用户名: 密码: 验证码:
广域保护通信系统可靠性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
广域保护系统(WAPS)是通过现代测量和通信技术获取电力系统的多点信息,辨识出可能给电力系统带来严重后果的扰动并采取相应的控制措施,消除或减轻扰动造成后果的电力系统控制保护系统。广域保护的基础是通信技术,受到通信技术水平的制约。为了实现对电力系统的实时控制,对广域保护通信系统要求高实时性和高可靠性。现代通信技术的发展为实时性提供了可能,广域保护通信系统的可靠性成为影响广域保护可靠运行的重要因素,研究其通信系统的可靠性为系统的设计与维护提供理论依据。本文从广域保护的功能出发,将通信系统分为变电站通信系统和广域通信系统。
     变电站自动化已进入数字化时代,本文先对数字化变电站通信系统进行分析,分别建立星形和环形两种拓扑结构下的数字化变电站可靠性模型,比较星形和环形两种拓扑结构下的可靠性,并找出影响系统可靠性的薄弱环节。根据数字化变电站通信系统可靠性的分析结果,建立广域保护下的变电站通信系统的可靠性模型。在数字化变电站中,数字化保护通信系统的可靠性影响着保护动作的可靠性,根据保护系统的采样值信号、跳闸信号传输和文件数据3种数据业务,建立保护设备、合并单元、断路器和服务器冗余和双重化配置2种结构的保护通信系统可靠性模型,对保护通信系统进行可靠性评估,找出影响系统可靠性的薄弱环节和系统与3个子系统中元件的概率最要度的排序。
     本文分析了广域保护通信系统的结构特点,将通信系统分为系统保护中心、主干网络和区域通信系统,而区域通信系统分成区域保护中心、区域网络和子站系统,对常用的3种光纤环网进行可靠性分析,分别建立各个子系统可靠性模型。以IEEE14母线系统为算例,计算了各个子系统和整个系统的可靠性
     本文利用贝叶斯网络作为可靠性分评估方法,贝叶斯网络可靠性评估方法不但能容易地计算出可靠性指标,而且利用其特有的反向推理技术,找出影响系统可靠性的薄弱环节。
Wide Area Protection System(WAPS) which acquire multi-point information of the power system by means of modern measurement and communication technologies and identify the disturbance which possible serious consequences to the power system and take appropriate control measures to eliminate or mitigate the consequences is a power system control and protection system. Wide area protection is based on communication technology, constrained by the level of communication technology. In order to realize real-time control the power system, wide-area protection communication system require high real-time and high reliability. The real-time of the wide area protection communication system is achieved by development of modern communication technology. The reliability of the wide area protection communication system is an important factor which impact the wide area protection's reliable operation. Study on the reliability of the communication system in order to provide a theoretical basis for design and maintenance the system. This paper which analyze from the wide-area protection function divides the wide area protection communication system into substation communication systems and wide area communications systems.
     Substation automation has entered the digital age. The paper analyze the reliability of the digital substation communication system first, establish star and ring topologies digital substations'reliability model. Compare the two topologies substations'reliability and find the weak links of the system's reliability. According to the results of the digital substation communication system's reliability, establish the substation communication under the wide area protection reliability models. In digital substation, the reliability of protection operation is affected by the reliability of the digital protection communication system. Reliability models for two structures which one of structure is the protection components and circuit breakers and sever are redundant and one of structure is double configuration are established through three types of data services which are sample value signal transmission and tripping signal transmission and file data transmission. Study the reliability of the communication system and find the weakness of the system and the components'probability importance of the system and the subsystem.
     This paper analyzes the structure features of the wide area protection communication system. The communication system is divided into the system protection center, backbone networks and regional communications systems which is divided into regional protection center, regional networks and substation system. Analyze the reliability of three commonly fiber optic rings. Reliability model of each subsystem were established. An example of IEEE 14 bus system, calculating the reliability of various subsystem and overall system.
     In this paper, Bayesian networks as the method of reliability assessment, which not any compute the indices but also find the weakness of the system by the advantage of the unique reverse reasoning.
引文
[1]蔡运清,汪磊,周逢权,等.广域保护(稳控)技术的现状及展望[J].电网技术,2004,28(8):20-25.
    [2]Christian Rehtanz, Joachim Bertsch. A New Wide Area Protection System[J].2001, IEEE Porto Tech Conference,2001,9 (4):10-13.
    [3]Ingelsson B, Lindst rom Per-Olof, Karlsson D, et al. Wide area protection against voltage collapse[J]. IEEE Computer Application in Power,1997,11:30-35.
    [4]Bertil I, Per-Olof L, Daniel K, et al. Wide-area Protection against Voltage Collapse. IEEE Computer Application in Power,1997,10 (4):30-35.
    [5]薛禹胜,徐违,Zhao yang DONG,等.关于广域测量系统及广域控制保护系统的评述[J].电力系统自动化,2007,31(15):1-6.
    [6]易俊,周孝信.电力系统广域保护与控制综述[J].电网技术,2006,30(08):7-12.
    [7]丛伟,潘贞存,丁磊,等.满足“三道防线”要求的广域保护系统及其在电力系统中的应用[J].电网技术,2004,28(18):29-33.
    [8]TAN J C, CROSSLEY P A, HALL I, et al. Intelligent Wide Area Back-up Protection and Its Role in Enhancing Transmission Network Reliability[C]//IEEE 7th International Conference on Developments in Power System Protection 1 Amsterdam:[s.n.],2001:446-449
    [9]林霞,高厚磊.新型广域后备保护方案的研究[J].继电器,2005,33(7):84-88.
    [10]吴晓博,王永福,杨威,等.数字化变电站自动化系统开发建议[J].电力系统自动化,2009,33(16):96-100.
    [11]鞠阳.数字化变电站的网络通信模式[J].电力系统保护与控制,2010,38(1):92-95.
    [12]窦晓波,胡敏强,吴在军,等.数字化变电站通信网络的组件与冗余方案[J].电力自动化设备,2008,29(1):38-43.
    [13]孙军平,盛万兴,王孙安.新一代变电站自动化网络通信系统研究[J].中国电机工程学报,2003,23(3):16-19,145.
    [14]高翔.数字化变电站应用技术[M].北京:中国电力出版社,2008.
    [15]赵丽君,席向东.数字化变电站技术应用[J].电力自动化设备,2008,28(5):118-121.
    [16]辛耀中,卢长燕.电力系统数据网络技术体制分析[J].电力系统自动化,2000,24(21):1-6.
    [17]姜廷刚,高厚磊,刘炳旭.适合广域测量系统的通信网探讨[J].电力系统及其自动化学报,2004,16(3):57-60.
    [18]Serizawa Y, Imamura H, Kiuchi M. Performance evaluation of IP-based relay communications for wide-area protection employing external time synchronization[C]//Proceedings of 20th IEEE PES Summer Meeting, Vancouver, Canada:2001.
    [19]徐天奇,尹项根,等.3层式广域保护系统通信网络[J].电力系统自动化,2008,32(16):28-33.
    [20]罗鹏程,金光,等.通信网可靠性研究综述[J].小型微型计算机系统,2000,21(10):1073-1080.
    [21]Rao V V B. Most-vital edge of a graph with respect to spanning trees [J]. IEEE Trans Reliability, 1998,47(1):6-7.
    [22]熊庆旭,刘有恒.基于网络状态之间关系的网络的可靠性分析[J].通信学报,1998,19(3):
    55-61.
    [23]刘爱民,刘有恒.部件不可靠下的通信网业务性能分析[J].电子学报,2002,30(10):1459-1462.
    [24]Aggarwal K K. Integration of reliability and capacity in performance of a telecommunication network[J].IEEE Trans Reliability,1985,34(1):184-186.
    [25]Trstensky D, Bowron P. An alternative index for reliability of telecommunication networks[J]. IEEE Trans Reliability,1984,33(10):343-345.
    [26]戴伏生.通信网络各节点和链路重要性的客观评估方法[J].南京理工大学学报,2006,30(6):748-755.
    [27]高竹青,樊鹤红,张明德等.基于最小路集的IP over WDM网络光层连通性可靠性评估[J].东南大学学报,2005,35(2):183-187.
    [28]武小悦,沙基昌.构造网络不交化最小路集的一种新算法[J].系统工程理论与实践,2000,1:62-67.
    [29]韩晓涛,尹项根,张哲.故障树分析法在变电站通信系统可靠性分析中的应用[J].电网技术,2004,28(1):56-59.
    [30]熊小伏,田娟娟等.电力通信系统可靠性模型研究[J].继电器,2007,35(14):28-32.
    [31]曹进明,房鑫炎,吴蓉.基于IEC61850标准的变电站可靠性通信研究[J].电力自动化设备,2008,28(9):89-93.
    [32]ANDERSSON L, BRAND K P, BRUNNER C, et al. Reliability investigations for SA communication architectures based on IEC61850//Proceedings of IEEE Power Tech 2005, June 27-30,2005, Saint. Petersburg, Russia,2005:604-612.
    [33]HUSSEIN J A, MAJEER A R. Reliability study of regional power network communication// Proceedings of IEEE PES Transmission & Distribution Conference amd Exposition:Latin America, August 15-18,2006, Caracas, Venezuela. Piscataway, NJ, USA:IEEE,2006,1-6.
    [34]王志强,刘文霞,等.广域测量系统可靠性研究框架[J].电力系统自动化,2008,32(34):25-29.
    [35]赵鑫,卢继平,汪洋,等.基于PMU硬软件概率模型的WAMS可靠性评估[J].电力系统自动化,2009,33(16):19-23,70.
    [36]汪洋.广域测量系统可靠性及基于广域测量系统的电压稳定性研究[D].重庆大学博士学位论文.2009
    [37]梁雄建,孙青华.通信网可靠性管理[M].北京:北京邮电大学出版社,2004.
    [38]卢明银,徐人平.系统可靠性[M].北京:机械工业出版社,2008.
    [39]刘品,刘岚岚.可靠性工程基础[M].北京:中国计量出版社,2009.
    [40]郭永基.电力系统可靠性分析[M].北京:清华大学出版社,2003.
    [41]鲁宗相,郭永基.水电站电气主接线可靠性评估[J].电力系统自动化,2001,25(18):16-19,27.
    [42]王洪德,刘贞堂.矿进通风网络可靠性的定量分析与评价[J].中国矿业大学学报,2007,36(3):371-375.
    [43]袁亚华,王自果.最小路集的邻接终点算法[J].西北工业大学学报,1989,7(4):473-478.
    [44]刘海军,韩民晓,吴俊勇.基于最小割集的牵引变电站主接线可靠性评估[J].电网技术,2008,24(1):24-29.
    [45]刘隆波,金家善.基于最小割集基础上的网络系统可靠性近似算法改进研究[J].2006,21(1):175-178.
    [46]杨文宇,余建明,同向前.基于最小割集的配电系统可靠性评估算法[J].西安理工大学学报,2001,17(4):387-391.
    [47]张蔼蔷.故障树分析在电力系统可靠性研究中的应用[J].华东电力,2005,33(2):14-17
    [48]陆锦军,王执铨.基于故障树的校园网通信系统的可靠性分析[J].计算机应用与软件,2006,23(11):14-15,31.
    [49]T. Song, Y. Shimada, K. Suzuki, et al. Automated Fault Tree Synthesis Using Event Relation Matrix[J], Journal of the society of Plant Engineers Japan,1997,18 (4):8-15.
    [50]丁明,张静,李生虎.基于序贯蒙特卡罗仿真的配电网可靠性评估模型[J].电网技术,2004,28(3):38-43.
    [51]肖刚,李家枪.系统可靠性分析中的蒙特卡罗方法[M].北京:科学出版社,2003.
    [52]Billinton R, Lian G. Station Reliability Evaluation Using a Monte Carlo Approch[J]. IEEE Trans. Power Del.,1993,8 (3):1239-1245.
    [53]霍利民,朱永利,范高峰,等.一种基于贝叶斯网络的电力系统可靠性评估新方法[J].电力系统自动化,2003,27(5):36-40.
    [54]H Boudali, J B Dugan. A discrete-time Bayesian network reliability modeling and analysis framework[J]. Reliability Engineering and System Safety (S0951-8320),2005,87 (3):337-349.
    [55]霍利民,朱永利,张在玲,等.贝叶斯网络在配电系统可靠性评估中的应用[J].电工技术学报,2004,19(8):113-118.
    [56]Tianqi Xu, Xianggen Yin, Dahai You. A Novel Communication Network for Three-Level Wide Area Protection System [J]. IEEE Power and Energy Society General Meeting Conversion and Delivery of Electrical Energy in the 21st Century,2008.
    [57]张沛超,高翔.全数字化保护系统的可靠性及元件重要度分析[J].中国电机工程学报,2008,28(1):77-82.
    [58]朱林,陈金富,段献忠.数字化变电站冗余体系结构的改进及其可靠性和经济性评估[J].电工技术学报,2008,23(6):89-95.
    [59]Begovic M,Novosel D,Karlsson D,et al. Wide-area protection and emergency control[J]. Proceedings of the IEEE Energy Infrastructure Defense Systems,2005,93 (5):876-891.
    [60]TORRIERL D. Calculation of node2pair reliability in large networks with unreliable nodes [J]. IEEE Trans on Reliability,1994 (43):375-377
    [61]杜明军.光纤环网保护在南方电网中的应用[J].电力系统通信,2003,24(9):1-4.
    [62]高会生,赵建立,王宇,等.SDH自愈环网有效性模型的研究[J].华北电力大学学报,2009,36(1):91-94.
    [63]Giovanini R, Hopkinson K, Coury D V, et al. A primary and backup cooperative protection system based on wide area agents[J]. IEEE Trans. on Power Delivery,2006,21 (3):1222-1230.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700