用户名: 密码: 验证码:
InAs/GaInSb超晶格的外延生长模拟及微结构设计研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文采用动力学蒙特卡罗方法(KMC)在SOS(Solid-on-Solid)模型基础上模拟了InAs/Ga_(1-x)In_xSb超晶格的分子束外延(MBE)生长,利用包络函数方法计算了InAs/Ga_(1-x)In_xSb的能带结构,在模拟和计算的基础上设计了特定截止波长的InAs/Ga_(1-x)In_xSb超晶格结构。
     模拟研究发现,生长温度为663K时,在GaSb缓冲层上生长InAs层与GaInSb层时粗糙度曲线出现周期性振荡,与典型的RHEED图像相符,表明在该生长温度下生长的InAs/Ga_(1-x)In_xSb能得到较好的薄膜质量。同时发现InSb型界面比GaAs型界面更加适合InAs/Ga_(1-x)In_xSb超晶格的生长。另外,在生长Ga_(1-x)In_xSb材料时,In含量越高,薄膜表面越粗糙。
     对InAs/Ga_(1-x)In_xSb超晶格的能带结构计算表明,InAs/Ga_(1-x)In_xSb的能带结构受到周期厚度和In含量的影响。InAs层和GaInSb层厚度都会影响超晶格的子带结构,InAs层变厚,HH1增加而C1下降,使得E_g减小;GaInSb层厚度变厚,C1和HH1均增加,E_g变化很小。In含量的变化由于同时改变了应变和GaInSb的能带参数,对InAs/Ga_(1-x)In_xSb能带结构产生了巨大的影响,随着In含量的增加,C1下降,HH1增加,使得E_g迅速减小。
     在外延生长模拟和超晶格能带计算的基础上,选用InAs/Ga_(0.9)In_(0.1)Sb(3nm/2.7nm)结构设计p-i-n型光伏器件,其主要结构为:p+层为40个周期的InAs/GaInSb超晶格(GalnSb:Be 1×10~(17)cm~(-3));i层为20个周期的非故意掺杂InAs/GaInSb超晶格;n+层为40个周期的InAs/GaInSb超晶格(InAs:Si 5×10~(17)cm~(-3))。计算该光伏器件在77K时的暗电流发现,其扩散电流较小,暗电流主要由复合电流和带间隧穿电流组成。当反向偏压小于16.5mV时,暗电流主要是复合电流;反向偏压超过16.5mV以后带间隧穿电流超过复合电流成为暗电流的主要组成部分。为InAs/GaInSb超晶格的器件设计奠定了基础。
The Kinetic Monte Carlo (KMC) method based on Solid-on-Solid (SOS) model has been used to simulate the growth of InAs/Ga_(1-x)In_xSb superlattice (SL) grown by Molecular Beam Epitaxy (MBE). The band structure of InAs/Ga_(1-x). In_xSb superlattice has been calculated by the Envelope Function method. On the basis of simulation and calculation, a SL photovoltaic deVice was designed.
     The simulation shows that, when the substrate temperature is 663K, the Roughness-Time curve of InAs/Ga_(1-x)In_xSb growth on GaSb buffer displays a periodical oscillation, which agrees with the reported RHEED's patterns. It indicates the high quality SLs growth by MBE at this temperature. The InSb-like interface in the InAs/Ga_(1-x)In_xSb SL is smoother than the GaAs-like version. Furthermore, the quality of film degrades as the In content increasing in the Ga_(1-x) In_xSb growth.
     In general, the SL period and In content contribute the band structure change of InAs/Ga_(1-x)In_xSb SL. The caulation result exhibits that, the energy of SL HH1 subband rises and C1 declines when InAs layer thickness increases, so band gap E_g decreases; on the other hand, increasing the thickness of GalnSb layer results in both C1 and HH1 rise then E_g has little changes. Because the In content affects on both strain and most band structure parameters of GalnSb, the SL band structure will vary significantly due to the changing content. Besides, the energy of C1 subband declines and HH1 rises with In content increasing, which results in the quick decrease of band gap.
     A p-i-n photodiode based on InAs/Ga_(0.9)In_(0.1)Sb (3nm/2.7nm) superlattice has been designed. The active layer consists of 20 periods unintentional doped SLs sandwiched between 40 periods p-type SLs (GalnSb: Be 1×10~(17)cm~(-3)) and 40 periods n-type SLs (InAs: Si 5×10~(17)cm~(-3)). The dark current at 77K mainly make up of the generation-recombination (G-R) current and band-to-band tunneling current. The G-R current dominates the dark current when the re Verse bias lower than 16.5mV, while beyond 16.5mV the band-to-band tunneling current exceeds.
引文
1.刘松妍.新型GaAs/AlGaAs量子阱中远红外探测器的研究与改进.北京 工业大学硕士学位论文.2002:2-3
    
    2.史衍丽.新型光电流逐级增强GaAs/AlGaAs量子阱中远红外探测机制的 研究.北京工业大学博士学位论文.2000:1-5
    
    3.干福熹.信息材料.天津大学出版社.2000:120-122
    
    4.J. Piotrowski, A. Rogalski. Comment on "Temperature limits on infrareddetectivities of InAs/In_xGa_(1-x)Sb superlattices and bulk Hg_(1-x)Cd_xTe" J. Appl.Phys. 74. 4774 (1993). J. Appl. Phys. 1996. 80: 2542
    
    5.H. Mohseni, E. Michel, Jan Sandoen. Growth and Characterization ofInAs/GaSb photoconductions for long wavelength infrared range. Appl. Phys.Lett. 1997. 71: 1403-1405
    
    6.M. H. Young, D.H. Chow, A. T. Hunter. Recent advances in Ga_(1-x)In_xSb/InAssuperlattice IR detector materials. Applied surface Science.1998.123/124:395-399
    
    7.邱永鑫,李美成,赵连城.InAs/GaInSb应变超晶格材料的界面结构.功 能材料.2005.36(9):1316-1319,1323
    
    8. Rogalski. Infrared detectors: status and trends. Progress in Quantum Antoni Electronics. 2003. 27: 59-210
    
    9.朱惜辰,程进.红外探测器的进展.光机电信息.2001.10:30-34
    
    10. D. L. Smith, C. Mailhiot. Proposal for strained type II superlattices infrared detectors J. Appl. Phys. 1987. 62: 2545
    
    11. R.H. Miles. Infrared optical characterization of InAs/Ga_(1-x)In_xSb superlattices. Appl. Phys. Lett. 1990. 57: 801
    
    12. D.H.Chow. Growth and characterization of InAs/Ga_(1-x)In_xSb strained-layer superlattices. Appl. Phys. Lett. 1990. 56: 1418
    
    13. F. Fuchs. High performance InAs/Ga_(1-x)In_xSb superlattices infrared potodiodes. Appl. Phys. Lett. 1997.77: 3251
    
    14. A.Y. Lew, S.L. Zou, E.T. Yu. Correlation between atomic-scale structure and mobility anisotropy in InAs/Ga_(1-x)In_xSb superlattices. Phys. ReV. B 1998.57: 6534
    
    15. Y. Wei, A. Gin, M. Razeghi. Advanced InAs/GaSb superlattice photovoltaic detectors for very long wavelength infrared applications. Appl. Phys. Lett., 2002.80 : 3262
    
    16. R.H. Miles, D. H. Chow, W.J. Hamilton. High structural quality Ga_(1-x) In_xSb/InAs strained-layer superlattices grown on GaSb substrates. J. Appl. Phys. 1992.71:211
    
    17. E. Corbin, M. J. Shaw, M. R. Kitchin. Systematic study of type-Ⅱ Ga_(1-x)In_xSb/InAs superlattices for infra-red detection in the 10-12 μm wavelength range. Semicond. Sci. Technol. 2001.16:263-272
    
    18.林春.2μm激光器、探测器材料、器件及物理.中国科学院博士学位研 究生学位论文.2001:3-6,37
    
    19. A.Y. Lew, S.L. Zou, E.T. Yu. Correlation between atomic-scale structure and mobility anisotropy in InAs/Ga_(1-x)In_xSb superlattices. Phys. ReV. B 1998.57: 6534
    
    20. J. Wagner, P. M. Young, M. E. Flatte. Long wavelength InAs/InGaSb infrared detectors: Optimization of carrier lifetimes. J. Appl. Phys. 1995.78
    
    21. J. Schmitz. Electrical and optical of infrared potodiodes using the InAs/Ga_(1-x)In_xSb superlattice in heterojunction with GaSb. J. Appl. Phys. 1996. 80: 1116
    
    22.杨邦朝,王文生.薄膜物理与技术.电子科技大学出版社.1994:148-161
    
    23.杨春,李言荣 薄膜生长模型与计算机模拟.2003.34(3):247-249
    
    24.宋鹏,陆建生,瑚琦,赵明娟,杨滨.薄膜沉积机理的计算机模拟应用和 发展.材料导报.2003.17(专辑):154-157
    
    25.罗旋,费维栋,李超.材料科学中分子动力学模拟的研究进展.材料科学 与工艺.1996.4(1):124-128
    
    26. M. Biehl, M. Ahr, W. Kinzel, F. Much. Kinetic Monte Carlo simulation of heteroepitaxial growth. Thin Solid Films. 2003. 428:52-55
    
    27. K. E. Khor, S. D. Sarma. Quantum dot self-assembly in growth of strained-layer thin film: A kinetic Monte Carlo study. Phys. ReV. B. 2000. 62(24): 16657-16664
    
    28. R. Vardaves. Fluctuations and scaling in 1D irreversible film growth models. Thesis submitted for the degree of Doctor Philosophy of the University of London and the Diploma of Imperial College. 2002
    
    29.陆杭军,吴峰民.非均匀基底上三维薄膜生长的模拟研究.物理学报. 2006.55(01):424-429
    
    30.张雪峰.薄膜三维生长的Kinetic Monte Carlo模拟.华中科技大学硕士 学位论文.2004
    
    31.叶健松,胡晓君.超薄膜外延生长的Monte Carlo模拟.物理学报.2002. 51(5):1108-1112
    
    32.何为,郝智彪,罗毅.GaAs图形衬底上InAs量子点生长停顿的动力学 蒙特卡罗模拟.半导体学报.2005.26(4):707-710
    
    33.宋广.GaSb薄膜模拟外延生长研究.哈尔滨工业大学硕士论文.2005:16
    
    34.熊敏.GaAs基InSb薄膜的分子束外延生长及其结构与性能.哈尔滨工业 大学硕士论文.2005:47-57
    
    35.H.布斯连科.统计实验法(蒙特卡罗法)及其在电子数字计算机上的实 现.上海科学技术出版社.1961:1-46
    
    36. M. Kalke. Kinetic Monte Carlo simulation of chemical vapor deposition growth of thin films. Indiana University, thesis for the degree of Doctor of Philosophy. 2002: 12-14.
    
    37.郑小平,张佩峰,范多旺.薄膜生长的计算机模拟.材料研究学报.2005. 19(2):170-178
    
    38.郑小平,张佩峰,刘军.薄膜外延生长的计算机模拟.物理学报.2004. 53(8):2687-2693
    
    39.郑小平,张佩峰,贺德衍.薄膜外延生长及其岛核形成的计算机模拟.中 国科学G辑物理学力学天文学.2004.34(2):131-140
    
    40. H. Mohseni. Type-II InAs/GaSb superlattices for infrared detectors. Northwestern University. thesis for the degree Doctor of Philosophy. 2001:75-125
    
    41. H. Mohseni, E. Michel, M. Rajezhi. Growth and characterization of InAs/GaSb type Ⅱ superlattices for long-wavelength infrared detectors. SPIE. 3287: 30-37
    
    42. J. L. Johnson. Design and Demonstration of InAs/Ga_(1-x)In_xSb Strained-Layer Superlattices Optimized for Long-Wavelength Infrared Detector. University of California, thesis for the degree of Doctor of Philosophy. 1997: 57-90
    
    43. I. Vurgaftman, J. R. Meyer, L. R. Ram-Mohan. Band parameters for Ⅲ-Ⅳ compound semiconductors and their alloys. J. Appl. Phys. 2001. 89(11):??5815-5875
    
    44. Steiner. Semiconductor Nanostructures for Optoelectronic Applications. Artech House. Incorporated. 2004: 230-231.
    
    45. M. Kalke. Kinetic Monte Carlo simulation of chemical vapor deposition growth of thin films. Indiana University, thesis for the degree of Doctor of Philosophy. 2002: 12-14
    
    46.周炳卿,刘丰珍,朱美芳.微晶硅薄膜的表面粗糙度及其生长机制的X 射线掠角反射研究.物理学报.2007.56(4):2422-2427
    
    47. M. Karder, G. Parisi, Y. C. Zhang. Dynamic Scaling of Growing Interfaces. Phy.ReV.Lett. 1986. 56(9): 889-892
    
    48. I. Sela, I. H. Campbell, B. K. Laurich. Raman scattering study of InAs/GalnSb strained layer superlattices. J. Appl. Phys. 1991. 70(10): 5608-5614
    
    49. H. Mohseni, A. Tahraoui, J. Wojkowski. Very long wavelength infrared type-Ⅱ detectors operating at 80 K. Appl. Phys. Lett. 2000. 77(11): 1572-1574
    
    50.吴自勤,王兵.薄膜生长.科学出版社.2001:122-128
    
    51.王庆学,杨建荣,魏彦锋.HgCdTe外延薄膜临界厚度的理论分析.物理 学报.2005.54(12):5814-5819
    
    52.邓咏桢,孔月婵,江宁.CVD生长Si基Si_(1-x-y)Ge_xC_y合金层应变的研究. 固体电子学研究与进展.2005.25(4):442-444,449
    
    53.罗江财.Ge_xSi_(1-x)/Si应变层和超晶格及其临界厚度.半导体光电.1993. 14(1):35-40,47
    
    54.白立伟,胡礼忠.异质结应变层的临界厚度的确定.半导体技术.2002. 27(2):69-74
    
    55.R.K.威拉德森,A.C.比尔.红外探测器.国防工业出版社.1973:1-15
    
    56. C. H. Lin, G. J. Brown, W. C. Mitchel. Mid-Infrared Photodetectors Based on InAs/InGaSb Type-II Superlattices. SPIE. 3287: 22-29
    
    57. G. J. Brown, F. Szmulowicz, R. Linville. Type-II Photodetector on a Compliant GaAs Substrate. IEEE Photonics Technology Letters. 2000. 12(6): 684-686
    
    58.陈亚孚,万春明,卢俊.超晶格量子阱物理.兵器工业出版社.2002:5-10
    
    59. C. G. Van de Walle. Band lineup and deformation potentials in the model- solid theory. Phys. Rev. B. 1988. 39(3): 1871-1883
    60. H. Mohseni, J. S. Wojkowski. Growth and characterization of type-TI non-equilibrium photovoltaic detectors for long wavelength infrared range. SPIE. Proceedings. 2000. 3948: 153-160
    61. Q. K. Yang, C. Pfahler, J. Schmitz. Trap centers and minority carrier lifetimes in InAs/(GaIn)Sb superlattice long wavelength photodetectors. SPIE. Proceedings. 2003. 4999: 448-456

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700