,我们发现合成温度为60℃,以H2O为溶剂,Cu(NO3)2为试剂,Na2CO3为沉淀剂,400℃焙烧,由反滴法-共沉淀法制备的催化剂对乙醇脱氢合成乙酸乙酯反应有较好的催化性能。通过文献学习以及实验事实,我们认为在该催化剂上,金属Cu提供反应所需的脱氢活性中心,ZrO2提供反应所需的酸中心。催化剂预还原温度的考察结果表明,Cu0不但参与了乙醇脱氢生成乙醛的反应过程,同时也参与了从中间产物乙醛生成乙酸乙酯的反应过程,所以我们认为从中间产物乙醛生成乙酸乙酯的过程发生在Cu0与ZrO2的界面上。不同摩尔比的催化剂的反应性能考察结果表明,催化剂中的Cu0和Cu+物种在反应的过程中存在协同作用,而且这种协同作用更有利于乙酸乙酯的形成。
     我们也考察了三组分的Cu-Zr-Co-O催化剂、尖晶石结构的Cu-Al-O催化剂以及Mo2C/C催化剂对乙醇催化脱氢合成乙酸乙酯反应的催化性能。实验结果表明,在铜锆催化剂中添加少量的CoO可以提高催化剂的反应性能。Cu-Al-O催化剂和Mo2C/C催化剂对反应的催化性能并不是很理想,但它们是探索对该反应有较高催化性能的新催化材料的有益尝试。
Ethyl acetate is an important chemical materials and a useful solvent that is widely used in adhesives, medicines, and extraction solvent of organic acids. Three main commercially processes are currently available to achieve the production of ethyl acetate, including esterification of ethanol with acetic acid, addition of ethylene to acetic acid, the Tishchenko reaction of acetaldehyde. However, there are still several problems associated to these processes, such as the toxicity of acetaldehyde or the corrosion of acetic acid. The process of direct transformation of ethanol to ethyl acetate can solve these problems, because of using only ethanol as feedstock.
     In this work, various transition metal catalysts are used in the reaction of direct transformation of ethanol to ethyl acetate, including molybdenum-based and copper-based catalysts, the catalytic performances of above catalysts have been investigated. The relationship between the structure, surface texture and the catalytic performance of catalysts was studied by combining different characterization means. The nature of active sites on the catalysts and the reaction mechanism were also discussed in this article. The main results and conclusions are as follows.
     1. Study on the catalytic performance of MoSx/C catalysts for ethyl acetate synthesis
     In this part of work, we studied the activity of molybdenum sulfide catalysts in the reaction of direct transformation of ethanol to ethyl acetate. The results showed that the conversion of ethanol can reach 91.5% and the selectivity to ethyl acetate can reach 49.4% over MoSx/C (Mo=8.7 wt%) catalyst under following reaction condition: T=320℃, P=1 atm, LHSV=1 h-1. According to the literatures and our experimental facts, we believe that CUS can provide dehydrogenation active sites and SH- can provide acid sites for this reaction. The study has also indicated that formation of highly dispersed molybdenum species, which were observed on the activated carbon support with HNO3 pretreatment, was favorable for high catalytic activity. The treatment of activated carbon with HNO3 produced an increase of the surface oxygen groups. Interactions between metal and oxygen functional groups were developed and then favored the dispersion of active phase.
     The effect of preparation parameter on the catalytic performance of MoSx/C catalysts has been systemically investigated. The results show that MoSx/C catalysts which were prepared by sulfidation of (NH4 ) 6M o 7 O2 4 at 400℃for 2 h have a good catalytic performance. At lower sulfurization temperature (300℃), there are two molybdenum species (Mo5+ and Mo4+) on the surface of the catalyst, Mo5+ species is not conducive to the formation of ethyl acetate. The particle sizes of the active species become larger at higher sulfurization temperature (500℃or 600℃), so the catalytic performance decrease. MoSx/C catalyst which was sulfided at 400℃obtained the best catalytic performance. At shorter sulfidation time (1 h), the concentration of SH- on the catalyst surface is relatively small, lack of Br?nsted acid sites resulting in lower catalytic performance. MoSx/C catalyst which was sulfided for 2 h obtained the best catalytic performance. The drying atmosphere did not have much effect on the catalytic performance of the catalyst.
     2. Study on the catalytic performance of Cu-Zr-O catalysts for ethyl acetate synthesis
     In this part of work, we studied the activity of copper-zirconium catalysts in the reaction of direct transformation of ethanol to ethyl acetate. The results showed that the conversion of ethanol can reach 70.9% and the selectivity to ethyl acetate can reach 78.8% over Cu-Zr-O (Cu︰Zr = 1) catalyst under following reaction condition: T=270℃, P=1 atm, LHSV=1 h-1. According to the literatures and our experimental facts, we believe that metal Cu can provide dehydrogenation active sites and ZrO2 can provide acid sites for this reaction. The prereduction temperature has a great influence on the particle size of Cu0 species. With an increase of reduction temperature, the particle size of Cu0 species increases. Changes in Cu0 particle size not only affect the rate of ethanol conversion, but also the selectivity of ethyl acetate. The result shows that Cu0 species not only involved in the dehydrogenation of ethanol to acetaldehyde, but also the process of ethyl acetate synthesis from acetaldehyde. So we believe that the process of ethyl acetate synthesis from acetaldehyde occurred on the interface of Cu0 and ZrO2 .
     The catalytic performances of Cu-Zr-O mixed oxides were considerably influenced by changing the molar ratio of Cu to Zr. The highest selectivity to ethyl acetate was found over catalyst which has the highest ZrO2 content. However, all the Cu-Zr-O catalysts show similar conversion of ethanol, which should be due to the fixed Cu content for these catalysts during the catalytic test. The characterization results show that the concentration of acid sites and also Cu+ species increase gradually with increasing ZrO2 content. These results suggest the positive correlation between the selectivity to ethyl acetate on Cu-Zr-O catalysts and the concentration of Cu+ species. According to the literatures, we believe that the presence of Cu+ species may be regarded as Lewis acidic sites, which are involved in acetaldehyde chemisorption, thus resulting in the improvement of ethyl acetate selectivity. Therefore, we suppose that the co-existence of Cu0 and Cu+ species in the Cu-Zr-O catalyst might play a synergic interaction for converting ethanol to ethyl acetate. The effect of preparation parameter on the catalytic performance of Cu-Zr-O catalysts has been systemically investigated. The results show that Cu-Zr-O catalysts which were prepared by coprecipitation of Cu(NO3)2 and Zr(NO3)4 with the addition of Na2CO3 at 60℃have a good catalytic performance. The characterization results show that the good catalytic performance can be attributed to smaller particle size of copper species and higher surface area of the catalyst. The calcination atmosphere did not have much effect on the catalytic performance of the catalyst.
     3. Study on the other catalysts in ethyl acetate synthesis reaction
     In this part of work, Cu-Zr-Co-O, Cu-Al-O and Mo2C/C catalysts were applied to the reaction of direct transformation of ethanol to ethyl acetate. We found that addition a small amount of CoO to Cu-Zr-O catalyst can improve the catalytic performance. The characterization results showed that the good catalytic performance can be attributed to the smaller particle size of copper species and also the appropriate Lewis acidic sites on the surface of the catalyst. Cu-Al-O catalysts have good stability. According to our experimental results, the conversion of ethanol can reach 55.1% and the selectivity to ethyl acetate can reach 63.5% over Cu-Al-O (Cu︰Al = 1) catalyst under following reaction condition: T=270℃, P=1 atm, LHSV=1 h-1. Mo2C/C catalysts were prepared by carbonization of Mo/D293 sample at 900℃under nitrogen. The results showed that the conversion of ethanol can reach 82.5% and the selectivity to ethyl acetate can reach 40.1% over this catalyst under following reaction condition: T=300℃, P=1 atm, LHSV=1 h-1. Although the catalytic performance of Cu-Al-O catalyst and Mo2 C/C catalyst is not good enough, it is still a useful attempt to explore the good catalytic materials for the reaction of direct transformation of ethanol to ethyl acetate.
引文
[1]刑其毅.有机化学(上册)[M].北京:高等教育出版社,1957: 149.
    [2]刘冲.石油化工手册(三)[M].北京:化学工业出版社,1987: 259.
    [3]徐寿昌.有机化学(第二版)[M].北京:高等教育出版社,1983: 336.
    [4]程能林,胡声闻.溶剂手册(下册)[M].北京:化学工业出版社,1987: 14-15.
    [5]江体乾.化工工艺手册[M].上海:上海科学技术出版社,1992: 454.
    [6]林翔云.调香术[M].北京:化学工业出版社,2001: 264-266.
    [7]徐焱明.乙醇一步直接合成乙酸乙酯催化剂的研究[D].天津:天津大学化工学院,1999.
    [8]杨光.钼基催化剂乙醇一步法制备乙酸乙酯的研究[D].天津:天津大学化工学院,2006.
    [9]崔能伟.乙醇在MoS2/C催化剂上一步法制备乙酸乙酯的研究[D].天津:天津大学化工学院,2005.
    [10]赵树峰.乙醇脱氢合成乙酸乙酯催化剂的研究[D].江苏扬州:扬州大学,2008.
    [11]刘文彬,钱徐萍.乙酸乙酯生产技术对比[J].化学与粘合,2003, 4: 184-185.
    [12]刘明.乙酸乙酯的市场需求与生产方法[J].化学工业与工程技术,2004, 25(5): 54-56.
    [13]李涛,曹晓岚.乙酸乙酯的生产及市场[J].精细石油化工进展,2002, 3(9): 37-40.
    [14]刘怡励,郑宝山.国内外乙酸乙酯市场综述[J].化工技术经济,2003, 21(1): 21-24.
    [15]江镇海.乙酸乙酯市场继续看好[J].上海化工,2004, 12: 47-48.
    [16]万志强.乙酸乙酯的生产技术及市场分析[J].化工科技市场,2005, 12: 1-3.
    [17]王军,刘文彬,谭淑媛.乙酸乙酯生产工艺现状及发展趋势[J].应用科技,2003, 30(3): 51-53.
    [18]叶健,于淑萍.AlCl3/D72树脂低温催化合成乙酸乙酯[J].天津化工,1999, 5: 29-30.
    [19] Corma A, Garcia H, Iborra S, et al. Modified faujasite zeolites as catalysts in organic reactions: Esterification of carboxylic acids in the presence of HY zeolites[J]. Journal of Catalysis, 1989,120(1): 78-87.
    [20]田志新,李菊仁,龚键.铌酸液相催化合成乙酸乙酯[J].合成化学,2000, 8(3): 260-263.
    [21] Wu KC, Chen YW. An efficient two-phase reaction of ethyl acetate production in modified ZSM-5 zeolites[J]. Applied Catalysis A: General, 2004,257(1): 33-42.
    [22]邹欣平,吴宇,梁永光,等.TiSiW12O40/TiO2催化合成乙酸乙酯[J].青岛大学学报,2001, 14(4): 82-84.
    [23] Bhattacharyya SK, Lahiri CR, Journal of Applied Chemistry, 1963, 13: 544-548.
    [24] Yuichi M, Tatsuhiko H, Hiroshi U. Kogyo Kagaku Zasshi, 1969,72: 1945-1952.
    [25] Yamamoto Y, Hatanaka S, Tsuji K, et al. Direct addition of acetic acid toethylene to form ethyl acetate in the presence of H4SiW12O40/SiO2[J]. Applied Catalysis A: General, 2008,344(1-2): 55-60.
    [26]天津大学.基本有机合成工艺学(下)[M].北京:中国工业出版社,1961.
    [27] Lorenz A, Schaefer K. Preparation of aluminum alcoholate: US, 2579251[P]. 1954-01-12.
    [28]潘伟雄.乙醇脱氢法制乙酸乙酯技术进展和经济性分析[J].精细与专用化学品,2007, 15(18): 11-15.
    [29] Furuta M, Kung MC, Kung HH. One-step synthesis of ethyl acetate from ethene and oxygen[J]. Applied Catalysis A: General, 2000,201(1): L9-L11.
    [30]伏再辉,奚红霞,龚健.乙醇在双功能Pd-Cu/分子筛催化剂上气相氧化酯化一步合成乙酸乙酯[J].催化学报,1994, 15(4): 262-267.
    [31]龚健,奚红霞,唐代华,等.湖南师范大学自然科学学报[J].1994, 17(1): 43-45.
    [32] Lin TB, Chung DL, Chang JR. Ethyl acetate production from water-containing ethanol catalyzed by supported Pd catalysts: Advantages and disadvantages of hydrophobic supports[J]. Industrial & Engineering Chemistry Research, 1999,38(4): 1271-1276.
    [33] Lee JF, Zheng FS, Chang JR. Structural investigation of solid-acid-promoted Pd/SDB catalysts for ethyl acetate production from ethanol[J]. Journal of Physical Chemistry B, 2001,105(17): 3400-3404.
    [34] Gaspar AB, Esteves AML, Mendes FMT, et al. Chemicals from ethanol-The ethyl acetate one-pot synthesis[J]. Applied Catalysis A: General, 2009,363(1-2): 109-114.
    [35]马宇春,石峰,邓友全.担载纳米金催化乙醇选择氧化制乙酸乙酯[J].分子催化,2003, 17(6): 425-429.
    [36] Wang LC, Koichi E, Hiromichi A, Applied Catalysis, 1987, 33(6): 107-109.
    [37] Colley SW, Tabatabaei J, Waugh KC, et al. The detailed kinetics and mechanism of ethyl ethanoate synthesis over a Cu/Cr2O3 catalyst[J]. Journal of Catalysis, 2005,236(1): 21-33.
    [38] Elliott DJ, Pennella F. The formation of ketones in the presence of carbon monoxide over CuO/ZnO/Al2O3[J]. Journal of Catalysis, 1989,119(2): 359-367.
    [39]周钢骨.CNY-102型乙醇脱氢制取乙酸乙酯催化剂研究[J].天然气化工, 1998, 23: 34-38.
    [40] Inui K, Kurabayashi T, Sato S. Direct synthesis of ethyl acetate from ethanol over Cu-Zn-Zr-Al-O catalyst[J]. Applied Catalysis A: General, 2002,237(1-2): 53-61.
    [41] Inui K, Kurabayashi T, Sato S. Direct Synthesis of Ethyl Acetate from Ethanol Carried Out under Pressure[J]. Journal of Catalysis, 2002,212(2): 207-215.
    [42] Inui K, Kurabayashi T, Sato S, et al. Effective formation of ethyl acetate from ethanol over Cu-Zn-Zr-Al-O catalyst[J]. Journal of Molecular Catalysis A: Chemical, 2004,216(1): 147-156.
    [43]杨树武,周卓华.Cu/ZnO/Al2O3/ZrO2催化剂上乙醇脱氢合成乙酸乙酯[J].催化学报,1996, 17(1): 5-9.
    [44]杨树武,周卓华.Cu/ZnO/Al2O3/ZrO2催化剂上乙醇脱氢合成乙酸乙酯[J].催化学报,1996, 17(1): 10-15.
    [45]潘伟雄.用于单由乙醇合成乙酸乙酯的催化剂:中国,92100590.3[P]. 1992-7-1.
    [46]潘伟雄.乙醇脱氢歧化醋化一步合成乙酸乙醋[J].石油化工,1991, 20(5): 330-337.
    [47]曾金龙,傅锦坤,郑荣辉,等.钛的添加对Cu-Co-Zr/Al2O3乙醇一步合成乙酸乙酯催化剂性能的影响[J].工业催化,1998, (3): 52-55.
    [48]曾金龙,傅锦坤,郑荣辉,等.稀土氧化物对乙醇一步合成乙酸乙酯混合氧化物催化剂性能的影响[J].稀土,1998, 19(3): 22-25.
    [49]郑荣辉,曾金龙,傅锦坤.乙醇一步合成乙酸乙酯Cu/ZnO/NiO/Al2O3催化剂的催化性能及其表征[J].化学研究与应用,1997, 9(4): 401-405.
    [50] Sanchez AB, Homs N, Fierro JLG, et al. New supported Pd catalysts for the direct transformation of ethanol to ethyl acetate under medium pressure conditions[J]. Catalysis Today, 2005,107-08: 431-435.
    [51]刘成,姜浩锡,刘宗章,等.乙醇一步法合成乙酸乙酯的催化剂及其制造方法和应用:中国,200510013321.6[P]. 2005-12-14.
    [52]崔能伟,刘成,姜浩锡等.乙醇一步法制备乙酸乙酯的MoS2/C催化剂[J].化学工业与工程,2006, 23(5): 400-402.
    [53]王大林,袁发林,姜浩锡.助剂对乙醇脱氢制乙酸乙酯MoS2/C催化剂影响研究[J].化学工业与工程,2008, 25(4): 335-339.
    [54] Aridi TN, Al-Daous MA. HDS of 4,6-dimethyldibenzothiophene over MoS2 catalysts supported on macroporous carbon coated with aluminosilicate nanoparticles[J]. Applied Catalysis A: General, 2009,359(1-2): 180-187.
    [55] Lauritsen JV, Bollinger MV, Legsgaard E, et al. Atomic-scale insight into structure and morphology changes of MoS2 nanoclusters in hydrotreating catalysts[J]. Journal of Catalysis, 2004,221(2): 510-522.
    [56] Alonso G, Del Valle M, Cruz J, et al. Preparation of MoS2 catalysts by in situ decomposition of tetraalkylammonium thiomolybdates[J]. Catalysis Today, 1998,43(1-2): 117-122.
    [57] Bezverkhyy I, Afanasiev P, Geantet C, et al. Highly Active (Co)MoS2/Al2O3 Hydrodesulfurization Catalysts Prepared in Aqueous Solution[J]. Journal of Catalysis, 2001,204(2): 495-497.
    [58] Bodrero TA, Bartholomew CH. Oxygen chemisorption on MoS2 and commercial hydrotreating catalysts[J]. Journal of Catalysis, 1983,84(1): 145-155.
    [59] Kasahara S, Udagawa Y, Yamada M. Relationship between HDS activity and Mo site fine structure of variously pretreated CoMo/Al2O3 and Mo/Al2O3[J]. Applied Catalysis B: Environmental, 1997,12(2-3): 225-235.
    [60] Pratt KC, Sanders JV, Seiyama T, et al. Structure and activity of unsupported Ni-Mo HDS catalysts[M]. Studies in Surface Science and Catalysis; Elsevier. 1981: 1420-1421.
    [61] Okamoto Y, Ochiai K, Kawano M, et al. Evaluation of the maximum potential activity of Co-Mo/Al2O3 catalysts for hydrodesulfurization[J]. Journal of Catalysis, 2004,222(1): 143-151.
    [62] Song CS. New approaches to deep desulfurization for ultra-clean gasoline and diesel fuels[J]. American Chemical Society, 2002,224: U558-U558
    [63] Vrinat ML. The kinetics of the hydrodesulfurization process[J]. Applied Catalysis A: General, 1983,6: 137-158.
    [64] Aubert C, Durand R, Geneste P. Hydroprocessing of dibenzothiophene, phenothiazine, phenoxathiin, thianthrene, and thioxanthene on a sulfided NiO-MoO3/Al2O3 catalyst[J]. Journal of Catalysis, 1986,97: 169-176.
    [65] Mochida I, Sakanishi K, Ma XL, et al. Clean fuels production deep hydrodesulfurization of diesel fuel: Design of reaction process and catalysts[J]. Catalysis Today, 1996,29: 185-189.
    [66] Meille V, Schulz E, Lemaire M, et al. Hydrodesulfurization of 4-methyl- dibenzothiophene: a detailed mechanistic study[J]. Applied Catalysis A: General, 1999,187(2): 179-186.
    [67] Bataille F, Lemberton JL, Michaud P, et al. Alkyldibenzothiophenes hydrodesulfuri-zation-promoter effect, reactivity, and reaction mechanism[J]. Journal of Catalysis, 2000,191(5): 409-422.
    [68] Macaud M, Milenkovic A, Schulz E, et al. Hydrodesulfurization of alkyldibenzothiophenes: Evidence of highly unreactive aromatic sulfur compounds[J]. Journal of Catalysis, 2000,193(2): 255-263.
    [69] Prins R. Catalytic hydrodenitrogenation[J]. Advances in Catalysis, 2002,46: 399-464.
    [70] Lipsch JMJG, Schuit GCA. The CoO-MoO3-Al2O3 catalyst: I. Cobalt molybdate and the cobalt oxide molybdenum oxide system[J]. Journal of Catalysis, 1969,15(2): 163-173.
    [71] Karroua M, Grange P, Delmon B. Existence of synergy between CoMoS and Co9S8: New proof of remote control in hydrodesulfurization[J]. Applied Catalysis, 1989,50(1): L5-L10.
    [72] Karroua M, Centeno A, Matralis HK, et al. Synergy in hydrodesulphurization and hydrogenation on mechanical mixtures of cobalt sulphide on carbon and MoS2 on alumina[J]. Applied Catalysis, 1989,51(1): L21-L26.
    [73] Topsoe H, Candia R, Topsoe NY, et al. On the state of the Co-Mo-S Model[J]. Bulletin Des Societes Chimiques Belges, 1984,93(8-9): 783-806.
    [74] Topsoe NY, Topsoe H. Characterization of the structures and active sites in sulfided Co-Mo/Al2O3 and Ni-Mo/Al2O3 catalysts by NO chemisorption[J]. Journal ofCatalysis, 1983,84(2): 386-401.
    [75] Topsoe H, Clausen BS, Candia R, et al. In situ Mosbauer emission spectroscopy studies of unsupported and supported sulfided Co-Mo hydrodesulfurization catalysts: Evidence for and nature of a Co-Mo-S phase[J]. Journal of Catalysis, 1981,68(2): 433-452.
    [76] Clausen BS, Tops H, Frahm R, et al. Application of Combined X-Ray Diffraction and Absorption Techniques for in Situ Catalyst Characterization[M]. Academic Press, 1998: 315-344.
    [77] Besenbacher F, Brorson M, Clausen BS, et al. Recent STM, DFT and HAADF-STEM studies of sulfide-based hydrotreating catalysts: Insight into mechanistic, structural and particle size effects[J]. Catalysis Today, 2008,130(1): 86-96.
    [78] Louwers SPA, Craje MWJ, Vanderkraan AM, et al. The effect of passivation on the activity and structure of sulfided hydrotreating catalysts[J]. Journal of Catalysis, 1993,144(2): 579-596.
    [79] Bouwens SMAM, Vanzon FBM, Vandijk MP, et al. On the Structural differences between Alumina-Supported CoMoS Type-I and Alumina-Supported, Silica-Supported, and Carbon-Supported CoMoS Type-II Phases Studied by XAFS, MES, and XPS[J]. Journal of Catalysis, 1994,146(2): 375-393
    [80] Ramirez J, Fuentes S, Diaz G, et al. Hydrodesulphurization activity and characterization of sulphided molybdenum and cobalt-molybdenum catalysts: comparison of alumina, silica-alumina and titania supported catalysts[J]. Applied Catalysis, 1989,52(3): 211-223.
    [81] Eijsbouts S. On the flexibility of the active phase in hydrotreating catalysts[J]. Applied Catalysis A: General, 1997,158(1-2): 53-92.
    [82] Dugulan AI, Craj MWJ, Overweg AR, et al. The evolution of the active phase in CoMo/C hydrodesulfurization catalysts under industrial conditions: a high-pressure Mosbauer emission spectroscopy study[J]. Journal of Catalysis, 2005,229(2): 276-282
    [83] Sundaramurthy V, Dalai AK, Adjaye J. HDN and HDS of different gas oils derived from Athabasca bitumen over phosphorus-doped NiMo/γ-Al2O3 carbides[J].Applied Catalysis B: Environmental, 2006,68(1-2): 38-48.
    [84]刘大鹏,李永丹.加氢脱氮催化剂研究的新进展[J].化学进展,2006, 18(4): 417-428.
    [85] Grzechowiak JR, Wereszczako-Zielinska I, Mrozinska K. HDS and HDN activity of molybdenum and nickel-molybdenum catalysts supported on alumina-titania carriers[J]. Catalysis Today, 2007,119(1-4): 23-30.
    [86] Stinner C, Prins R, Weber T. Formation, Structure, and HDN Activity of Unsupported Molybdenum Phosphide[J]. Journal of Catalysis, 2000,191(2): 438-444.
    [87] Brenner JR, Thompson LT. Characterization of HDS/HDN active sites in cluster-derived and conventionally-prepared sulfide catalysts[J]. Catalysis Today, 1994,21(1): 101-112.
    [88] Kim JW, Longstaff DC, Hanson FV. Upgrading of bitumen-derived heavy oils over a commercial HDN catalyst[J]. Fuel, 1997,76(12): 1143-1150.
    [89] Mapiour M, Sundaramurthy V, Dalai AK, et al. Effect of Hydrogen Purity on Hydroprocessing of Heavy Gas Oil Derived from Oil-Sands Bitumen[J]. Energy & Fuels, 2009,23: 2129-2135.
    [90] Uette F, Poveda M, Sierraalta A, et al. Model parametric Hamiltonians and bonding theoretical tools in simulation of catalytic reaction steps: Hydrotreatment of oil components[J]. Journal of Molecular Catalysis A: Chemical, 1997,119:35-48.
    [91] Rodriguez-Arias EN, Gainza AE, Hernandez AJ, et al. Pyridine interaction with partially hydrogenated MoS2 modelled surface: A molecular orbital study[J]. Journal of Molecular Catalysis A: Chemical, 1995,102:163-174.
    [92] Bunch A, Zhang L, Karakas G, et al. Reaction network of indole hydrodenitrogenation over NiMoS/γ-Al2O3 catalysts[J]. Applied Catalysis A: General, 2000,190(1-2): 51-60.
    [93]李矗,王安杰,鲁墨弘,等.加氢脱氮反应与加氢脱氮催化剂的研究进展[J].化工进展,2003, 22(6): 583-588.
    [94] Qu LL, Flechsenhar M, Prins R. Kinetics of the hydrodenitrogenation of o-toluidine over fluorinated NiMoS/Al2O3 and NiMoS/ASA catalysts[J]. Journal of Catalysis, 2003,217(2): 284-291.
    [95] Prins R, Jian M, Flechsenhar M. Mechanism and kinetics of hydrodenitrogenation[J]. Polyhedron, 1997,16: 3235-3246.
    [96] Qu LL, Prins R. Different active sites in hydrodenitrogenation as determined by the influence of the support and fluorination[J]. Applied Catalysis A: General, 2003,250(1): 105-115.
    [97] Xiang M, Li D, Xiao H, et al. Synthesis of higher alcohols from syngas over Fischer-Tropsch elements modified K/β-Mo2C catalysts[J]. Fuel, 2008,87(4-5): 599-603.
    [98] Xie YC, BM Naasz, Somorjai GA. Alcohol synthesis from CO and H2 over Molybdeum sulfide: The effect of pressure and promotion by potassium carbonate. Applied Catalysis, 1986,27: 233-241.
    [99] Quarderer GJ. AICHE Spring National Meeting[C]. New Orleans, 1986.
    [100] Hakki A. AICHE Spring National Metting[C]. New Orleans, 1986.
    [101] Tatsumi T, Muramatsu A, Fukunaga T, et al. Nickel-Promoted Mo Catalysts for Alcohol Synthesis from Co-H2[J]. Chemistry Letters, 1986,(6): 919-920.
    [102] Tatsumi T, Muramatsu A, Yokota K, et al. Shokubai(catalyst), (1986) 28(6): 481-484.
    [103] Murchison CB. In Proceeding of the fourth international conference on the chemistry and uses of Molybdenum[C]. Ann Arbor, 1982.
    [104] Li D, Yang C, Zhao N, et al. The performances of higher alcohol synthesis over nickel modified K2CO3/MoS2 catalyst[J]. Fuel Processing Technology, 2007,88(2): 125-127.
    [105] Li ZR, Fu YL, Jiang M. Structures and performance of Rh-Mo-K/Al2O3 catalysts used for mixed alcohol synthesis from synthesis gas[J]. Applied Catalysis A: General, 1999,187(2): 187-198.
    [106] Li ZR, Fu YL, Jing M, et al. Structures and performance of Pd-Mo-K/Al2O3 catalysts used for mixed alcohol synthesis from synthesis gas[J]. Catalysis Letters, 2000,65: 43-48.
    [107] Jiang M, Bian GZ, Fu YL. Effect of the K-Mo interaction in K-MoO3/γ-Al2O3 catalysts on the properties for alcohol synthesis from syngas[J]. Journal of Catalysis,1994,146(1): 144-154.
    [108] Concha BE, Bartholomew GL, Bartholomew CH. CO hydrogenation on supported molybdenum catalysts: Effects of support on specific activities of reduced and sulfided catalysts[J]. Journal of Catalysis, 1984,89(2): 536-541.
    [109] Li D, Yang C, Zhao N, et al. The performances of higher alcohol synthesis over nickel modified K2CO3/MoS2 catalyst[J]. Fuel Processing Technology, 2007,88(2): 125-127.
    [110] Fu YL, Fujimoto K, Lin PY, et al. In situ DRIFT studies of sulfided K-Mo/γ-Al2O3 catalysts[J]. Journal of Molecular Catalysis A: Chemical, 2004,207(2): 173-182.
    [111]杨意泉,许金来,林国栋,等.合成气制醇钼硫基催化剂上吸附物种的红外光谱表征[J].高等学校化学学报, 1994, 15(1): 95-102.
    [112] Parmaliana A, Frusteri F, Arena F, et al. Synthesis of methyl formate via two-step methane partial oxidation[J]. Catalysis Today, 1998,46(2-3): 117-125.
    [113] Frusteri F, Arena F, Martra G, et al. Mechanistic evidences of the synthesis of methyl formate from methane and air on oxide catalysts[J]. Catalysis Today, 2001,64(1-2): 97-102.
    [114]刘说,吴静,汪海滨,等.甲醇脱氢制甲酸甲酯催化剂的研究[J].沈阳化工学院学报,2005, 19(4): 266-269.
    [115] US Industrial Alcohol Company. Preparation of methyl formate from dehydrogenation of methanol[P]. US: 1400195, 1922.
    [116]王乐夫,谭凤仙,张映珊,等.甲醇脱氢制甲酸甲酯的催化剂和反应性能研究[J].化学反应工程与工艺,1994, 10(4): 403-407.
    [117]汪海滨,吴静,耿彩军,等.CuO/SiO2甲醇脱氢制甲酸甲酯催化剂的研究[J].天然气化工,2006, 31(3): 9-13.
    [118]张一平,费金华,郑小明.甲酸甲酯合成技术进展[J].精细石油化工,2003, 4: 49-52.
    [119]银董红,李文怀,钟炳,等.甲醇脱氢制甲酸甲酯催化研究进展[J].石油化工,2000, 29(5): 373-377.
    [120] Sodesawa T, Nagacho M, Onodera A, et al. Dehydrogenation of methanol tomethyl formate over Cu-SiO2 catatysts prepared by ion exchange method[J]. Journal of Catalysis, 1986,102(2): 460-463.
    [121]刘昭铁,陆大勋,郭志英.甲醇脱氢制甲酸甲酯的负载型铜基催化剂的研究[J].石油化工,1991, 20(8): 534-539.
    [122]刘昭铁,陆大勋,郭志英.在涂层TiO2改性铜催化剂上甲醇脱氢制甲酸甲酯[J].催化学报,1994, 15(1): 8-12.
    [123]徐华龙,周淑兰,沈伟,等.甲醇脱氢合成甲酸甲酯的Cu-ZnO/SiO2催化剂[J].复旦学报(自然科学版),1993, 32(1): 8-14.
    [124]李工,张红升,谢关根,等.甲醇催化脱氢制甲酸甲酯反应中Cu-ZrO2/SiO2催化剂的特性[J]..复旦学报(自然科学版),1995, 34(3):344-349.
    [125] Wang YQ, Ruan G, Han S. Dehydrocoupling of methanol to methyl formate over a Cu/Cr2O3 catalyst[J]. Reaction Kinetics and Catalysis Letters, 1999,67(2): 305-310.
    [126] Kou MRS, Mendioroz S, Fierro JLG, et al. The application of electron spin resonance spectroscopy to studies on copper(п) doped pillared clays[J]. Spectroscopy Letters, 2002, 35(4): 565-580
    [127] Morikawa Y, Takagi K, Moro-Oka Y, et al. Cu-fluor tetra silisic mica: a novel effective catalyst for the dehydrogenation of methanol to form methyl formate[J]. Chemistry Letters, 1982,131(11):1805-1808.
    [128] Morikawa Y, Takagi K, Moro-Oka Y, et al. Fluor tetra silisic mica as a unique support for metal ion catalysts[J]. Journal of the Chemical Society, Chemical Communications, 1983,160(4): 845-846.
    [129] Matsuda T, Yogo K, Pantawong C, et al. Catalytic properties of copper-exchanged clays for the dehydrogenation of methanol to methyl formate[J]. Applied Catalysis A: General, 1995,126(1): 177-186.
    [130] Sato S, Iijima M, Nakayama T, et al. Vapor-Phase Dehydrocoupling of Methanol to Methyl Formate over CuAl2O4[J]. Journal of Catalysis, 1997,169(2): 447-454.
    [131] Chung MJ, Moon DJ, Park KY, et al. Mechanism of methyl formate formation on Cu/ZnO catalysts[J]. Journal of Catalysis, 1992,136(2): 609-612.
    [132] Cant NW, Tonner SP, Trimm DL, et al. Isotopic labeling studies of the mechanism of dehydrogenation of methanol to methyl formate over copper-based catalysts[J]. Journal of Catalysis, 1985,91(2): 197-207.
    [133] Benarafa A, Kacimi M, Coudurier G, et al. Characterisation of the active sites in 2-butanol dehydrogenation over calcium-copper and calcium-sodium-copper phosphates[J]. Applied Catalysis A: General, 2000,196(1): 25-35.
    [134] Liu Z, Huo W, Ma H, et al. Development and Commercial Application of Methyl-ethyl-ketone Production Technology[J]. Chinese Journal of Chemical Engineering, 2006,14(5): 676-684.
    [135] Keuler JN, Lorenzen L, Miachon S. The dehydrogenation of 2-butanol over copper-based catalysts: optimising catalyst composition and determining kinetic parameters[J]. Applied Catalysis A: General, 2001,218(1-2): 171-180.
    [136] Arsalane S, Kacimi M, Ziyad M, et al. Behaviour of copper-thorium phosphate CuTh (PO ) in 2-butanol conversion[J]. Applied Catalysis A: General, 1994,114(2): 243-256. 2 4 3
    [137] Wang ZL, Ma HC, Zhu WC, et al. Characterization of Cu-ZnO-Cr O /SiO catalysts and application to dehydrogenation of 2-butanol to 2-butanone[J]. Reaction Kinetics and Catalysis Letters, 2002,76(2): 271-279. 2 3 2
    [138] Wang Z, Liu Q, Yu J, et al. Surface structure and catalytic behavior of silica-supported copper catalysts prepared by impregnation and sol-gel methods[J]. Applied Catalysis A: General, 2003,239(1-2): 87-94.
    [139]王振旅,马红超,朱万春,等.在纳米Cu-ZnO上仲丁醇的催化脱氢[J].高等学校化学学报,2002, 23: 2163-2165.
    [140]石芳,刘光华.糠醛加氢制糠醇催化剂的研究进展[J].工业催化,2006, 14: 28-30.
    [141] Liaw BJ, Chiang SJ, Chen SW, et al. Preparation and catalysis of amorphous CoNiB and polymer-stabilized CoNiB catalysts for hydrogenation of unsaturated aldehydes[J]. Applied Catalysis A: General, 2008,346(1-2): 179-188.
    [142]雷经新,石秋杰.近期糠醛催化加氢制糠醇催化剂研究特点[J].化学试剂,2006, 28(4): 205-208.
    [143] Adkins H, Burgoyne EE, Schneider HJ. The copper-chromium oxide catalyst for hydrogenation, Journal of the American Chemical Society, 1950,72(6): 2626-2629.
    [144]王爱菊,陈霄榕,雷翠月,等.糠醛气相加氢制糠醇催化剂的研制[J].工业催化,2000, 8(5): 25-28.
    [145] Ravasio N, Rossi M. Selective hydrogenations promoted by copper-catalysts: chemoselectivity, regioselectivity, and stereoselectivity in the hydrogenation of 3-substituted steroids[J]. Journal of Organic Chemistry, 1991,56(13): 4329-4333.
    [146] Ravasio N, Gargano M, Quatraro VP, et al. Heterogeneous Catalysis and Fine Chemicals[M]. Studies in Surface Science and Catalysis; Elsevier. 1991: 161-162.
    [147]. Rao R, Baker RTK, Vannice. MA. Furfural hydrogenation over carbon-supported copper[J]. Catalysis Letters, 1999,60(1): 51-57.
    [148] Rao R, Dandekar A, Baker RTK, et al. Properties of Copper Chromite Catalysts in Hydrogenation Reactions[J]. Journal of Catalysis, 1997,171(2): 406-419.
    [149]卢素敏,王洪卫,陈霄榕,等.糠醛气相常压加氢制糠醇[J].化工时刊,2002, 2: 19-22.
    [150]刘荣勋,陈晓春,张小燕,等.糠醛气相加氢铜铬催化剂的研究[J].北京化工学院学报(自然科学版),1989, 16(1): 1-5.
    [151]周亚明,沈伟,徐华龙,等.糠醛常压气相催化加氢制糠醇[J].石油化工,1997, 26(1): 4-7.
    [152] An X, Zuo Y, Zhang Q, et al. Methanol Synthesis from CO2 Hydrogenation with a Cu/Zn/Al/Zr Fibrous Catalyst[J]. Chinese Journal of Chemical Engineering, 2009,17(1): 88-94.
    [153] Gallucci F, Basile A. A theoretical analysis of methanol synthesis from CO2 and H2 in a ceramic membrane reactor[J]. International Journal of Hydrogen Energy, 2007,32(18): 5050-5058.
    [154]王桂轮,李成岳.以合成气合成甲醇催化剂及其进展[J].化工进展,2001, 3: 42-46.
    [155] Wang GL, Li CY. Catalysts for methanol synthesis[J]. Chemical Industry and Engineering Progress, 2001,20(3): 42-46.
    [156] Kanoun N, Astier MP, Pajonk GM. Catalytic properties of new copper-basedcatalysts containing zirconium and/or vanadium for methanol synthesis from a carbon dioxide and hydrogen mixture[J]. Catalysis Letters, 1992,15(3): 231-235.
    [157] Li JT, Zhang W, Gao L, et al. Methanol synthesis on Cu-Zn-Al and Cu-Zn-Al-Mn catalysts[J]. Applied Catalysis A: General, 1997,165(1-2): 411?417.
    [158] Walker AP, Lambert RM, Nix RM, et al. Methanol synthesis over catalysts derived from CeCu2: Transient studies with isotopically labeled reactants[J]. Journal of Catalysis, 1992,138(2): 694?713.
    [159] Toyir T, Piscina PR, Fierro JLG, et al. Highly effective conversion of CO2 to methanol over supported and promoted copper-based catalysts: Influence of support and promoter[J]. Applied Catalysis B, 2001,29(2): 207-215.
    [160] Zhang XT, Chang J, Wang TJ, et al. Methanol synthesis catalyst prepared by two-step precipitation combined with addition of surfactant[J]. Journal of Fuel Chemistry and Technology, 2005,33(4): 479?482.
    [161] Marsden WL, Wainwright MS, Friedrich JB. Zinc-promoted Raney copper catalysts for methanol synthesis[J]. Industrial & Engineering Chemistry Product Research and Development, 1980,19(4): 551-556.
    [162] Brown Bourzutschky JA, Homs N, Bell AT. Hydrogenation of CO2 and CO2/CO mixtures over copper-containing catalysts[J]. Journal of Catalysis, 1990,124(1): 73-85.
    [163] Klier K. Methanol synthesis[J]. Advances in Catalysis, 1982, 31: 243-313.
    [164] Gao LZ, Au CT. CO2 Hydrogenation to Methanol on a YBa2Cu3O7 Catalyst[J]. Journal of Catalysis, 2000,189(1): 1-15.
    [165] Wang GC, Zhao YZ, Cai ZS, et al. Investigation of the active sites of CO2 hydrogenation to methanol over a Cu-based catalyst by the UBI-QEP approach[J]. Surface Science, 2000,465(1-2): 51-58.
    [166] Okamoto Y, Fukino K, Imanaka T, et al. Surface Characterization of CuO-ZnO Methanol-Synthesis Catalysts by X-Ray Photoelectron-Spectroscopy: Precursor and Calcined Catalysts[J]. The Journal of Physical Chemistry, 1983,87(19): 3740-3747.
    [167] Okamoto Y, Fukino K, Imanaka T, et al. Surface Characterization of CuO-ZnO Methanol-Synthesis Catalysts by X-Ray Photoelectron-Spectroscopy: ReducedCatalysts[J]. The Journal of Physical Chemistry, 1983,87(19): 3747-3754.
    [168] Kainai Y, Watanabe T, Fujitani T, et al. Role of ZnO in promoting methanol synthesis over a physically-mixed Cu/SiO2 and ZnO/SiO2 catalyst[J]. Energy Conversion and Management, 1995,36(6-9): 649-652.
    [1]吉林化学工业公司研究院.气相色谱手册[M].北京:化学工业出版社,1980.
    [2] Lippert S, Baumann W, Thomke K. Journal of Molecular Catalysis A: Chemical, 1991, 69 : 199-214.
    [1] Bezverkhy I, Afanasiev P, Lacroix M. Aqueous preparation of highly dispersed molybdenum sulfide[J]. Inorganic Chemistry, 2000,39(24): 5416-5417.
    [2] Afanasiev P, Xia GF, Berhault G, et al. Surfactant-assisted synthesis of highly dispersed molybdenum sulfide[J]. Chemistry of Materials, 1999,11(11): 3216-3219.
    [3] Yang YQ, Tye CT, Smith KJ. Influence of MoS2 catalyst morphology on the hydrodeoxygenation of phenols[J]. Catalysis Communications, 2008,9(6): 1364-1368.
    [4] Yoosuk B, Kim JH, Song C, et al. Highly active MoS2, CoMoS2 and NiMoS2 unsupported catalysts prepared by hydrothermal synthesis for hydrodesulfurization of 4,6-dimethyldibenzothiophene[J]. Catalysis Today, 2008,130(1): 14-23.
    [5] Kibsgaard J, Clausen BS, Topsoe H, et al. Scanning tunneling microscopy studies of TiO2-supported hydrotreating catalysts: Anisotropic particle shapes by edge-specific MoS2-support bonding[J]. Journal of Catalysis, 2009,263(1): 98-103.
    [6] Berhault G, Lacroix M, Breysse M, et al. Characterization of acidic sites of silica-supported transition metal sulfides by pyridine and 2,6 dimethylpyridine adsorption: Relation to activity in CH3SH condensation[J]. Journal of Catalysis, 1998,178(2): 555-565.
    [7] Raybaud P, Hafner J, Kresse G, et al. Structure, Energetics, and Electronic properties of the surface of a promoted MoS2 catalyst: An ab Initio local density functional study[J]. Journal of Catalysis, 2000,190(1): 128-143.
    [8]崔能伟,刘成,姜浩锡等.乙醇一步法制备乙酸乙酯的MoS2/C催化剂[J].化学工业与工程,2006, 23(5): 400-402.
    [9]王大林,袁发林,姜浩锡.助剂对乙醇脱氢制乙酸乙酯MoS2/C催化剂影响研究[J].化学工业与工程,2008, 25(4): 335-339.
    [10] Feng L, Li X, Dadyburjor DB, et al. A temperature-programmed-reduction study on alkali-promoted, carbon-supported molybdenum catalysts[J]. Journal of Catalysis, 2000,190(1): 1-13.
    [11] Arrouvel C, Breysse M, Toulhoat H, et al. A density functional theory comparison of anatase (TiO2) andγ-Al2O3 supported MoS2 catalysts[J]. Journal of Catalysis, 2005,232(1): 161-178.
    [12] Shimada H. Morphology and orientation of MoS2 clusters on Al2O3 and TiO2 supports and their effect on catalytic performance[J]. Catalysis Today, 2003,86(1-4): 17-29.
    [13] Dandekar A, Baker RTK, Vannice MA. Characterization of activated carbon, graphitized carbon fibers and synthetic diamond powder using TPD and DRIFTS[J]. Carbon, 1998,36(12): 1821-1831.
    [14] Kim CH, Lee DK, Pinnavaia TJ. Graphitic mesostructured carbon prepared from aromatic precursors[J]. Langmuir, 2004,20(13): 5157-5159.
    [15] Surisetty VR, Tavasoli A, Dalai AK. Synthesis of higher alcohols from syngas over alkali promoted MoS2 catalysts supported on multi-walled carbon nanotubes[J]. Applied Catalysis A: General, 2009,365(2): 243-251.
    [16] Ding LH, Zheng Y, Yang H, et al. LCO hydrotreating with Mo-Ni and W-Ni supported on nano- and micro-sized zeolite beta[J]. Applied Catalysis A: General, 2009,353(1): 17-23
    [17] Afanasiev P, Xia GF, Berhault G, et al. Surfactant-Assisted Synthesis of Highly Dispersed Molybdenum Sulfide[J]. Chemistry of Materials, 1999,11(11): 3216-3219.
    [18] Aridi TN, Al-Daous MA. HDS of 4,6-dimethyldibenzothiophene over MoS2catalysts supported on macroporous carbon coated with aluminosilicate nanoparticles[J]. Applied Catalysis A: General, 2009,359(1-2): 180-187.
    [19] Furimsky E, Applied Catalysis, 1983, 6: 159-166.
    [20] Vogelzang MW, Li CL, Schuit GCA, et al. Hydrodeoxygenation of 1-naphthol: Activities and stabilities of molybdena and related catalysts[J]. Journal of Catalysis, 1983,84(1): 170-177.
    [21] Bunch AY, Ozkan US. Investigation of the Reaction Network of Benzofuran Hydrodeoxygenation over Sulfided and Reduced Ni-Mo/Al2O3 Catalysts[J]. Journal of Catalysis, 2002,206(2): 177-187.
    [22] Colley SW, Tabatabaei J, Waugh KC, et al. The detailed kinetics and mechanism of ethyl ethanoate synthesis over a Cu/Cr2O3 catalyst[J]. Journal of Catalysis, 2005,236(1): 21-33.
    [23] Xue YY, Lu GZ, Guo YL, et al. Effect of pretreatment method of activated carbon on the catalytic reduction of NO by carbon over CuO[J]. Applied Catalysis B: Environmental, 2008,79(3): 262-269.
    [24] Brito JL, Severino F, Ninoska Delgado N, et al. HDS activity of carbon-supported Ni-Mo catalysts derived from thiomolybdate complexes[J]. Applied Catalysis A: General, 1998,173(2): 193-199.
    [25] Gutierrez OY, Perez F, Fuentes GA, et al. Deep HDS over NiMo/Zr-SBA-15 catalysts with varying MoO3 loading[J]. Catalysis Today, 2008,130(2-4): 292-301.
    [26] Bhaskar T, Reddy KR, Kumar CP, et al. Characterization and reactivity of molybdenum oxide catalysts supported on zirconia[J]. Applied Catalysis A: General, 2001,211(2): 189-201.
    [27] Puente G, Gil A, Pis JJ, et al. Effects of support surface chemistry in hydrodeoxygenation reactions over CoMo/activated carbon sulfided catalysts[J]. Langmuir, 1999,15(18): 5800-5806.
    [28] Weber TH, Muijsers, JC, Wolput JHMC, et al. Basic reaction steps in the sulfidation of crystalline MoO3 to MoS2, As studied by Photoelectron and Infrared Emission Spectroscopy[J]. The Journal of Physical Chemistry, 1996, 100(33): 14144-14150.
    [29] Kurhinen M, Pakkanen TA. CoMo/alumina prepared from carbonyl precursors: DRIFT, TPR and HDS studies[J]. Applied Catalysis A: General, 2000,192(1): 97-103.
    [30]马晓明.碳纳米管负载/促进合成气制低碳混合醇Mo-Co-K硫化物基催化剂研究[D].厦门:厦门大学化学学院,2006.
    [31] Matos J, Brito JL, Laine J. Activated carbon supported Ni-Mo: effects of pretreatment and composition on catalyst reducibility and on ethylene conversion[J]. Applied Catalysis A: General, 1997,152(1): 27-42.
    [1] Rioux RM, Vannice MA. Hydrogenation/dehydrogenation reactions: isopropanol dehydrogenation over copper catalysts[J]. Journal of Catalysis, 216(1-2): 362-376.
    [2] Ichikawa N, Sato S, Takahashi R, et al. Dehydrogenative cyclization of 1,4-butanediol over copper-based catalyst[J]. Journal of Molecular Catalysis A: Chemical, 2004,212(1-2): 197-203.
    [3] Tu YJ, Chen YW. Effects of alkali metal oxide additives on Cu/SiO2 catalyst in the dehydrogenation of ethanol[J]. Industrial & Engineering Chemistry Research, 2001,40(25): 5889-5893.
    [4] Colley SW, Tabatabaei J, Waugh KC, et al. The detailed kinetics and mechanism of ethyl ethanoate synthesis over a Cu/Cr2O3 catalyst[J]. Journal of Catalysis, 2005,236(1): 21-33.
    [5] Elliott DJ, Pennella F. The formation of ketones in the presence of carbon monoxide over CuO/ZnO/Al2O3[J]. Journal of Catalysis, 1989,119(2): 359-367.
    [6]杨树武,周卓华.Cu/ZnO/Al2O3/ZrO2催化剂上乙醇脱氢合成乙酸乙酯[J].催化学报,1996, 17(1): 5-9.
    [7] Inui K, Kurabayashi T, Sato S. Direct synthesis of ethyl acetate from ethanol over Cu-Zn-Zr-Al-O catalyst[J]. Applied Catalysis A: General, 2002,237(1-2): 53-61.
    [8] Inui K, Kurabayashi T, Sato S. Direct Synthesis of Ethyl Acetate from Ethanol Carried Out under Pressure[J]. Journal of Catalysis, 2002,212(2): 207-215.
    [9] Inui K, Kurabayashi T, Sato S, et al. Effective formation of ethyl acetate from ethanol over Cu-Zn-Zr-Al-O catalyst[J]. Journal of Molecular Catalysis A: Chemical, 2004,216(1): 147-156.
    [10]郑荣辉,曾金龙,傅锦坤.乙醇一步合成乙酸乙酯Cu/ZnO/NiO/Al2O3催化剂的催化性能及其表征[J].化学研究与应用,1997, 9(4): 401-405.
    [11] Sagar GV, Rao PVR, Srikanth CS, et al. Dispersion and Reactivity of Copper Catalysts Supported on Al2O3-ZrO2[J]. The Journal of Physical Chemistry B, 2006,110(28): 13881-13888.
    [12] Chary KVR, Sagar GV, Srikanth CS, et al. Characterization and catalytic functionalities of copper oxide catalysts supported on zirconia[J]. The Journal of Physical Chemistry B, 2006,111(3): 543-550.
    [13] Aguila G, Jimenez J, Guerrero S, et al. A novel method for preparing high surface area copper zirconia catalysts: Influence of the preparation variables[J]. Applied Catalysis A: General, 2009,360(1): 98-105.
    [14] Tanaka Y, Utaka T, Kikuchi R, et al. Water gas shift reaction for the reformed fuels over Cu/MnO catalysts prepared via spinel-type oxide[J]. Journal of Catalysis, 2003,215(2): 271-278.
    [15] Ji DH, Zhu WC, Wang ZL, et al. Dehydrogenation of cyclohexanol on Cu-ZnO/SiO2 catalysts: The role of copper species[J]. Catalysis Communications, 2007,8(12): 1891-1895.
    [16] Turco M, Cammarano C, Bagnasco G, et al. Oxidative methanol steam reforming on a highly dispersed CuO/CeO2/Al2O3 catalyst prepared by a single-step method[J]. Applied Catalysis B: Environmental, 2009,91(1-2): 101-107.
    [17] Kundakovic L, Flytzani-Stephanopoulos M. Reduction characteristics of copper oxide in cerium and zirconium oxide systems[J]. Applied Catalysis A: General, 1998,171(1): 13-29.
    [18] Breen JP, Ross JRH. Methanol reforming for fuel-cell applications: development of zirconia-containing Cu-Zn-Al catalysts[J]. Catalysis Today, 1999,51(3-4): 521-533.
    [19]潘伟雄.乙醇脱氢歧化醋化一步合成乙酸乙醋[J].石油化工,1991, 20(5): 330-337.
    [20] Yao CZ, Wang LC, Liu Y-M, et al. Effect of preparation method on the hydrogen production from methanol steam reforming over binary Cu/ZrO2 catalysts[J]. Applied Catalysis A: General, 2006,297(2): 151-158.
    [21] Agrell J, Birgersson H, Boutonnet M, et al. Production of hydrogen from methanol over Cu/ZnO catalysts promoted by ZrO2 and Al2O3[J]. Journal of Catalysis, 2003,219(2): 389-403.
    [22] Matter PH, Ozkan US. Effect of pretreatment conditions on Cu/Zn/Zr-based catalysts for the steam reforming of methanol to H2[J]. Journal of Catalysis, 2005,234(2): 463-475.
    [23] Zheng HY, Zhu YL, Huang L, et al. Study on Cu-Mn-Si catalysts for synthesis of cyclohexanone and 2-methylfuran through the coupling process[J]. Catalysis Communications, 2008,9(3): 342-348.
    [24] Turco M, Bagnasco G, Cammarano C, et al. Cu/ZnO/Al2O3 catalysts for oxidative steam reforming of methanol: The role of Cu and the dispersing oxide matrix[J]. Applied Catalysis B: Environmental, 2007,77(1-2): 46-57.
    [25] Campos-Martin JM, Fierro JLG, Guerrero-Ruiz A, et al. Promoter effect of cesium on C-C bond formation during alcohol synthesis from CO/H2 over Cu/ZnO/Cr2O3 catalysts[J]. Journal of Catalysis, 1996,163(2): 418-428.
    [26] Nagaraja BM, Padmasri AH, Seetharamulu P, et al. A highly active Cu-MgO-Cr2O3 catalyst for simultaneous synthesis of furfuryl alcohol and cyclohexanone by a novel coupling route-Combination of furfural hydrogenation and cyclohexanol dehydrogenation[J]. Journal of Molecular Catalysis A: Chemical, 2007,278(1-2): 29-37.
    [27] Papavasiliou J, Avgouropoulos G, Ioannides T. Combined steam reforming of methanol over Cu-Mn spinel oxide catalysts[J]. Journal of Catalysis, 2007,251(1): 7-20.
    [1] Inui K, Kurabayashi T, Sato S. Direct synthesis of ethyl acetate from ethanol over Cu-Zn-Zr-Al-O catalyst[J]. Applied Catalysis A: General, 2002,237(1-2): 53-61.
    [2] Inui K, Kurabayashi T, Sato S. Direct Synthesis of Ethyl Acetate from Ethanol Carried Out under Pressure[J]. Journal of Catalysis, 2002,212(2): 207-215.
    [3] Inui K, Kurabayashi T, Sato S, et al. Effective formation of ethyl acetate from ethanol over Cu-Zn-Zr-Al-O catalyst[J]. Journal of Molecular Catalysis A: Chemical, 2004,216(1): 147-156.
    [4] Tanaka Y, Takeguchi T, Kikuchi R, et al. Influence of preparation method andadditive for Cu-Mn spinel oxide catalyst on water gas shift reaction of reformed fuels[J]. Applied Catalysis A: General, 2005,279(1-2): 59-66.
    [5] Faungnawakij K, Shimoda N, Fukunaga T, et al. Cu-based spinel catalysts CuB2O4 (B=Fe, Mn, Cr, Ga, Al, Fe0.75Mn0.25) for steam reforming of dimethyl ether[J]. Applied Catalysis A: General, 2008,341(1-2): 139-145.
    [6] Liu W, Soneda Y, Kodama M, et al. Preparation and characterization of molybdenum carbides/carbon composites with high specific surface area[J]. Materials Letters, 2008,62(17-18): 2766-2768.
    [7] Nagai M, Oshikawa K, Kurakami T, et al. Surface properties of carbided molybdena-alumina and its activity for CO2 hydrogenation[J]. Journal of Catalysis, 1998,180(1): 14-23.
    [8] Chen JG. Carbide and Nitride overlayers on early transition metal surfaces: preparation, characterization, and reactivities[J]. Chemical Reviews, 1996,96(4): 1477-1498.
    [9] Li SZ, Lee JS, Hyeon T, et al. Catalytic hydrodenitrogenation of indole over molybdenum nitride and carbides with different structures[J]. Applied Catalysis A: General, 1999,184(1): 1-9.
    [10] Sajkowski DJ, Oyama ST. Catalytic hydrotreating by molybdenum carbide and nitride: unsupported Mo2N and Mo2C/Al2O3[J]. Applied Catalysis A: General, 1996,134(2): 339-349.
    [11] Jones SD, Hagelin-Weaver HE. Steam reforming of methanol over CeO2- and ZrO2-promoted Cu-ZnO catalysts supported on nanoparticle Al2O3[J]. Applied Catalysis B: Environmental, 2009,90(1-2): 195-204.
    [12] Sagar GV, Rao PVR, Srikanth CS, et al. Dispersion and reactivity of copper catalysts supported on Al2O3-ZrO2[J]. The Journal of Physical Chemistry B, 2006,110(28): 13881-13888.
    [13] Sato S, Iijima M, Nakayama T, et al. Vapor-phase dehydrocoupling of methanol to methyl formate over CuAl2O4[J]. Journal of Catalysis, 1997,169(2): 447-454.
    [14] Tanaka Y, Utaka T, Kikuchi R, et al. Water gas shift reaction over Cu-based mixed oxides for CO removal from the reformed fuels[J]. Applied Catalysis A:General, 2003,242(2): 287-295.
    [15] Luo MF, Fang P, He M, et al. In situ XRD, Raman, and TPR studies of CuO/Al2O3 catalysts for CO oxidation[J]. Journal of Molecular Catalysis A: Chemical, 2005,239(1-2): 243-248.
    [16] Gomes ACL, Nunes MHO, Silva VT, et al. Thiophene hydrodesulfurization usingβ-Mo2C/MCM-41 as catalyst[M]. Studies in Surface Science and Catalysis; Elsevier. 2004: 2432-2440.
    [17] Mamede AS, Giraudon JM, Lofberg A, et al. Hydrogenation of toluene overβ-Mo2C in the presence of thiophene[J]. Applied Catalysis A: General, 2002, 27(1-2): 73-82.
    [18] Wang J, Ji S, Yang J, et al. Mo2C and Mo2C/Al2O3 catalysts for NO direct decomposition[J]. Catalysis Communications, 2005,6(6): 389-393.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700