用户名: 密码: 验证码:
WC_xN_y、NbC_xN_y、TiC/α-C:H纳米复合薄膜材料的微观结构及力学性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在过去几十年中,超硬薄膜材料由于在工业方面的广泛运用而得到迅速发展。对薄膜材料的研究也逐渐深入,从最初的一元金刚石薄膜,到二元硬质氮化物/碳化物,再到三元Me-X-N(Me代表过渡金属,X代表非金属,N为氮元素)体系,人们设计、合成出的薄膜材料的性能越来越优异。从只有力学优势的单一性能薄膜到具有光、电、力、热复合优势的多性能薄膜,这些都要求薄膜的微观结构具有较高的可控与可重复性,也对薄膜形成机制的研究提出了更高的要求。
     本论文立足于前人的研究成果,对三元Me-X-N体系薄膜的结构和性能进行了深入系统的研究,重点关注于薄膜的织构行为、相变机制和力学性能。通过对W-C-N,Nb-C-N及Ti-C-H三种薄膜材料的结构和性能的研究,探寻到具有优异力学性能的α-WC薄膜的低温合成方法;探讨了纳米复合薄膜的织构和相变机制及其与力学性能之间的联系;发现并解释了尺寸效应对薄膜织构行为的影响;提出了与织构相关的纳米复合薄膜的结构演变模型。本论文的研究对薄膜的结构控制、设计思路和合成方法都提供了很好的借鉴作用。
During the last decades, much interest has been paid to the investigation the nanocomposite thin films (typical: Me-X-N, Me stands for transition metal and X = Si, B, C, etc.) because of their much better mechanical properties than that of unitary or binary coating. Many studies have been performed to control the mictostructure and improve the mechanical properties of thin films. Base on the previous work in literatures, we focused on the texture, phase transition and mechanical properties of nanocomposite thin films in this thesis.. The main works of this thesis are summarized as follows:
     In chapter 1, we give a brief introduction to the mechanism of film growth, texture behavior, phase transition and mechanical properties. Furthermore, some unresolved issues in the study of structure and properties for nanocomposites and the objective of this dissertation are given.
     In chapter 2, we introduce the basic concepts and progress of the experimental method used in this work in detail.
     In chapter 3, we have successfully synthesizedα-WC at a relatively low temperature using direct current reactive magnetron sputtering, and observe a phase transition fromβ-WC toα-WC in the film by increasing N dopant concentration. We find that N content has a significant influence on the intrinsic stress, preferred orientation, phase structure, and hardness for films.
     In chapter 4, We deposit ternary WCxNy thin films on Si(100) substrates at 500℃using direct current (DC) reactive magnetron sputtering in a mixture of CH4/N2/Ar discharge, and the effects of both bias voltage and annealing on the intrinsic stress, preferred orientation and phase transition for the obtained films have been explored. From the experimentally results, we have found that the substrate voltage bias and annealing have a significant influence on the structure and mechanical properties of the obtained films.
     In chapter 5, size-effect on the texture behavior has been demonstrated and discussed for TiC/α-C:H nanocomposite films. The texture of film is found to be significantly affected by the grain size, and the size-dependence correlation of texture behavior is discussed by thermodynamic calculations. The results show that the size-dependent Gibbs free energies are likely to be a key factor that controls the texture development in thin films if the grain sizes of films are sufficient small.
     In chapter 6, the microstructure behavior and texture evolution of nanocomposite films have been explored for NbCxNy films. The relationship between microstructure change and texture evolution have been built in this thesis. Furthermore, the mechanical properties of NbCxNy films including stress and hardness have also been discussed.
     In conclusion, the microstructure and mechanical properties have been systemically investigated by means for W-C-N, Nb-C-N and Ti-C-H system of films. The results of this thesis can be used for reference to designing and synthesizing of high performance nanocomposite films.
引文
[1]中华人民共和国科学技术部发展技术司主编,<国家科技计划年度报告>[R], 2008。
    [ 2 ]邱晓华:制造业是中国国民经济增长的主要来源。(2002-8-19). http://www.chinaccm.com/45/4505/450501/news/20020819/162854.asp
    [3]胡杨,制造业:国民经济发展的脊梁[J],<<中国科技成果>> 2005年第22期。
    [4] P. H. Mayrhofer, C. Mitterer, L. Hultman, H. Clemens, Microstructural design of hard coatings, Progress in Materials Science, 2006, 51:1032–1114.
    [5] S. Vepfek, S. Reiprich, A concept for the design of novel superhard coatings, ThinSolid Films, 1995, 268: 64-71.
    [6] A.C. Fischer-Cripps, P. Karvankova, S. Veprek, On the measurement of hardness of super-hard coatings, Surface and Coatings Technology, 2006, 200: 5645– 5654.
    [7] J. Procházka, P. Karvánková, M. G. J. Veprek-Heijman, S. Veprek, Conditions required for achieving superhardness of≥45 GPa in nc-TiN/a-Si3N4 nanocomposites, Materials Science and Engineering A, 2004, 384: 102–116.
    [8] A. Barata, L. Cunha, C. Moura, Characterisation of chromium nitride films produced by PVD techniques, Thin Solid Films, 2001, 398–399: 501–506.
    [9] J. Wohle, A. Gebauer-Teichmann, K. T. Rie, Comparison of radio frequency and pulsed-d.c. plasma CVD of Ti-C-N-H and Zr-C-N-H layers at low temperature, Surface and Coatings Technology, 2001,142-144: 661-664.
    [10] S. Restello, D. Boscarino, V. Rigato, A study of Ti–C–N(H) and Ti:CNx(H) coatings grown with a magnetron sputtering/PECVD hybrid deposition process, Surface and Coatings Technology, 2006, 200: 6230–6234.
    [11] H. Liepack, K. Bartsch, W. Bruckner, A. Leonhardt, Mechanical behavior of PACVD TiC–amorphous carbon composite layers, Surface and Coatings Technology, 2004, 183: 69–73.
    [12] A. Rossi, B. Elsener, G. Hahner, M. Textor, N. D. Spencer, XPS, AES and ToF-SIMS investigation of surface films and the role of inclusions on pitting corrosion in austenitic stainless steels, Surface and interface analusis, 2000,29: 460-467.
    [13] M. J. Giz, B. Duong, N. J. Tao, In situ STM study of self-assembled mercaptopropionic acid monolayers for electrochemical detection of dopamine, Journal of electroanalytical chemistry, 1999, 465: 72-79.
    [14] G. Tahmasebipour, Y. Hojjat, V. Ahmadi, A. Abdullah, Optimization of STM/FIM nanotip aspect ratio based on the Taguchi method, International journal of advanced manufacturing technology, 2009, 44:80-90.
    [15]郑伟涛等编著,薄膜材料与薄膜技术[M],化学工业出版社,2004。
    [16]朱贤方,J. S. Wi11iams,L. C. Lim,S. Zhang,吴自勤,物理汽相淀积薄膜的微结构和内应力,物理,1998,27(1): 37-47.
    [17] J. A. Thornton, The Mierostrueture of Sputter-Deposited-Coatings, Journa1 of Vaeuum Science and tehnology A,1986,4(6): 3059-3065.
    [18] P. B. Barna, Adamik, M.,Fundamental Strueture Forming Phenomena ofPolyerystalline, Films and the Strueture Zone Models, Thin Solid Films, 1998, 317(l-2): 27-33.
    [19] D. R. McKenzie, M. M. M. Bilek, Thermodynamic theory for preferred orientation in materials prepared by energetic condensation, Thin Solid Films, 2001,382: 280-287.
    [20] L. Dong and D. J. Srolovitz, Texture development mechanisms in ion beam assisted deposition, Journal of applied physics, 1998, 84: 2561-2569.
    [21] M. Birkholz, C. Genzel, T. Jung, X-ray diffraction study on residual stress and preferred orientation in thin titanium films subjected to a high ion flux during deposition, Journal of applied physics, 2004,96: 7202-7211.
    [22] J. P. Zhao, X Wang, Z. Y. Chen, S. Q. Yang, T. S. Shi and X. H. Liu, Overall energy model for preferred growth of TiN films during filtered arc deposition, J. Phys. D: Appl. Phys, 1997, 30: 5-12.
    [23] T. Q. Li, S. Noda, Y. Tsuji, T. Ohsawa, and H. Komiyama, Initial growth and texture formation during reactive magnetron sputtering of TiN on Si(111), J. Vac. Sci. Technol. A, 2002, 20(3): 583-588.
    [24] Y. Kajikawa, S. Noda, and H. Komiyama, Comprehensive perspective on the mechanism of preferred orientation in reactive-sputter-deposited nitrides, J. Vac. Sci. Technol. A, 2003, 21(6):1943-1954.
    [25] D. R. McKenzie, Y. Yin, W. D. McFall and N. H. Hoang, The orientation dependence of elastic strain energy in cubic crystals and its application to the preferred orientation in titanium nitride thin films, J. Phys.: Condens. Matter, 1996, 8: 5883–5890.
    [26] Y. Kajikawa, S. Noda, and H. Komiyama, Comprehensive perspective on the mechanism of preferred orientation in reactive-sputter-deposited nitrides, J. Vac. Sci. Technol. A, 2003, 21(6):1943-1954.
    [27] Y. Kajikawa, S. Noda, and H. Komiyama, Preferred Orientation of Chemical Vapor Deposited Polycrystalline Silicon Carbide Films, Chem. Vap. Deposition, 2002, 8: 99.
    [28] Y. Kajikawa, S. Noda, and H. Komiyama, Fabrication and Characterization of Ultra-Small Polycrystalline Silicon Islands for Advanced Multi-Level Silicon-On-Insulator Applications, Solid State Phenom, 2003, 93: 411.
    [29] X. Y. Liu and P. Bennema, Theoretical consideration of the growth morphologyof crystals, Phys. Rev. B, 1996, 53: 2314.
    [30] D. Winn and M. F. Doherty, Modeling crystal shapes of organic materials grown from solution, AIChE J., 2000, 46: 1348.
    [31] H. Kakinuma, M. Mohri, S. Sakamoto, and T. Tsuruoka, Structural properties of polycrystalline silicon films prepared at low temperature by plasma chemical vapor deposition, J. Appl. Phys., 1991, 70: 7374.
    [32] R. Drost and J. Washburn, Some observations on the amorphous to crystalline transformation in silicon, J. Appl. Phys., 1981, 53: 397.
    [33] H. Yumoto, M. Ishihara, and T. Kaneko, J. Jpn. Assoc. Cryst. Growth, 1996, 23: 382.
    [34] M. Ishihara, S. J. Li, H. Yumoto, K. Akashi, and Y. Ide, Control of preferential orientation of AlN films prepared by the reactive sputtering method, Thin Solid Films, 1998, 316: 152.
    [35] X. H. Xu, H. S. Wu, C. J. Zhang, and Z. H. Jin, Morphological properties of AlN piezoelectric thin films deposited by DC reactive magnetron sputtering, Thin Solid Films, 2001, 388: 62.
    [36] J. E. Greene, J. E. Sundgren, L. Hultman, I. Petrov, and D. B. Bergstrom, Development of preferred orientation in polycrystalline TiN layers grown by ultrahigh vacuum reactive magnetron sputtering, Appl. Phys. Lett., 1995, 67: 2928.
    [37] L. Hultman, J. E. Sundgren, J. E. Greene, D. B. Bergstrom, and I. Petrov, High-flux low-energy (~20 eV) N ion irradiation during TiN deposition by reactive magnetron sputtering: Effects on microstructure and preferred orientation, J. Appl. Phys., 1995, 78: 5395.
    [38] J. S. Chun, I. Petrov, and J. E. Greene, Dense fully 111-textured TiN diffusion barriers: Enhanced lifetime through microstructure control during layer growth, J. Appl. Phys., 1999, 86: 3633.
    [39] D. R. McKenzie and M. M. M. Bilek, Electron diffraction from polycrystalline materials showing stress induced preferred orientation, J. Appl. Phys., 1999, 86: 230.
    [40] M. Gruijicic and S. G. Lai, Multi-length scale modeling of chemical vapor deposition of titanium nitride coatings, J. Mater. Sci., 2001, 36: 2937.
    [41] F. H. Baumann, D. L. Chopp, T. D?′az de la Rubia, G. H. Gilmer, J. E. Greene, H. Huang, S. Kodambaka, P. O’Sullivan, and I. Petrov, Multiscale Modeling of Thin-Film Deposition: Applications to Si Device Processing, MRS Bull., 2001, 26:182.
    [42] G. H. Gilmer, H. Huang, T. D. de la Rubia, J. D. Torre, and F. Baumann, Lattice Monte Carlo models of thin film deposition, Thin Solid Films, 2000, 365: 189.
    [43] H. Huang, G. H. Gilmer, and T. D. de la Rubia, An atomistic simulator for thin film deposition in three dimensions, J. Appl. Phys., 1998, 84: 3636.
    [44] J. Zhang and J. B. Adams, a novel model of simulation and visualization of polycrystalline thin film growth, Modelling Simul. Mater. Sci. Eng., 2002, 10: 381.
    [45] J. B. Adams, Z. Wang, and Y. Li, Modeling Cu thin film growth, Thin Solid Films, 2000, 365: 201.
    [46] Z. Wang, Y. Li, and J. B. Adams, Kinetic lattice Monte Carlo simulation of facet growth rate, Surf. Sci., 2000, 450: 51.
    [47] C. T. Campbell, Ultrathin metal films and particles on oxide surfaces: structural, electronic and chemisorptive properties, Surf. Sci. Rep., 1997, 27: 1.
    [48] C. V. Thompson, Coarsening of particles on a planar substrate: Interface energy anisotropy and application to grain growth in thin films, Acta Metall.,1988, 36: 2929.
    [49] C. V. Thompson and R. Carel, Texture development in polycrystalline thin films, Mater. Sci. Eng., B, 1995, 32: 211.
    [50] P. Patsalas, C. Charitidis, and L. Logothetidis, The effect of substrate temperature and biasing on the mechanical properties and structure of sputtered titanium nitride thin films, Surf. Coat. Technol., 2000, 125: 335.
    [51] H. C. Lee, G. H. Kim, S. K. Hong, K. Y. Lee, Y. J. Yong, C. H. Chun, and J. Y. Lee, Influence of sputtering pressure on the microstructure evolution of AlN thin films prepared by reactive sputtering, Thin Solid Films, 1995, 261: 148.
    [52] M. Fujiki, M. Takahashi, S. Kikkawa, and F. Kanamaru, Microstructure and preferred orientation in rf sputter deposited AlN thin film, J. Mater. Sci. Lett., 2000, 19: 1625.
    [53] J. H. Je, D. Y. Noh, H. K. Kim, and K. S. Liang, Preferred orientation of TiN films studied by a real time synchrotron x-ray scattering, J. Appl. Phys., 1997, 81: 6126.
    [54] M. J. Williamson, D. N. Dunn, R. Hull, S. Kodambaka, I. Petrov, and J. E. Greene, Evolution of nanoscale texture in ultrathin TiN films, Appl. Phys. Lett., 2001, 78: 2223.
    [55] T. Q. Li, S. Noda, Y. Tsuji, T. Ohsawa, and H. Komiyama, Initial growth andtexture formation during reactive magnetron sputtering of TiN on Si(111), J. Vac. Sci. Technol. A, 2002, 20: 583.
    [56] J. H. Choi, J. Y. Lee, and J. H. Kim, Phase evolution in aluminum nitride thin films on Si(100) prepared by radio frequency magnetron sputtering, Thin Solid Films, 2001, 384: 166.
    [57] B. H. Hwang, C. S. Chen, H. Y. Lu, and T. C. Hsu, Growth mechanism of reactively sputtered aluminum nitride thin films, Mater. Sci. Eng., A, 2002, 325: 380.
    [58] T. Q. Li, S. Noda, H. Komiyama, T. Yamamoto, and Y. Ikuhara, Initial growth stage of nanoscaled TiN films: Formation of continuous amorphous layers and thickness-dependent crystal nucleation, J. Vac. Sci. Technol. A, 2003, 21: 1717.
    [59] J. S. Chun, I. Petrov, and J. E. Greene, Dense fully 111-textured TiN diffusion barriers: Enhanced lifetime through microstructure control during layer growth, J. Appl. Phys., 1999, 86: 3633.
    [60] Y. J. Yong, J. Y. Lee, H. S. Kim, and J. Y. Lee, High resolution transmission electron microscopy study on the microstructures of aluminum nitride and hydrogenated aluminum nitride films prepared by radio frequency reactive sputtering, Appl. Phys. Lett., 1997, 71: 1489.
    [61] J. S. Chun, I. Petrov, and J. E. Greene, Dense fully 111-textured TiN diffusion barriers: Enhanced lifetime through microstructure control during layer growth, J. Appl. Phys., 1999, 86: 3633.
    [62] S. Kodambaka, V. Petrova, A. Vailionis, P. Desjardins, D. G. Cahill, I. Petrov, and J. E. Greene, TiN(001) and TiN(111) island coarsening kinetics: in-situ scanning tunneling microscopy studies, Thin Solid Films, 2001, 392: 164.
    [63] U. C. Oh and J. H. Je, Effects of strain energy on the preferred orientation of TiN thin films, J. Appl. Phys., 1993, 74: 1692.
    [64] J. H. Je, D. Y. Noh, H. K. Kim, and K. S. Liang, Preferred orientation of TiN films studied by a real time synchrotron x-ray scattering, J. Appl. Phys., 1997, 81: 6126.
    [65] U. C. Oh, J. H. Je, and J. Y. Lee, Two critical thicknesses in the preferred orientation of TiN thin film, J. Mater. Res., 1998, 13: 1225.
    [66] J. Pelleg, L. Z. Zevin, S. Lungo, and N. Croitora, Reactive-sputter-deposited TiN films on glass substrates, Thin Solid Films, 1991, 197: 117.
    [67] J. Pelleg, L. Z. Zevin, S. Lungo, and N. Croitora, Reactive-sputter-deposited TiNfilms on glass substrates, Thin Solid Films, 1991, 197: 117.
    [68] U. C. Oh, J. H. Je, and J. Y. Lee, Change of the critical thickness in the preferred orientation of TiN films, J. Mater. Res., 1995, 10: 634.
    [69] U. C. Oh, J. H. Je, and J. Y. Lee, Change of the critical thickness in the preferred orientation of TiN films, J. Mater. Res., 1995, 10: 634.
    [70] N. H. Hoang, D. R. McKenzie, W. D. McFall, and Y. Yin, Properties of TiN films deposited at low temperature in a new plasma-based deposition system, J. Appl. Phys., 1996, 80: 6279.
    [71] M. K. Lee, H. S. Kang, W. W. Kim, J. S. Kim, and W. J. Lee, Characteristics of TiN film deposited on stellite using reactive magnetron sputter ion plating, J. Mater. Res., 1997, 12; 2393.
    [72] D. R. McKenzie, Y. Yin, W. D. McFall, and N. H. Hoang, The orientation dependence of elastic strain energy in cubic crystals and its application to the preferred orientation in titanium nitride thin films, J. Phys.: Condens. Matter, 1996, 8: 5883.
    [73] S. Ikeda, J. Palleau, J. Torres, B. Chenevier, N. Bourhira, and R. Madar, Film texture evolution in plasma treated TiN thin films, J. Appl. Phys., 1999, 86: 2300.
    [74] M. Zeitler, J. W. Gerlach, T. Kraus, and B. Rauschenbach, Evolution of texture at growth of titanium nitride films prepared by photon and ion beam assisted deposition, Appl. Phys. Lett., 1997, 70: 1254.
    [75] Y. M. Chen, G. P. Yu, and J. H. Huang, Role of process parameters in the texture evolution of TiN films deposited by hollow cathode discharge ion plating, Surf. Coat. Technol., 2001, 141: 156.
    [76] P. Patsalas, C. Charitidis, and L. Logothetidis, The effect of substrate temperature and biasing on the mechanical properties and structure of sputtered titanium nitride thin films, Surf. Coat. Technol., 2000, 125: 335.
    [77] C. Carney and D. Durham, Establishing the relationship between process, structure, and properties on titanium nitride films deposited by electron cyclotron resonance assisted reactive sputtering. II. A process model, J. Vac. Sci. Technol. A, 1999, 17: 2859.
    [78] J. E. Greene, J.-E. Sundgren, L. Hultman, I. Petrov, and D. B. Bergstrom, Development of preferred orientation in polycrystalline TiN layers grown by ultrahigh vacuum reactive magnetron sputtering, Appl. Phys. Lett., 1995, 67: 2928.
    [79] N. Schell, W. Matz, J. B?ttiger, J. Chevallier, and P. Kringh?j, Development of texture in TiN films by use of in situ synchrotron x-ray scattering, J. Appl. Phys., 2002, 91: 2037.
    [80] G. Abadias, Y. Y. Tse, and Ph. Guérin, V. Pelosin, Interdependence between stress, preferred orientation, and surface morphology of nanocrystalline TiN thin films deposited by dual ion beam sputtering, Journal of applied physics, 2006, 99: 113519.
    [81] C. V. Thomson, Structure evolution during processing of polycrystalline films, Annu. Rev. Mater. Sci., 2000, 30: 159.
    [82] I. Petrov, P. B. Barna, L. Hultman, and J. E. Greene, Microstructural evolution during film growth, J. Vac. Sci. Technol. A, 2003, 21: S117.
    [83] R. Banerjee, R. Chandra, and P. Ayyub, Influence of the sputtering gas on the preferred orientation of nanocrystalline titanium nitride thin films, Thin Solid Films, 2002, 405: 64.
    [84] J. E. Greene, J. E. Sundgren, L. Hultman, I. Petrov, and D. B. Bergstrom, Development of preferred orientation in polycrystalline TiN layers grown by ultrahigh vacuum reactive magnetron sputtering, Appl. Phys. Lett., 1995, 67: 2928.
    [85] L. Hultman, J. E. Sundgren, J. E. Greene, D. B. Bergstrom, and I. Petrov, High-flux low-energy (~20eV) N ion irradiation during TiN deposition by reactive magnetron sputtering: Effects on microstructure and preferred orientation, J. Appl. Phys., 1995, 78: 5395.
    [86] G. Abadias, Y. Y. Tse, and Ph. Guérin, V. Pelosin, Interdependence between stress, preferred orientation, and surface morphology of nanocrystalline TiN thin films deposited by dual ion beam sputtering, Journal of applied physics, 2006, 99: 113519.
    [87] A. van der Drift, Evolutionary selection, a principle governing growth orientation in vapour-deposited layers, Philips Res. Rep., 1967, 22: 267.
    [88] I. Petrov, P. B. Barna, L. Hultman, and J. E. Greene, Microstructural evolution during film growth, J. Vac. Sci. Technol. A, 2003, 21: S117.
    [89] L. Hultman, J. E. Sundgren, J. E. Greene, D. B. Bergstrom, and I. Petrov, High-flux low-energy (~20 eV) N ion irradiation during TiN deposition by reactive magnetron sputtering: Effects on microstructure and preferred orientation, J. Appl. Phys., 1995, 78: 5395.
    [90] Min Zhou, Y. Makino, M. Nose, K. Nogi, Phase transition and properties of Ti–Al–N thin films prepared by r.f.-plasma assisted magnetron sputtering, Thin SolidFilms, 1999, 339: 203-208.
    [91] F.D. Fischer, T. Waitz, D. Vollath, N.K. Simha, On the role of surface energy and surface stress in phase-transforming nanoparticles, Progress in Materials Science, 2008, 53: 481-527.
    [92] P. de Almeida, R. Sch?ublin, A. Almazouzi, M. Victoria, F. Lévy, Microstructure and growth modes of stoichiometric NiAl and Ni3Al thin films deposited by r.f.-magnetron sputtering, Thin Solid Films, 2000, 368: 26-34.
    [93] T. Van Hoof, Marc Hou, Surface effects on structural and thermodynamic properties of Cu3Au nanoclusters, Applied Surface Science, 2004, 226: 94-98.
    [94] M. Palumbo, Thermodynamics of martensitic transformations in the framework of the CALPHAD approach, Calphad, 2008, 32: 693-708.
    [95] M. Nose, W. A. Chiou, M. Zhou, T. Mae, and M. Meshii,Microstructure and mechanical properties of Zr–Si–N films prepared by rf-reactive sputtering,J. Vac. Sci. Technol. A, 2002, 20: 823-828.
    [96] E. Martinez, R. Sanjinés, O. Banakh, F. Lévy, Electrical, optical and mechanical properties of sputtered CrNy and Cr1?xSixN1.02 thin films, Thin Solid Films, 2004, 447–448: 332–336.
    [97] M. Diserens, J. Patscheider, F. Lévy, Improving the properties of titanium nitride by incorporation of silicon, Surf. Coat. Technol., 1998, 108–109: 241. [ 98 ] F. J. Espinoza-Beltrán, O. Che-Soberanis, L. García-González, J. Morales-Hernández, Effect of the substrate bias potential on crystalline grain size, intrinsic stress and hardness of vacuum arc evaporated TiN/c-Si coatings, Thin Solid Films, 2003, 437: 170.
    [99] J. Musil, Hard and superhard nanocomposite coatings, Surf. Coat. Technol., 2000, 125: 322.
    [100] S. Veprek, The search for novel, superhard materials, J. Vac. Sci. Technol., A, 1999, 17: 2401.
    [101] T. Mae, M. Nose, M. Zhou, T. Nagae, K. Shimamura, The effects of Si addition on the structure and mechanical properties of ZrN thin films deposited by an r.f. reactive sputtering method, Surf. Coat. Technol., 2001, 142–144: 954.
    [102] D. Pilloud, J.F. Pierson, A. P. Marques, A. Cavaleiro, Structural changes in Zr–Si–N films vs. their silicon content, Surf. Coat. Technol., 2004, 180–181: 352.
    [103] F. Vaz, L. Rebouta, B. Almeida, P. Goudeau, J. Pacaud, J. P. Rivière, J. BessaeSousa, Structural analysis of Ti1?xSixNy nanocomposite films prepared by reactive magnetron sputtering, Surf. Coat. Technol., 1999, 120–121: 166.
    [104] M. Benkahoul, C.S. Sandu, N. Tabet, M. Parlinska-Wojtan, A. Karimi, F.Lévy, Effect of Si incorporation on the properties of niobium nitride films deposited by DC reactive magnetron sputtering, Surf. Coat. Technol., 2004, 188–189: 435.
    [105] J. Musil, P. Zeman, H. Hruby, P. H. Mayrhofer, ZrN/Cu nanocomposite film-a novel superhard material, Surf. Coat. Technol., 1999, 120–121: 179.
    [106] J. Musil, P. Karvánková, J. Kasl, Hard and superhard Zr–Ni–N nanocomposite films, Surf. Coat. Technol., 2001, 139: 101.
    [107] F. Vaz, L. Rebouta, P. Goudeau, H. Garem, J. Pacaud, J. P. Rivière, A. Cavaleiro, E. Alves, Characterisation of Ti1?xSixNy nanocomposite films, Surf. Coat. Technol., 2000, 133–134: 307.
    [108] R.F. Zhang, S. Veprek, On the spinodal nature of phase segregation and formation of stable nanostructure in Ti–Si–N system, Mater. Sci. Eng. A, 2006, 424: 128–137.
    [109] Stan Veprek, Maritza G. J. Veprek-Heijman, Ruifeng Zhang, Chemistry, physics and fracture mechanics in search for superhard materials, and the origin of superhardness in nc-TiN/a-Si3N4 and related nanocomposites, Journal of Physics and Chemistry of Solids, 2007, 68: 1161–1168.
    [110] C.S. Sandu, M. Benkahoul, R. Sanjinés, F. Lévy, Model for the evolution of Nb–Si–N thin films as a function of Si content relating the nanostructure to electrical and mechanical properties, Surface and Coatings Technology, 2006, 201: 2897–2903.
    [111] Qi Min Wang, Kwang Ho Kim, Microstructural control of Cr–Si–N films by a hybrid arc ion plating and magnetron sputtering process, Acta Materialia, 2009, in press.
    [112] Chi-Lung Chang, Tsung-Ju Hsieh, Effect of C2H2 gas flow rate on synthesis and characteristics of Ti–Si–C–N coating by cathodic arc plasma evaporation, Journal of Materials Processing Technology 209 (2009) 5521–5526.
    [113] Yan Guo, Shengli Ma, Kewei Xu, Effects of carbon content and annealing temperature on the microstructure and hardness of super hard Ti–Si–C–N nanocomposite coatings prepared by pulsed d.c. PCVD, Surface and Coatings Technology, 2007, 201: 5240–5243.
    [114] S. L. Ma, D.Y. Ma, Y. Guo, B. Xu, G. Z. Wu, K.W. Xu, Paul K. Chu, Synthesisand characterization of super hard, self-lubricating Ti–Si–C–N nanocomposite coatings, Acta Materialia, 2007, 55: 6350–6355.
    [115] Jun-Ha Jeon, Sung Ryong Choi, Won Sub Chung, Kwang Ho Kim, Synthesis and characterization of quaternary Ti–Si–C–N coatings prepared by a hybrid deposition technique, Surface and Coatings Technology, 2004, 188–189: 415– 419.
    [116] D.V. Shtansky, E.A. Levashov, A.N. Sheveiko, and J. J. Moore, Synthesis and Characterization of Ti-Si-C-N Films, Metallurgical and materials transactions A, 1999, 30: 2439.
    [117] S. L. Ma, D. Y. Ma, Y. Guo, B. Xu, G. Z. Wu, K.W. Xu, Paul, K. Chu, Synthesis and characterization of super hard, self-lubricating Ti–Si–C–N nanocomposite coatings, Acta Materialia, 2007, 55: 6350–6355.
    [118] S. Veprek, The search for novel, superhard materials, J. Vac. Sci. Technol. A 1999, 17: 2401-2420.
    [119] S. Matsumoto, Y. Sato, M. Tsutsumi, et al., Growth of diamond particles from methane-hydrogen gas, J. Mater. Sci., 1982, 17(11): 3106-3112.
    [120] A.Y. Liu, M.L. Cohen, Prediction of new low compressibility solids, Science, 1989, 245: 841-842.
    [121] Z.H. Han, G.Y. Li, J.W. Tian, M.Y. Gu, Microstructure and mechanical properties of boron carbide thin films, Materials Letters, 2002, 57(4): 899-903.
    [122] O. Conde, A. J. Silvestre, J. C. Oliveira, Influence of carbon content on the crystallographic structure ofboron carbide films. Surf. Coat. Technol., 2000, 125: 141– 146.
    [123] J. Musil, S. Kadlec, J. Vyskocil, V. Valvoda, New results in d.c. reactive magnetron deposition of TiNx films. Thin Solid Films, 1988, 167: 107.
    [124] J. Musil, J. Vlcek, Magnetron sputtering of hard nanocomposite coatings and their properties, Surf. Coat. Technol. 2001, 142-144: 557-566.
    [125] J. Musil, J. Vlcek. Magnetron sputtering of alloy and alloy-based films, Thin Solid Films 1999, 343-344: 47-50.
    [126] K.D. Leedy, J.M. Rigsbee, Microstructure of radio frequency sputtered Ag1-xSix alloys, J. Vac. Sci. Technol A 1996, 14: 2202-2206.
    [127] Stan Veprek, Maritza G. J, Veprek-Heijman, Pavla Karvankova, Jan Prochazka, Different approaches to superhard coatings and nanocomposites, Thin Solid Film 2005, 476: 1-29.
    [128] S. A. Barnett, Meenam Shinn, Plastic and elastic properties of compositionally modulated thin films, Annu. Rev. Mater. Sci., 1994, 24: 481-551.
    [129] J.S. Koehler,“Attempt to design a strong solid.”Phys. Rev. B 1970, 2:547-551.
    [130] U. Helmersson, S. Todorova, S.A. Barnett, et al., Growth of Single-crystal TiN/VN Strained-lay Superlattices with Extremely High Mechanical Hardness, Journal of A pplied Physics, 1987, 62( 2): 481-484.
    [131]S.Z. Li, Y.L. Shi and H.R. Peng. Plasma Chem. Plasma Process. 1992, 12: 287-291
    [132] S. Veprek, S. Reiprich, Li Shizhi, Superhard nanocrystalline composite materials: the TiN/Si3N4 system, Appl. Phys. Lett., 1995, 66: 2640-2642. [ 133 ] S. Veprek, New development in superhard coatings: the superhard nanocrystalline–amorphous composites, Thin Solid Films, 1998, 317: 449-454.
    [134] S. Sambasivan and W.T. Petuskey, Phase chemistry in the Ti-Si-N system: thermochemical review with phase stability diagrams, J. Mater. Res, 1994, 9: 2362-2369.
    [135] A. Niederhofer, P. Nesladek, H.D. Mannling, K. Moto, S. Veprek, M. Jilek, Structural properties, internal stress and thermal stability of nc-TiN/a-Si3N4, nc-TiN/TiSix and nc-(Ti1-xAlySix)N superhard nanocomposite coatings reaching the hardness of diamond, Surf. Coat. Technol. 1999, 120-121: 173-178.
    [136] F. Vaz, L. Rebouta, P. Goudeau, J. Pacaud, H. Garem, J.P. Riviere, A. Cavaleiro, E. Alves, Characterisation of Ti1-xSixNy nanocomposite films, Surf. Coat. Technol. 2000, 133-134:307-313.
    [137] F. Vaz, L. Rebonta, S. Ramos, M.F. Dasilva, J.C. Soares, Physical, structural and mechanical characterization of Ti1-xSixNy films, Surf. Coat. Technol. 1998, 108-109: 236-240.
    [138] F. vaz, L. Rebouta, B. Almeicla, P. Gondean, J. Pacaud, J.P. Rivieve, J. Bessa e sousa, Structural analysis of Ti1-xSixNy nanocomposite films prepared by magnetron sputtering, Surf. coat. Technol. 1999, 120-121:166-172.
    [139] M. Diserens, J. Patscheider, F. Levy, Improving the properties of titanium nitride by incorporation of silicon, Surf. Coat. Technol. 1998, 108-109: 241-246.
    [140] S. Z. Li, Y.L. Shi and H.R. Peng, Ti-Si-N films prepared by plasma-enhanced chemical vapor deposition, Plasma Chem. Plasma Process. 1992, 12: 287-291.
    [141] S. Veprek, A, Niederhofer, K. Moto, et al., Composition, nanostructure andorigin of the ultrahardness in nc-TiN/a-Si3N4 /a- and nc-TiSi2 nanocomposites with Hv=80 to≥105 GPa, Surf. Coat. Technol. 2000, 133-134: 152-159.
    [142] S. Sambasivan and W.T. Petuskey, Phase chemistry in the Ti-Si-N system: thermochemical review with phase stability diagrams, J. Mater. Res, 1994, 9: 2362-2369. [ 143 ] S. Veprek, New development in superhard coatings: the superhard nanocrystalline–amorphous composites, Thin Solid Films, 1998, 317: 449-454.
    [144] S. Veprek, A. Niederhofer, K. Moto, P. Nesladek, H. Mannling, T. Bolom, Nanocomposites nc-TiN/a-Si3N4/a- and nc-TiSi2 with hardness exceeding 100 GPa and high fracture toughness, Materials Research Society Symposium - Proceedings, 2000, 581: 321-326
    [145] M. Nose, W.A. Chiou, M. Zhou, T. Mae, M. Meshii, Microstructure and mechanical properties of Zr–Si–N films prepared by rf-reactive sputtering, J. Vac. Sci. Technol., A 2002, 20(3): 823-828.
    [146] R.A. Andrievski, Nanocrystalline Borides and Related Compounds, J. Solid State Chem., 1997, 133: 249.
    [147] P. Hammer, A. Steiner, R. Villa, M. Baker, P.N. Gibson, J. Haupt, Titanium boron nitride coatings of very high hardness, Surf. Coat. Technol., 1994, 68–69: 194.
    [148] Ch. Mitterer, P.H. Mayhofer, M. Beschliesser, P. Losbichler, P. Warbichler, et al., Microstructure and properties of nanocomposite Ti–B–N and Ti–B–C coatings, Surf. Coat. Technol., 1999, 120–121: 405. [ 149 ] O. Knotek, E. Lugscheider, F. Lfffler, B. Bosserhoff, S. Schmitz, Superstoichiometric PVD carbide coatings, Mater. Sci. Eng. A, 1996, 209:394.
    [150] D. Li, X. Chu, S.C. Cheng, X.W. Lin, V.P. Dravid, Y.W. Chung, et al., Synthesis of superhard carbon nitride composite coatings, Appl. Phys. Lett., 1995, 67:203.
    [151] M.L. Wu, X.W. Lin, V.P. Dravid, Y.W. Chung, M.S. Wong, D. Sproul, Preparation and characterization of superhard CNx/ZrN multilayers, J. Vac. Sci. Technol., A, 1997, 15: 946. [ 152 ] A. Voevodin, J.S. Zabinski, Supertough wear-resistant coatings with‘chameleon’surface adaptation, Thin Solid Films, 2000, 370:223.
    [153] E. C. Weigert, M. P. Humbert, Z. J. Mellinger, Q. Ren, T. P. Beebe, Jr., L. Bao,thin films on different carbon substrates, J. Vac. Sci. Technol. A, 2008, 26: 23. and J. G. Chen, Physical vapor deposition synthesis of tungsten monocarbide (WC)
    
    [1]郑伟涛,薄膜材料与薄膜技术[M],化学工业出版社, 2004.
    [2]唐伟忠,薄膜材料制备原理技术及应用[M],冶金工业出版社, 1998.
    [3] H. M. Du, P. Wu, E. Y. Jiang, Z. Q. Li, etal,The influence of experimental procedures on the structural and magnetic properties of RF sputtered Fe-N thin films, J. Magn. Magn. Mater., 2005, 292:227.
    [4] X. Z. Ding, F. M. Zhang, Y. I. Sun, Soft magnetic properties of ion beam reactively sputtered Fe-N thin films on Ge(100), Surf. Coat. Technol.,1998, 103-104: 156.
    [5]白春礼,田芳,罗克著,扫描力显微术[M],科学出版社,2000.
    [6]晋勇,孙小松,薛屺, X射线衍射分析技术[M],国防工业出版社, 2008.
    [7]张大同,扫描电镜与能谱仪分析技术,华南理工大学出版社[M], 2009.
    [8]叶恒强,王元明,透射电子显微学进展,科学出版社[M],2003.
    [9]陆维敏,陈芳,谱学基础与结构分析,高等教育出版社[M],2005
    [10]刘美华;李鸿琦;计宏伟;佟景伟,压痕硬度测试法的主要研究内容及其应用,理化检验[J],2008, 44: 485-490.
    [11] S. J. Bull,Nanoindentation of coatings,J. Phys. D: Appl. Phys., 2005, 38: R393–R413.
    [1] A. S. Kurlov and A. I. Gusev, Tungsten carbides and W-C phase diagram, Inorg. Mater., 2006, 42:121.
    [2] J. P. Palmquist, Z. Czigany, M. Oden, J. Neidhart, L. Hultman, and U. Jansson, Magnetron sputtered W–C films with C60 as carbon source, Thin Solid Films, 2003, 444: 29.
    [3] PCPDF File No. 20-1315, 1988; PCPDF File No. 25-1047, 1988.
    [4] R. H. Willens and E. Buehler, The superconductivity of the monocarbides of tungsten and molybdenum, Appl. Phys. Lett., 1965, 7: 25.
    [5] C. Nouveau, M. A. Djouadi, and C. Deces-Petit, The influence of deposition parameters on the wear resistance of CrxNy magnetron sputtering coatings in routing of oriented strand board, Surf. Coat. Technol., 2003, 174-175: 455.
    [6] J. E. Sundgren, Structure and properties of TiN coatings, Thin Solid Films, 1985, 128: 21.
    [7] C. M. Kelly, D. Garg, and P. N. Dyer, Kinetics of chemical vapor deposition of tungsten carbide, Thin Solid Films, 1992, 219: 103.
    [8] H. Hoegberg, P. Taegtstroem, J. Lu, and U. Jansson, Chemical vapour deposition of tungsten carbides on tantalum and nickel substrates, Thin Solid Films, 1996, 272: 116.
    [9] O. R. Monteiro, M. P. Delplancke-Ogletree, R. Winand, R. Y. Lo, and I. Brown, Synthesis and characterization of thin films of WCx produced by mixing W and C plasma streams, Surf. Coat. Technol., 1997, 94–95: 220.
    [10] H. Romanus, V. Cimalla, J. A. Schaefer, L. Spieb, G. Ecke, and J. Pezoldt, Microstructure and properties of the CdS thin films prepared by electrostatic spray assisted vapour deposition (ESAVD) method, Thin Solid Films,2000, 359: 146.
    [11] A. A. Voevodin, J. P. O’Neill, S. V. Prasad, and J. S. Zabinski, Nanocrystalline WC and WC/a-C composite coatings produced from intersected plasma fluxes at low deposition temperatures, J. Vac. Sci. Technol. A 1999, 17: 986.
    [12] G. Keller, I. Barzen, R. Erz, W. D. Otter, S. Ulrich, K. Jung, and H. Ehrhardt, Crystal structure, morphology and composition of magnetron sputtered tungstencarbide films, Fresenius’J. Anal. Chem., 1991, 341: 349.
    [13] M. Katoh, H. Kawarada, Heteroepitaxial Growth of Tungsten Carbide Films on W(110) by Plasma-Enhanced Chemical Vapor Deposition, Jpn. J. Appl. Phys., 1995, 34: 3628.
    [14] E. C. Weigert, M. P. Humbert, Z. J. Mellinger, Q. Ren, T. P. Beebe, Jr., L. Bao, and J. G. Chen, Physical vapor deposition synthesis of tungsten monocarbide (WC) thin films on different carbon substrates, J. Vac. Sci. Technol. A 2008, 26: 23.
    [15] B. S. Yau, C. W. Chu, D. Lin, W. Lee, J. G. Duh, and C. H. Lin, Tungsten doped chromium nitride coatings, Thin Solid Films, 2008, 516: 1877.
    [16] S. H. Jeong, D. G. Yoo, D. Y. Kim, N.-E. Lee, and J.-H. Boo, Physical properties and etching characteristics of metal (Al, Ag, Li) doped ZnO films grown by RF magnetron sputtering, Thin Solid Films, 2008, 516: 6598
    [17] S. Venkatachalam, Y. Iida, and Y. Kanno, Preparation and characterization of Al doped ZnO thin films by PLD, Superlattices Microstruct., 2008, 44: 127.
    [18] Z. P. Wu, A. Miyashita, S. Yamamoto, H. Abe, I. Nashiyama, K. Narumi, and H. Naramoto, Molybdenum substitutional doping and its effects on phase transition properties in single crystalline vanadium dioxide thin film, J. Appl. Phys., 1999, 86: 5311.
    [19] A. S. Kurlov and A. I. Gusev, Tungsten Carbides and W–C Phase Diagram, Inorganic Materials, 2006, 42: 121–127.
    [20] R. H. Willens and E. Buehler, The superconductivity of the monocarbides of tungsten and molybdenum, Appl. Phys. Lett., 1965, 7: 25.
    [21] J. A. Thornton and D. W. Hoffman, Stress-related effects in thin films, Thin Solid Films,1989, 171: 5.
    [22] J. Pelleg, L. Z. Zevin, S. Lungo, and N. Croitoru, Reactive-sputter-deposited TiN films on glass substrates, Thin Solid Films, 1991, 197:117.
    [23] J. P. Zhao, X. Wang, Z. Y. Chen, S. Q. Yang, T. S. Shi, and X. H. Liu, Overall energy model for preferred growth of TiN films during filtered arc deposition, J. Phys. D, 1997, 30: 5.
    [24] U. C. Oh and J. H. Je, Effects of strain energy on the preferred orientation of TiN thin films, J. Appl. Phys., 1993, 74: 1692.
    [25] U. C. Oh, J. H. Je, and J. Y. Lee, Two critical thicknesses in the preferred orientation of TiN thin film, J. Mater. Res.,1998, 13: 1225.
    [26] S. H. Lim, D. G. McCulloch, M. M. M. Bilek, and D. R. McKenzie, Relation between microstructure and stress in titanium nitride films grown by plasma immersion ion implantation, J. Appl. Phys., 2003, 93: 4283.
    [27] Q. Jiang, H. X. Shi, and M. Zhao, Free energy of crystal–liquid interface, Acta Mater.,1999, 47: 2109.
    [28] Q. Jiang, D. S. Zhao, and M. Zhao, Size-dependent interface energy and related interface stress, Acta Mater., 2001, 49: 3143.
    [29] V. Fiorentini and M. Methfessel, Extracting convergent surface energies from slab calculations, J. Phys.: Condens. Matter, 1996, 8: 6525.
    [30] D. R. McKenzie and M. M. M. Bilek, Electron diffraction from polycrystalline materials showing stress induced preferred orientation, J. Appl. Phys., 1999, 86: 230..
    [31] D. R. McKenzie and M. M. M. Bilek, Thermodynamic theory for preferred orientation in materials prepared by energetic condensation, Thin Solid Films, 2001, 382: 280. [ 32 ] L. Dong and D. J. Srolovitz, Mechanism of texture development in ion-beam-assisted deposition, Appl. Phys. Lett., 1999, 75: 584.
    [33] L. Dong and D. J. Srolovitz, Texture development mechanisms in ion beam assisted deposition, J. Appl. Phys., 1998, 84: 5261.
    [34] L. A. Zepeda-Ruiz and D. J. Srolovitz, Effects of ion beams on the early stages of MgO growth, J. Appl. Phys., 2002, 91: 10169. [ 35 ] L. Dong and D. J. Srolovitz, Mechanism of texture development in ion-beam-assisted deposition, Appl. Phys. Lett., 1999, 75: 584.
    [36] V. T. Golovchan, V. P. Bondarenko, and N. V. Litoshenko, Strength of Polycrystalline Tungsten Monocarbide under Tension, Strength Mater., 2003, 35: 387.
    [37] Y. Kajikawa, S. Noda, and H. Komiyama, Comprehensive perspective on the mechanism of preferred orientation in reactive-sputter-deposited nitrides, J. Vac. Sci. Technol. A, 2003, 21: 1943.
    [38] H. C. Lee and J. Y. Lee, Effects of sputtering pressure and nitrogen concentration on the preferred orientation of AIN thin films, J. Mater. Sci.: Mater. Electron., 1994, 5: 221.
    [39] P. Eklund, M. Sridharan, M. Sillassen, and J. B?ttiger,α-Cr2O3 template-texture effect onα-Al2O3 thin-film growth, Thin Solid Films, 2008, 516: 7447.
    [40] H. C. Lee, G. H. Kim, S. K. Hong, K. Y. Lee, Y. J. Yong, C. H. Chun, and J. Y.Lee, Influence of sputtering pressure on the microstructure evolution of AlN thin films prepared by reactive sputtering, Thin Solid Films, 1995, 261: 148.
    [41] M. Ishihara, S. J. Li, H. Yumoto, K. Akashi, and Y. Ide, Control of preferential orientation of AlN films prepared by the reactive sputtering method, Thin Solid Films,1998, 316: 152.
    [42] X. H. Xu, H. S. Wu, C. J. Zhang, and Z. H. Jin, Morphological properties of AlN piezoelectric thin films deposited by DC reactive magnetron sputtering, Thin Solid Films, 2001, 388: 62.
    [43] B. Wang, Y. N. Zhao, and Z. He, The effects of deposition parameters on the crystallographic orientation of AIN films prepared by RF reactive sputtering, Vacuum, 1997, 48: 427.
    [44] W. Bo, W. Mei, W. Ruzhi, H. Anping, Z. Hua, Z. Yunjuan, Y. Hui, and W. Seiping, The growth of AlN films composed of silkworm-shape grains and the orientation mechanism, Mater. Lett., 2002, 53: 367.
    [45] B. S. Yadav, S. S. Major, and R. S. Srinivasa, Growth and structure of sputtered gallium nitride films, J. Appl. Phys., 2007, 102: 073516.
    [46] D. R. McKenzie and M. M. M. Bilek, Thermodynamic theory for preferred orientation in materials prepared by energetic condensation, Thin Solid Films, 2001, 382: 280.
    [47] H. Hogberg, P. Tagtstrom, J. Lu, and U. Jansson, Chemical vapour deposition of tungsten carbides on tantalum and nickel substrates, Thin Solid Films,1996, 272:116. 54 P. Taegtstroem, H. Hoegberg, U. Jansson, and J. O. Carlsson, Low Pressure CVD of Tungsten Carbides, J. Phys. IV, 1995, 5: 967.
    [48] J. Haines, J.M. Léger, G. Bocquillon, Synthesis and design of superhard materials, Annu. Rev. Mater. Res., 2001, 31: 1.
    [49] Z. J. Wu, E. J. Zhao, H. P. Xiang, X. F. Hao, X. J. Liu, J. Meng, Crystal structures and elastic properties of superhard IrN2 and IrN3 from first principles, Phys. Rev. B, 2007, 76: 054115.
    [1] S. H. Kim, S. S. Oh, K. B. Kim, D. H. Kang, W. M. Li, S. Haukka, M. Tuominen, Atomic-layer-deposited WNxCy thin films as diffusion barrier for copper metallization, Appl. Phys. Lett., 2003, 82: 4486.
    [2] W. M. Li, M. Tuominen, S. Haukka, H. Sprey, I. Raaijmakers, Diffusion barrier material for Cu metallization using ALD-WNxCy, J. Solid State Technol., 2003, 46: 103.
    [3] S. H. Kim, S. S. Oh, H. M. Kim, D. H. Kang, K. B. Kim, W. M. Li, S. Haukka, M. Tuominen, Characterization of Atomic Layer Deposited WNxCy Thin Film as a Diffusion Barrier for Copper Metallization, J. Electrochem. Soc., 2004, 151: C272.
    [4] J. Almer, M. Oden, G. Hakansson, Microstructure, stress and mechanical properties of arc-evaporated Cr–C–N coatings, Thin Solid Films, 2001, 385: 190.
    [5] D. Mart?nez-Mart?nez, J.C. Sanchez-Lopez, T.C. Rojas, A. Fernandez, P. Eaton, M. Belin, Structural and microtribological studies of Ti–C–N based nanocomposite coatings prepared by reactive sputtering, Thin Solid Films, 2005, 472: 64.
    [6] L. Rebouta, C.J. Tavares, R. Aimo, Z. Wang, K. Pischow, E. Alves, T.C. Rojas, J.A. Odriozola, Hard nanocomposite Ti–Si–N coatings prepared by DC reactive magnetron sputtering, Surf. Coat. Technol., 2000, 133–134: 234.
    [7] J. H. Yang, K. H. Chen, S. Q. Wang, D. H. Xiao, C. J. Zhu, Characteristics and performance of Ti(C, N) coatings synthesized by magnetron sputtering technique, J. Alloys Compd., 2009, 471: 162.
    [8] Z. T. Yang, B. Yang, L. P. Guo, D. J. Fu, Effect of bias voltage on the structure and hardness of TiSiN composite coatings synthesized by cathodic arc assisted middle-frequency magnetron sputtering, J. Alloys Compd., 2009, 473: 437.
    [9] J.H. Huang, K.J. Yu, P. Sitb, G.P. Yu, Heat treatment of nanocrystalline TiN films deposited by unbalanced magnetron sputtering, Surf. Coat. Technol., 2006, 200: 4291.
    [10] W. Mader, H. F. Fischmeister, E. Bergmann, Defect structure of ion-plated titanium nitride coatings, Thin Solid Films, 1989, 182: 141.
    [11] W. J. Chou, G. P. Yu, J. H. Huang, Effect of heat treatment on the structure and properties of ion-plated TiN films, Surf. Coat. Technol., 2003, 168: 43.
    [12] A. A. Dakhel, Annealing effect on the structural, optical and electrical properties of Yb–Mn oxide thin films, J. Alloys Compd., 2009, 476: 28.
    [13] C.M. Fernandes, G. Guisbiers, S. Pereira, N.P. Barradas, E. Alves, A.M.R. Senos, M.T. Vieira, J. Alloys Compd. 482 (2009) 131.
    [14] A. Kumar, D. Singh, R. Kumar, D. Kaur, Annealing Ni nanocrystalline on WC–Co, J. Alloys Compd., 2009, 479: 16.
    [15] C. L. Chang, C. T. Lin, P. C. Tsai, W. Y. Ho, D. Y. Wang, Influence of bias voltages on the structure and wear properties of TiSiN coating synthesized by cathodic arc plasma evaporation, Thin Solid Films, 2008, 516: 5324.
    [16] A. A. Voevodin, J. P. O’Neill, S. V. Prasad, J. S. Zabinski, Nanocrystalline WC and WC/α-C composite coatings produced from intersected plasma fluxes at low deposition temperatures, J. Vac. Sci. Technol. A , 1999, 17: 986.
    [17] R. Ospina, H. A. Castillo, V. Benavides, E. Restrepo, Y.C. Arango, D.F. Arias, A. Devia, Influence of the annealing temperature on a crystal phase of W/WC bilayers grown by pulsed arc discharge, Vacuum, 2006, 81: 373.
    [18] R. McCann, S. S. Roy, P. Papakonstantinou, J. A. McLaughlin, S.C.Ray, Spectroscopic analysis ofα-C andα-CNx films prepared by ultrafast high repetition rate pulsed laser deposition, J. Appl. Phys., 2005, 97: 073522.
    [19] W. T. Zheng, H. Sjostrom, I. Ivanov, K. Z. Xing, E. Broitman, W. R. Salaneck, J. E. Greene, J. E.Sundgren, Reactive magnetron sputter deposited CNx: Effects of N2 pressure and growth temperature on film composition, bonding, and microstructure, J. Vac. Sci. Technol. A, 1996, 14: 2696.
    [20]A. A. Voevodin, J. P. ONeill, S. V. Prasad, J. S. Zabinski, Nanocrystalline WC and WC/a-C composite coatings produced from intersected plasma fluxes at low deposition temperatures, J. Vac. Sci. Technol. A 1999,17:986.
    [21] J. Almer, M. Oden, G. Hakansson, Microstructure, stress and mechanical properties of arc-evaporated Cr–C–N coatings, Thin Solid Films, 2001, 385: 190.
    [22] D. Mart?nez-Mart?nez, J. C. Sanchez-Lopez, T.C. Rojas, A. Fernandez, P. Eaton, M. Belin, Structural and microtribological studies of Ti–C–N based nanocomposite coatings prepared by reactive sputtering, Thin Solid Films 472 (2005) 64.
    [23] Q. Liu, T. Liu, Q.F. Fang, F.J. Liang, J.X. Wang, Preparation and characterization of nanocrystalline composites Mo–C–N hard films, Thin Solid Films 503 (2006) 79.
    [24] J. Pelleg, L. Z. Zevin, S. Lungo, and N. Croitoru, Reactive-sputter-deposited TiNfilms on glass substrates, Thin Solid Films, 1991, 197: 117.
    [25] J. P. Zhao, X. Wang, Z. Y. Chen, S. Q. Yang, T. S. Shi, and X. H. Liu, Overall energy model for preferred growth of TiN films during filtered arc deposition, J. Phys. D, 1997, 30: 5.
    [26] U. C. Oh and J. H. Je, Effects of strain energy on the preferred orientation of TiN thin films, J. Appl. Phys., 1993, 74: 1692.
    [27] U. C. Oh, J. H. Je, and J. Y. Lee, Two critical thicknesses in the preferred orientation of TiN thin film, J. Mater. Res., 1998, 13: 1225.
    [28] V. Fiorentini, M. Methfessel, Extracting convergent surface energies from slab calculations, J. Phys. Condens. Matter, 1996, 8: 6525.
    [29] M. Wen, C. Q. Hu, C. Wang, T. An, Y. D. Su, Q. N. Meng, and W. T. Zheng, Effects of substrate bias on the preferred orientation, phase transition and mechanical properties for NbN films grown by direct current reactive magnetron sputtering, J. Appl. Phys., 2008, 104: 023527.
    [30] Z.J. Liu, P.W. Shum, Y.G. Shen, Hardening mechanisms of nanocrystalline Ti–Al–N solid solution films, Thin Solid Films 468 (2004) 161.
    [31] S. Veprek, M.G. J. Veprek-Heijman, The formation and role of interfaces in superhard nc-MenN/α-Si3N4 nanocomposites, Surf. Coat. Technol., 2007, 201: 6064.
    [32] J. Haines, J.M. Léger, G. Bocquillon, Synthesis and design of superhard materials, Annu. Rev. Mater. Res., 2001, 31: 1.
    [33] Z. J. Wu, E. J. Zhao, H. P. Xiang, X. F. Hao, X. J. Liu, J. Meng, Crystal structures and elastic properties of superhard IrN2 and IrN3 from first principles, Phys. Rev. B 76 (2007) 054115.
    [34] D.S. Rickerby, P.J. Burnett, Correlation of process and system parameters with structure and properties of physically vapour- deposited hard coatings, Thin Solid Films, 1998, 157: 195.
    [35] D.W. Hoffman, M.R. Gaertner, Internal stresses in Cr, Mo, Ta, and Pt films deposited by sputtering from a planar magnetron source, J. Vac. Sci. Technol. 1982;20: 355.
    [36] P. M.Wang, K. H. Kim, J. Vac. Sci. Technol. A , Effect of negative bias voltage on CrN films deposited by arc ion plating. II. Film composition, structure, and properties, 2008, 26: 1267.
    [37] M. Dudek,A.Amassian, O. Zabeida, J.E. Klemberg-Sapieha, L. Martinu, Ionbombardment-induced enhancement of the properties of indium tin oxide films prepared by plasma-assisted reactive magnetron sputtering, Thin Solid Films, 2009, 517: 4576.
    [38] P. H. Mayrhofer, A. H?rling, L. Karlsson, J. Sj?lén, T. Larsson, C. Mitterer, L. Hultman, Self-organized nanostructures in the Ti–Al–N system, Appl. Phys. Lett., 2003, 83: 2049.
    [39] F. Kunc, J. Musil, P.H. Mayrhofer, C.Mitterer, Low-stress superhard Ti---B films prepared by magnetron sputtering, Surf. Coat. Technol., 2003, 174: 744.
    [40] P.H. Mayrhofer, G. Tischler, C. Mitterer, Microstructure and mechanical/thermal properties of Cr–N coatings deposited by reactive unbalanced magnetron sputtering, Surf. Coat. Technol., 2001, 142: 78.
    [41] P.H. Mayrhofer, F. Kunc, J. Musil, C. Mitterer, A comparative study on reactive and non-reactive unbalanced magnetron sputter deposition of TiN coatings, Thin Solid Films, 2002, 415: 151.
    [1] M. Beckers, N. Schell, R. M. S. Martins, A. Mücklich, and W. M?ller,In situ x-ray diffraction studies concerning the influence of Al concentration on the texture development during sputter deposition of Ti–Al–N thin films,J. Vac. Sci. Technol. A 23 (2005) 1384-1391 [ 2 ] S. Ruppi, A. Larsson, A. Flink, Nanoindentation hardness, texture and microstructure ofα-Al2O3 andκ-Al2O3 coatings, Thin Solid Films 516 (2008) 5959–5966.
    [3] B. Okolo, P. Lamparter, U. Welzel, and E. J. Mittemeijer, Stress, texture, and microstructure in niobium thin films sputter deposited onto amorphous substrates, J. Appl. Phys., 95(2004)466-476.
    [4] M. Wen, C. Q. Hu, C. Wang, T. An, Y. D. Su, Q. N. Meng, and W. T. Zheng, Effects of substrate bias on the preferred orientation, phase transition and mechanical properties for NbN films grown by direct current reactive magnetron sputtering, J. Appl. Phys., 2008, 104: 023527.
    [5] J. Pelleg, L. Z. Zevin, S. Lungo, and N. Croitoru, Reactive-sputter-deposited TiN films on glass substrates, Thin Solid Films, 1991, 197: 117.
    [6] Yeongseok Zoo and T. L. Alford, Comparison of preferred orientation and stress in silver thin films on different substrates using x-ray diffraction, J. Appl. Phys., 2007, 101: 033505.
    [7] G. Abadias, Y. Y. Tse, and Ph. Guérin, V. Pelosin, Interdependence between stress, preferred orientation, and surface morphology of nanocrystalline TiN thin films deposited by dual ion beam sputtering, J. Appl. Phys., 2006, 99: 113519.
    [8] G. Abadias and Y. Y. Tse, Diffraction stress analysis in fiber-textured TiN thin films grown by ion-beam sputtering: Application to (001) and mixed (001)+(111) texture, J. Appl. Phys., 2004, 95: 2414.
    [9] D. Deniz and J. M. E. Harper, Fiber textures of titanium nitride and hafnium nitride thin films deposited by off-normal incidence magnetron sputtering, J. Appl. Phys., 2008, 104: 063519.
    [10] G. Abadias, Stress and preferred orientation in nitride-based PVD coatings, Surface and Coatings Technology, 2008, 202: 2223–2235.
    [11] S. Li, Z.H. Jiang, Q. Jiang, Thermodynamic phase stability of three nano-oxides, Materials Research Bulletin, 2008, 43: 3149–3154.
    [12] S. Li, J.S. Lian, Q. Jiang, Modeling size and surface effects on ZnS phase selection, Chemical Physics Letters, 2008, 455: 202–206. [ 13 ] B. Yang, Z.H. Huang, H.T. Gao, X.J. Fan, D.J. Fu, Droplet-free TiC nanocrystal-containing diamond-like carbon coatings deposited by combined cathodic arc MF magnetron sputtering, Surface and Coatings Technology, 2007, 201: 6808–6811.
    [14] Erik Lewin, Ola Wilhelmsson, and Ulf Jansson, Nanocomposite nc-TiC/α-C thin films for electrical contact applications, J. Appl. Phys., 2006,100: 054303.
    [15] N. G. Chechenin, P. N. Chernykh, V. S. Kulikauskas1, Y. T.Pei, D Vainshtein and J. T. M. D. Hosson, On the composition analysis of nc-TiC/α-C:H nanocomposite coatings, J. Phys. D: Appl. Phys., 2008, 41: 085402.
    [16] Y. T. Pei, D. Galvan, J. Th. M. De Hosson, Nanostructure and properties of TiC/a-C:H composite coatings, Acta Materialia, 2005, 53: 4505–4521.
    [17] D. Galvan Y. T. Pei, and J. Th. M. De Hosson, Reactive magnetron sputtering deposition and columnar growth of nc-TiC/α-C:H nanocomposite coatings, J. Vac. Sci. Technol. A, 2006, 24: 1441.
    [18] Alireza Akbari, Jean Paul Riviere, Claude Templier, Eric Le Bourhis, Structural and mechanical properties of IBAD deposited nanocomposite Ti–Ni–N coatings, Surface and Coatings Technology, 2006, 200: 6298–6302.
    [19] Alireza Akbari, Jean Paul Riviere, Claude Templier, Eric Le Bourhis and Grégory Abadias, Hardness and Residual Stresses in TiN-Ni Nanocomposite Coatings Deposited by Reactive Dual Ion Beam Sputtering, Rev. adv. mater. sci, 2007,15:111-117.
    [20] C. A. Carrasco, V. S. Vergara, R. Benavente G., N. Mingolo, and J. C. Rios, The relationship between residual stress and process parameters in TiN coatings on copper alloy substrates, Mater. Charact., 2002, 48: 81.
    [21] Y. H. Lu, Y. G. Shen, Z. F. Zhou, and K. Y. Li, Phase configuration, nanostructure evolution, and mechanical properties of unbalanced magnetron-sputtered TiCxNy thin films, J. Vac. Sci. Technol. A, 2007, 25: 1539-1546.
    [22] Y. H. Lu, P. Sit, T. F. Hung, and Haydn Chen, Z. F. Zhou, K. Y. Li, and Y. G. Shen, Effects of B content on microstructure and mechanical properties of nanocomposite Ti–Bx–Ny thin films, J. Vac. Sci. Technol. B, 2005, 23: 449.
    [23] J. A. Thornton and D. W. Hoffman, Stress-related effects in thin films, Thin Solid Films, 1989, 171: 5.
    [24] Cheng Y H, Browne T, Heckman B, Jiang J C, Meletis E I, Bowman C and Gorokhovsky V, Internal stresses in TiN/Ti multilayer coatings deposited by large area filtered arc deposition, J. Appl. Phys., 2008, 104: 093502.
    [25] Cheng Y H and B. K. Tay, Deposition pressure dependence of internal stress in TiN films deposited by filtered cathodic vacuum arc, J. Vac. Sci. Technol. A, 2003, 21: 1609.
    [26] Y. H. Cheng and B. K. Tay, Development of texture in TiN films deposited by filtered cathodic vacuum arc, J. Cryst. Growth, 2003, 252: 257.
    [27] Y. D. Su, C. Q. Hu, C. Wang, M. Wen, and W. T. Zheng, Relatively low temperature synthesis of hexagonal tungsten carbide films by N doping and its effect on the preferred orientation, phase transition, and mechanical properties, J. Vac. Sci. Technol. A , 2009, 27 (2): 167.
    [28] S. Mahieu, P. Ghekiere, D. Depla, R. De Gryse, Biaxial alignment in sputter deposited thin films, Thin Solid Films, 2006, 515: 1229–1249.
    [29] Simmons G, Wang H. Single crystal elastic constants and calculated aggregate properties: a handbook. Cambridge: MIT Press; 1971.
    [30] M. M Choy, W. R. Cook, R. E. S. Hearmon, H. Jaffe, J. Jerphagnon, S. K. Kurtz, et al. Numerical data and functional relationships in science and technology, elastic, piezoelectric, pyroelectric, piezooptic, electrooptic constants, and nonlinear dielectric susceptibilities of crystals, vol. 1. Berlin: Springer; 1979.
    [31] Young-Min Kim, Byeong-Joo Lee, Modified embedded-atom method interatomic potentials for the Ti–C and Ti–N binary systems, Acta Materialia 2008, 56: 3481.
    [32] Wolf W, Podloucky R, Antretter T, Fischer FD, First-principles study of elastic and thermal properties of refractory carbides and nitrides, Phil Mag B 1999;79:839.
    [33] Marques LSA, Fernandes AC, Vaz F, Ramos M. Influence of Oxygen Additionon the Structural and Elastic Properties of TiC Thin Films, Plasma Processes and Polymers, 2007; 4: S195.
    [ 34 ] Ahuja R, Eriksson O, Wills JM, Johansson B, Structural, elastic, and high-pressure properties of cubic TiC, TiN, and TiO, Phys Rev B 1996;53:3072.
    [35] A. Arya and Emily A. Carter, Structure, bonding, and adhesion at the TiC(100)/Fe(110) interface from first principles, J. Chem. Phys., 2003, 118: 8982.
    [36] C. V. Thompson, structure evolution during processing of polycrystalline films, Annu. Rev. Mater. Sci. 2000, 30: 159–90.
    [37] Feng Huanga, Mark L. Weaver, Biaxial modulus of fiber-textured cubic polycrystalline films with an arbitrary texture axis [hkl], J. Appl. Phys., 2005, 98: 073505.
    [38] Hengzhong Zhang, R. Lee Penn, Robert J. Hamers, and Jillian F. Banfield, Enhanced Adsorption of Molecules on Surfaces of Nanocrystalline Particles, J. Phys. Chem. B 1999, 103: 4656-4662.
    [39] A. ?lawska-Waniewska and J. M. Grenèche, Magnetic interfaces in Fe-based nanocrystalline alloys determined by M?ssbauer spectrometry, Phys. Rev. B, 1997, 56: R8491.
    [1] B. Dumay, E. Finot, M. Theobald and O. Legaie, Structure of amorphous hydrogenated carbon films prepared by radio frequency plasma enhanced chemical vapor deposition. An analogy with the structure zone model developed for metals, J. Appl. Phys. 92 (11) (2002) 6572.
    [2] J. A. Thornton, High Rate Thick film growth, Annu. Rev. Mater. Sci., 1977, 7: 239.
    [3] R. A. Messier, P. Giri, R. A. Roy, Summary Abstract: CF4/Si surface reactions: Evidence for parallel etching mechanisms from modulated ion beam studies, J. Vac. Sci. Technol., A, 1984, 2: 500.
    [4] P.-J. Kelly, R.D. Arnell, Development of a novel structure zone model relating to the closed-field unbalanced magnetron sputtering system, J. Vac. Sci. Technol., A, 1998, 16: 2858.
    [5] T.A. Polley, W.B. Carter, Zone model for zinc oxide deposited by combustion chemical vapor deposition, Thin Solid Films, 2001, 384: 177.
    [6] S. Mahieu , P. Ghekiere, D. Depla, R. De Gryse,Biaxial alignment in sputter deposited thin films, Thin Solid Films, 2006, 515: 1229–1249.
    [7] I. Petrov,P. B. Barna, L. Hultman, J. E. Greene, Microstructural evolution during film growth, J. Vac. Sci. Technol. A , 2003, 21: 117.
    [8] Qi Min Wang, Kwang Ho Kim, Microstructural control of Cr–Si–N films by a hybrid arc ion plating and magnetron sputtering process, Acta Materialia, 2009, in press.
    [9] S. Mahieu, P. Ghekiere, G. De Winter, S. Heirwegh, D. Depla, R. De Gryse, O.I. Lebedev, G. Van Tendeloo, Mechanism of preferential orientation in sputter deposited titanium nitride and yttria-stabilized zirconia layers, Journal of Crystal Growth, 2005, 279: 100–109.
    [10] K.S. Havey, J.S. Zabinski, S.D. Walck, The chemistry, structure, and resulting wear properties of magnetron-sputtered NbN thin films, Thin Solid Films, 1997, 303: 238-245.
    [11] R. McCann, S. S. Roy, P. Papakonstantinou, and J. A. McLaughlin, Spectroscopic analysis ofα-C andα-CNx films prepared by ultrafast high repetition rate pulsed laser deposition, J. Appl. Phys., 2005, 97: 073522.
    [12] C. Ronning, H. Feldermann, R. Merk, and H. Hofsass, P. Reinke, J.-U. Thiele, Carbon nitride deposited using energetic species: A review on XPS studies, Phys. Rev. B, 1998, 58: 2207.
    [13] G. Jouve., C. Severac, S. Cantacuzene, XPS study of NbN and (NbTi)N superconducting coatings, Thin Solid Films, 1996, 287: 146-153.
    [14] M.T. Marques, A.M. Ferraria , J.B. Correia , A.M. Botelho do Rego, R. Vilar, XRD, XPS and SEM characterisation of Cu–NbC nanocomposite produced by mechanical alloying, Materials Chemistry and Physics, 2008, 109: 174–180.
    [15] J. J. Jeong, C. M. Lee, Effects of post-deposition annealing on the mechanical and chemical properties of the Si3N4/NbN multilayer coatings, Applied Surface Science, 2003, 214: 11–19.
    [16] P. B. Barna, M. Adamik, Fundamental structure forming phenomena of polycrystalline films and the structure zone models, Thin Solid Films, 1998, 317: 27–33.
    [17] P. Xu, J. J. Li, Q. Wang, Z. L. Wang, C. Z. Gu, Z. Cui, Improving mechanical properties of amorphous carbon nitride films by titanium doping, J. Appl. Phys., 2007, 101: 014312
    [18] J. A. Thornton and D. W. Hoffman, Stress-related effects in thin films, Thin Solid Films, 1989, 171: 5.
    [19] P. B. Barna, M. Adamik, J. Labar, L. Kover, J. Toth, A. Devenyi, Formation of polycrystalline and microcrystalline composite thin films by codeposition and surface chemical reaction, Surf. Coat. Technol., 2000, 125:147.
    [20] C. S. Sandu, M. Benkahoul, R. Sanjinés, F. Lévy, Model for the evolution ofNb–Si–N thin films as a function of Si content relating the nanostructure to electrical and mechanical properties, Surface and Coatings Technology, 2006, 201: 2897–2903.
    [21] M Wen, C. Q. Hu, Q. N. Meng, Z. D. Zhao, T. An, Y. D. Su, W. X. Yu and W. T. Zheng, Effects of nitrogen flow rate on the preferred orientation and phase transition for niobium nitride films grown by direct current reactive magnetron sputtering, J. Phys. D: Appl. Phys., 2009, 42: 035304.
    [22] M. Wen, C. Q. Hu, C. Wang, T. An, Y. D. Su, Q. N. Meng, and W. T. Zheng, Effects of substrate bias on the preferred orientation, phase transition and mechanical properties for NbN films grown by direct current reactive magnetron sputtering, J. Appl. Phys., 2008, 104: 023527.
    [23] I. M. Iskandarova, A. A. Knizhnik, B. V. Potapkin, A. A. Safonov, A. A. Bagatur, L. R. C. Fonseca,First-principles investigation of the electronic properties of niobium and molybdenum mononitride surfaces, Surface Science, 2005, 583: 69–79.
    [24] C. V. Thompson, structure evolution during processing of polycrystalline films, Annu. Rev. Mater. Sci. 2000, 30: 159–90.
    [25] I. M. Iskandarova, A. A. Knizhnik, B. V. Potapkin, A. A. Safonov, A. A. Bagatur, L. R. C. Fonseca,First-principles investigation of the electronic properties of niobium and molybdenum mononitride surfaces, Surface Science, 2005, 583: 69–79.
    [26] M. Wen, C. Q. Hu, C. Wang, T. An, Y. D. Su, Q. N. Meng, and W. T. Zheng, Effects of substrate bias on the preferred orientation, phase transition and mechanical properties for NbN films grown by direct current reactive magnetron sputtering, J. Appl. Phys., 2008, 104: 023527.
    [27] Y. H. Lu,Y. G. Shen, Z. F. Zhou, and K. Y. Li,Phase configuration, nanostructure evolution, and mechanical properties of unbalanced magnetron-sputtered Ti-Cx-Ny thin films, J. Vac. Sci. Technol. A, 2007, 25: 1539.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700