用户名: 密码: 验证码:
松嫩平原羊草草甸凋落物分解中土壤动物群落特征及其作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
凋落物分解是生态系统过程的一个重要环节。本论文在对国内外土壤动物生态学研究历史回顾的基础上,分析了当前对土壤动物生态分布及其对环境的指示意义、土壤动物多样性及其在分解和养分循环中的作用等方面的现状。其中对土壤动物功能作用相关研究多集中在森林生态系统,而草地生态系统相对缺乏。由于土壤动物在草地生态系统分解及养分循环中的作用不同于森林生态系统。因此,亟需相关研究丰富土壤动物生态学的基础和理论。众多学者越来越关注土壤动物功能作用,但对土壤动物多样性作用的结论并不一致。特别是国内还没有对草地生态系统中土壤动物在分解过程中的作用进行研究。因此本论文对温带草甸草原凋落物分解过程中土壤动物功能作用的长期定位研究,能够获得松嫩平原羊草草甸凋落物分解速率、养分释放动态,了解土壤动物作为分解者对凋落物分解的影响,并对凋落物性质、环境因子等的影响进行讨论。不仅具有重要的理论价值,而且可以为松嫩草地生态恢复提供管理学依据。论文得到了国家自然科学基金的资助,项目编号:40871120。
     本研究采用凋落物袋法对东北松嫩平原(44°40′- 44′N,123°44′-47′E)羊草草甸中羊草、虎尾草、拂子茅、碱茅、碱地肤5种植物地上部分的凋落物分解和养分动态进行了连续野外研究。采用4mm、2mm、0.15mm和0.01mm四种规格凋落物袋控制参与分解的土壤动物类群,研究凋落物的分解速率和养分动态,并对分解过程中土壤动物群落进行分类和统计;在此基础上分析了土壤动物群落多样性特征及其在凋落物分解及养分释放中的作用,并讨论了凋落物性质、环境因子对分解的影响和土壤动物群落与环境因子的关系。
     研究发现,各种网袋凋落物中的土壤动物群落随着温、湿度变化而具有明显的季节性动态。2007年6月~9月之间土壤动物的密度和多样性均高于2006年11月~2007年5月的冬春季节。4mm网孔的开放网袋处理中,凋落物中土壤动物数量由大到小依次分别为虎尾草、羊草、拂子茅、碱茅和碱地肤凋落物。典型生境凋落物中土壤动物的个体数量高于退化生境。凋落物中土壤动物群落数量较少,大部分为植食性、腐食性和杂食性群落,而缺乏捕食性类群。
     研究期间各种凋落物在不同网孔凋落物袋的处理中,分解速率也表现出季节性动态。退化生境中碱地肤和碱茅凋落物的分解速率高于典型生境中的羊草、拂子茅和虎尾草凋落物。凋落物分解过程中,不同网孔凋落物袋处理中,凋落物分解速率不是简单的随凋落物袋网孔的变小而降低。这说明由于参与分解的土壤动物类群不同,不同物种凋落物的分解速率产生了变化。
     开放处理中各种凋落物分解近一年后N、P、K绝对含量有所减少。其中退化生境中凋落物的养分元素绝对量的减少较典型生境中显著。而在限制了土壤动物分解作用的较小网孔凋落物袋处理中,凋落物养分元素绝对量的减少变化较大。这说明土壤动物活动对于凋落物养分释放具有较大的影响,不同类群动物对养分释放的影响具有差异。
     土壤动物对凋落物分解损失率具有较大的贡献,对元素循环也具有重要意义。凋落物袋中土壤动物的多度和多样性与袋内凋落物损失率呈显著的正相关性。冬春季节参与分解的土壤动物主要有蜱螨类、缨翅目,此外双翅目、啮虫目和鞘翅目也有出现;到夏秋季节土壤动物数量和多样性都有较大的增加,其中啮虫目和螨类的个体数量最多,半翅目、弹尾目、同翅目、蜘蛛目、膜翅目、等足目和腹足纲等类群开始出现;秋末土壤动物的数量和类群有一定的减少。
     分析表明,凋落物的种类、凋落物袋网孔差异、取样时间及其交互作用对凋落物损失率都具有显著的影响,此外三者对凋落物中P、K元素的绝对量的释放也具有显著的影响。凋落物物种、取样时间及两者之间的交互作用对凋落物袋内土壤动物的群落数量也具有显著影响。典型生境中土壤动物群落的总个体数量与土壤中的TN含量呈极显著的正相关,退化生境中温度因子的影响更为显著。
Litter decomposition is an important part of ecosystem progress. Based on the review of history of soil fauna ecology, the thesis summarized the four topics, including ecological distribution of soil fauna community and the relationship between soil fauna community and environmental factors; bioindictor of soil fauna; the function of the diversity of soil fauna in litter decomposition and nutrient cycle as well. As the case of function of soil fauna in the litter decay and element cycle, most researches were performed in forest ecosystem, and few of them carried in grassland ecosystem. The characteristics of vegetation, soil and other environmental factors in grassland ecosystem are different from those in forest ecosystem. And the function of soil fauna in litter decomposition and nutrient release in grassland ecosystem should be different from that in the forest ecosystem. Consequently, soil fauna’s function in litter decomposition and nutrient cycle in grassland ecosystem should be eager to perform more researches, which will enrich the fundamental and theoretics of soil fauna ecology. The results that had gotten in a few researches about the function of the diversity of soil fauna were not consisted. There are few studies on the longer time of litter decomposition in grassland ecosystem that performed to study the function of soil fauna, especially in China. The goal of this study is discussing the function of different groups of soil fauna in litter decomposition and nutrient cycle in grassland ecosystem. And the effects of litter qulities and environmental factors on the litter decomposition rate and nutrient release are also discussed in the thesis. The present study will not only be a great performance of the theory of soil fauna ecology, but also give leading help in ecological restoration and management of Songnen grassland ecosystem. The thesis was financially supported by National Natural Science Foundation of China (No. 40871120 ).
     The thesis had been studied the decomposition and nutrient release of the above-ground litter of the Leymus chinensis, Chloris virgata, Calamagrostis epigejos, Puccinellia chinampoensis, and Kochia sieversiana by litterbag standard method in Leymus chinensis steppe ecosystem in Songnen plain(44°40′- 44′N and 123°44′-47′E). The four different mesh sizes of litterbag, including 4mm, 2mm, 0.15mm, and 0.01mm, were used to control the different body size of soil fauna in the litterbag. The litterbags of L. chinensis, C. virgata, C. epigejos are located in their situ (called typical situ), and the litterbags of P. chinampoensis and K. sieversiana are located in their situ (called degraded situ). Starting from 23rd October 2006 to 23rd September 2007, at monthly intervals, litter samples were carefully retrieved from the field to laboratory. Based on the data of decay rate and dynamics of the N, P, K of litter and soil fauna community, the thesis discussed the function of different fauna groups in litter decomposition and nutrient release and analysized the relationship between soil fauna community and environmental factors at the same time.
     The results showed that soil fauna community in litter had seasonal dynamics with the seasonal fluctuation of temperature and moisture. The density and diversity indexes of soil fauna community in June 2007~ September 2007 were higher than those in November 2006~ May 2007. In the open (mesh size=4mm) litterbag, the individual numbers of soil fauna in the five litter were in the sequence of C. virgata> L. chinensis > C. epigejos > P. chinampoensis > K. sieversiana. The individual numbers of soil fauna in the litter of typical situ are higher than that of in degraded situ through all litterbags. The phytophagous, saprophagous, and omnivorous groups of soil fauna were more common in litter than those in soil. But the number and dominance of predacious group of soil fauna were lower than those in soil.
     The decay rate of litter also showed seasonal dynamics in all mesh size litterbags. The loss rate of litter in summer and autuman are higher than that in winter and spring. After decomposition of eleven months, the percent of litter mass remained from 61% to 84%. The decay rates of P. chinampoensis and K. sieversiana litter in the degraded situ are higher than those of C. virgata, L. chinensis and C. epigejos litter in the typical situ. The decay rates of litter in litterbags were not consistent with the mesh size of the litterbag, which indicated that the different groups of soil fauna in litterbags had different effects on the litter decomposition.
     The remaining percent of N, P, K in the open litterbags of litter were all decreased to 4%~45%, 26%~63%, 72%~89%, respectively, at the end of study stage. There are great changes in the other mesh size litterbags had great changes. The loss percent of N, P, K of litter in degraded situ were higher than that of in typical situ. The different groups of soil fauna in litterbags had different effects on the nutrient release of litter.
     Soil fauna had great contribution on litter decay rate. There were significant positive relations between density, diversity of soil fauna community and litter decay rate. Soil fauna have great influences on the element cycle in ecosystems. The decay rate and loss percent of nutrient of litter in the open litterbags were higher than that in the other mesh size litterbags, which also indicated that soil fauna community had great effects on litter decomposition and nutrient release. The groups of soil fauna as decomposers in litter had changes in different seasons. In winter and spring, Prostigmata, Thysanoptera were the main decomposers, and Diptera, Psocoptera, Araneae, Coleoptera as well. In summer and autumn, the groups included Collembola, Hemiptera, Lepidoptera larvae, Hymenoptera, Homoptera, Coleoptera larvae, Oribatida, Astigmata, Isopoda, Gastropoda were also founded in the litter. The number and diversity of soil fauna in litter in summer & autumn are higher than those in winter & spring. At the end of autumn (September 2007), the number of soil fauna in litter decreased than before (August 2007).
     The effects of physical and chemical leaching on litter decay and nutrient release possibly explained that the decay rates and dynamics of nutrient concentration in litter were not consistent with the mesh size of litterbag. The results of ANOVA analysize showed that there are significant effects of litter species, mesh size of litterbag, sampling time and the interactions of them on litter decay rates. Litter species, mesh size of litterbag, sampling time had significant effects on P and K release.
     The density of soil fauna in litter were influenced significantly by litter species, sampling time and their interactions. There were little relativity between temperature, precipitation and the individual number and group number of soil fauna. There was positive relationshiop between the individual number of soil fauna and total N in soil in typical situ. And the individual number of soil fauna was mainly influenced by temperature in degraded situ.
引文
[1]Darwin CR. On the formation of mould[J]. Transactions of the Geological Society of London, 1840, 5: 505-509.
    [2]Berlese A. Apparecchio per raccogliere presto ed in gran numero piccoli artropodi [J]. Redia, 1905, 2: 85-89.
    [3]Tullgren A. Ein sehr einiacher Berlese apparat fur terricole tierforen[J]. Z.angew. Ent., 1917, 4: 149-150.
    [4]Kuhnelt W. Soil Biology[M]. London: Faber and Faber, 1961.
    [5]Swift MJ, Heal OW, Anderson JM. Decomposition in Terrestrial Ecosystems[M]. Oxford: Blackwell Science, 1979. 1-362.
    [6]Copley J. Ecology goes underground[J]. Nature, 2000, 406: 452-454.
    [7]Wardle DA, Bardgett RD, Klironomos JN, et al. Ecological Linkages Between Aboveground and Belowground Biota[J], Science, 2004, 304: 1629-1633.
    [8]张荣祖,杨明宪,陈鹏,等.长白山北坡森林生态系统土壤动物初步调查[J].森林生态系统研究,1980,(1):133-152.
    [9]赵小鲁,谢炳庚.动物生态地理研究-陈鹏教授等论文集[C].四川:成都地图出版社.1996.224-349,506-512.
    [10]尹文英,杨逢春,王振中,等.中国亚热带土壤动物[M].北京:科学出版社,1992.1-4,75-78.
    [11]尹文英,宋大祥,杨大荣,等.中国土壤动物[M].北京:科学出版社,2000.27-57.
    [12]尹文英,胡圣豪,沈温芬,等.中国土壤动物检索图鉴[M].北京:科学出版社,1998.1-6,90-93,265-266,282-284,293-295.
    [13]殷秀琴.东北森林土壤动物研究[M].长春:东北师范大学出版社,2001.23-404.
    [14]王宗英,路有成,陈发扬.皖南低丘茶园土壤动物群落结构研究[J].地理学报,1991,46 (2):213-223.
    [15]钱复生,王宗英.水东枣园土壤动物与土壤环境的关系[J].应用生态学报,1995,6(1):44-50.
    [16]王振中,张友梅,胡觉莲,等.土壤重金属污染对蚯蚓(OpisthoPora)影响的研究[J].环境科学学报,1994,14 (2):236-243.
    [17]邓继福,王振中.重金属污染对土壤动物群落生态影响的研究[J].环境科学,1996,17(2):1-5.
    [18]廖崇惠,李健雄,杨悦屏,等.海南尖峰岭热带林土壤地位群落-群落的组成及其特征[J].生态学报,2002,22(1):1867-1872.
    [19]杨效东.热带季节雨林凋落叶分解过程中的中小型土壤节肢动物的群落结构及动态[J].生物多样性,2004,12(2):252-261.
    [20]刘永江,刘新民,郭砺.内蒙古草原带土壤动物生态学研究[J].中国草地,1999,3:51-56.
    [21]陈海燕、刘新民、孙卫国,等.大型土壤动物在沙漠生态系统物质循环中的作用研究[J].中国沙漠,2002,22(6):576-580.
    [22]杨继松,刘景双,于君宝,等.三江平原沼泽湿地枯落物分解及其营养动态[J].生态学报,2006,26(5):1297-1302.
    [23]杨冬青,高峻,韩红霞.城市不同土地利用类型下土壤动物的分布初探[J].上海师范大学学报(自然科学版),2003,32(4):86-92.
    [24]宋博,马建华,李剑,等.开封市土壤动物及其对土壤污染的响应[J].土壤学报,2007,44(3):529-535.
    [25]Konestabo HS, Michelsen A, Holmstrup M. Responses of springtail and mite populations to prolonged periods of soil freeze-thaw cycles in a sub-arctic ecosystem[J]. Applied Soil Ecology, 2007, 36 (2-3): 136-146.
    [26]Sjursen H, Michelsen A, Holmstrup M. Effects of freeze–thaw cycles on microarthropods and nutrient availability in a sub-Arctic soil[J]. Applied Soil Ecology, 2005, 28: 79-93.
    [27]李青.滇西北藏区草地管理方式对草丛昆虫群落和大型土壤动物群落多样性的影响[D]:[硕士学位论文].昆明:中科院西双版纳热带植物园,2006.
    [28]Zou XM, Gonzalez G. Changes in earthworm density and community structure during secondary succession in abandoned tropical pastures[J]. Soil Biology & Biochemistry, 1997, 19(3/4): 627-629.
    [29]易兰.浙江天童受损常绿阔叶林的次生演替对土壤动物群落的影响[D]:[博士学位论文].上海:华东师范大学,2005.
    [30]Rantalainen ML, Kontiola L, Haimi J, et al. Influence of resource quality on the composition of soil decomposer community in fragmented and continuous habitat[J]. Soil Biology & Biochemistry, 2004, 36, 1983-1996.
    [31]Parker M, Nally RM. Habitat loss and the habitat fragmentation threshold:an experimental evaluation of impacts on richness and total abundances using grassland invertebrates[J]. Biological Conservation, 2002, 105: 217-229.
    [32]董炜华.内蒙古公路路域土壤动物群落特征及其在生态恢复中的作用研究[D]:[博士学位论文].长春:东北师范大学城市与环境科学学院,2008.
    [33]Haskell DG. Effects of Forest Roads on Macro invertebrate Soil Fauna of the Southern Appalachian Mountains[J]. Conservation Biology, 2000, 14(1): 57-64.
    [34]梁文举,黄国宏.土壤动物对大气CO2浓度升高响应研究的进展[J].世界科技研究与发展,2001,23(1):69-73.
    [35]徐国良,莫江明,周国逸.N沉降下土壤动物群落的响应:1年研究结果总述[J].北京林业大学学报,2006,28(3):1-7.
    [36]Scowcroft PG.. Mass and nutrient dynamics of decaying litter from Passiflora mollissima and selected native species in a Hawaiian montane rain forest[J]. Journal of Tropical Ecology, 1997, 13: 407-426.
    [37]刘志磊,徐海根,丁晖.外来入侵植物紫茎泽兰对昆明地区土壤动物群落的影响[J].生态与农村环境学报,2006,22(2):31-35.
    [38]孙儒泳.动物生态学原理.北京师范大学出版社(第三版)[M].2001:110-113,21-99.
    [39]苗雅杰,殷秀琴.小兴安岭红松阔叶混交林土壤动物群落研究[J].林业科学,2005,41(2):204-209.
    [40]Usher MB, Booth RG, Sparlies KE. A review of progress in understanding the organization of communities of soil arthropods[J]. Pedobiologia, 1982, 23: 126-144.
    [41]Anderson JM. Succession diversity and trophic relationships of some soil animals in decomposing leaf litter[J]. Journal of Animal Ecology, 1975, 44: 475-495.
    [42]柯欣,赵立军,尹文英.青冈林土壤动物群落结构在落叶分解过程中演替变化[J].动物学研究,1999,20(3):207-213.
    [43]易兰,由文辉,宋永昌.天童常绿阔叶林五个演替阶段凋落物中的土壤动物群落[J].生态学报,2005,25(3):466-473.
    [44]殷秀琴,李建东.羊草草原土壤动物群落多样性的研究[J].应用生态学报,1998,9(2):186-188.
    [45]张雪萍,李春艳,殷秀琴,等.不同使用方式林地的土壤动物与土壤营养元素的关系[J].应用与环境生物学报,1999,5(1):26-31.
    [46]杨效东,佘宇平.西双版纳热带森林雨季土壤动物群落组成与分布特征[J].东北林业大学学报,1998,26(6):65-70.
    [47]Parker M, Nally RM. Habitat loss and the habitat fragmentation threshold:an experimental evaluation of impacts on richness and total abundances using grassland invertebrates[J]. Biological Conservation, 2002, 105: 217-229.
    [48]梁文举,葛亭魁,段玉玺.土壤健康及土壤动物生物指示的研究与应用[J].沈阳农业大学学报,2001,32 (1):70-72.
    [49]李玉娟,吴纪华,陈慧丽,等.线虫作为土壤健康指示生物的方法及应用[J].应用生态学报,2005,16 (8):1541-1546.
    [50]Nickel H, Hildebrandt J. Auchenorrhyncha communities as indicators of disturbance in grasslands (Insecta, Hemiptera)-a case study from the Elbe flood plains (northern Germany) Agriculture[J]. Agriculture, Ecosystems and Environment, 2003, 98: 183-199.
    [51]Ekschmitt K, Bakonyi G, Bongers M, et al. Nematode community structure as indicator of soil functioning in European grassland soils[J]. European Journal of Soil Biology, 2001, 37: 263-268.
    [52]Dombos M. Collembola of loess grassland:effects of grazing and landscape on community composition[J]. Soil Biology & Biochemistry, 2001, 33: 2037-2045.
    [53]Bongers T, Ferris H. Nematode community structure as a bioindicator in environmental monitoring[J].Trends in Ecology & Evolution, 1999, 14(6): 224-228.
    [54]梁文举,张万民,李维光,等.施用化肥对黑土地区线虫群落组成及多样性影响[J].生物多样性,2001,9 (3):237-240.
    [55]陈国定,朱文,黎明达,等.应用甲螨监测土壤污染的研究[J].中国环境科学,1997,11(2):100-103.
    [56]Ruf A. A maturity index for predatory soil mites (Mesostigmata:Gamasina) as an indicator of environmental impacts of pollution on forest soils[J]. Applied Soil Ecology, 1998, 9: 447-452.
    [57]Ponge JF, Gillet S, Dubs F, et al. Collembolan communities as bioindicators of land use intensification[J]. Soil Biology & Biochemistry, 2003, 35: 813-826.
    [58]Foissner W. Soil protozoa as bioindicators: pros and cons,methods, diversity, representative examples[J]. Agriculture, Ecosystems and Environment, 1999, 74: 95-112.
    [59]邓继福,王振中.重金属污染对土壤动物群落生态影响的研究[J].环境科学,1996,17(2):1-5.
    [60]Coleman DC, Whitman WB. Linking species richness,biodiversity and ecosystem function in soil systems[J]. Pedobiologia, 2005, 49: 479-497.
    [61]Cragg RG., Bardgett RD. How changes in soil faunal diversity and composition within a trophic group influence decomposition processes[J]. Soil Biology & Biochemistry, 2001, 33: 2073-2081.
    [62]Cárcamo HA, Prescott CE, Chanway CP, et al. Do soil fauna increase rates of litter breakdown and nitrogen release in forests of British Columbia,Canada? [J]. Canadian Journal of Forest Research, 2001, 31(7): 1195-1204.
    [63]Moore JC, McCann K, Set?l? H, et al. Top-down is bottom-up:Does predation in the rhizosphere regulate aboveground dynamics? [J]. Ecology, 2003, 84(4): 846-857.
    [64]Ingham ER, Trofymow JA, Ames RN, et al. Tropic interactions and nitrogen cycling in a semi-arid grassland soilⅡSystem responses to removal of different groups of soil microbes and fauna[J]. Journal of Applied Ecology, 1986, 23: 615-630.
    [65]Bradford MA, Tordoff GM, Eggers T, et al. Microbiota, fauna and mesh size interactions in litter decomposition[J]. Oikos, 2002, 99: 317-323.
    [66]Liu ZG, Zou XM. Exotic earthworms accelerate plant litter decomposition in a Puerto Rican pasture and a wet forest[J]. Ecological Applications, 2002, 12: 1406-1417.
    [67]Bardgett RD, Chan KF. Experimental evidence that soil fauna enhance nutrient mineralization and plant nutrient uptake in montane grassland ecosystems[J]. Soil Biology and Biochemistry, 1999, 31: 1007-1014.
    [68]Coleman DC, Crossley Jr DA, Hendrix PF. Fundamentals of Soil Ecology (second ed) [M]. San Diego: Elsevier Academic Press, 2004. 79-184.
    [69]Byzov BA, Chernjakovskaya TF, Zenova GM, et al. Bacterial communities associated with soil diplopods[J]. Pedobiologia, 1996, 40: 67-79.
    [70]Dilly O, Irmler U. Succession in the food web during the decomposition of leaf litter in a black alder (Alnus glutinosa (Gaertn.)L.) forest[J]. Pedobiologia, 1998, 42: 109-123.
    [71]Coleman DC, Reid CPP, Cole CV. Biological strategies of nutrient cycling in soil systems[J]. Advances in Ecological Research, 1983, 13, 1-55.
    [72]Anderson JM. Interactions between invertebrates and microorganisms:noise or necessity for soilprocesses? [C]. In: Fletcher M, Grag TRG, Jones JG, ed. Ecology of Microbial Communities, Cambridge, UK: Cambridge University Press, 1987. 125-145.
    [73]Wolters V. Soil invertebrates: Effects on nutrient turnover and soil structure-a review[J]. Zeitschrift Fur Pflazenernahrung Und Bodenkunde, 1991, 154: 389- 402.
    [74]Wachendorf C, Irmler U, Blume HP. Relationships between litter fauna and chemical changes of litter during decomposition under different moisture conditions[C]. In: Cadish G., Giller KE, eds. Driven by Nature: Plant Litter Quality and Decomposition. Wallingford: CAB international, 1997. 135-144.
    [75]Reichle DE, McBrager JF, Ausums S. Ecological energetics of decomposer invertebrates in a deciduous forest and total respiration budget[C]. In: Vanek J, ed. Progress in Soil Zoology. Proc 5th Int Coll Soil Zool. Prague: Academia Prague, 1975. 283-291.
    [76]Schaefer M. Ecosystem processes: Secondary production and decomposition[C]. In: R?hrig E, Ulrich B, ed. Temperate Deciduous Forests. Ecosystems of the World. Amsterdam: Elsevier 1991. 175- 218.
    [77]Verhoef HA, Brussaard L. Decomposition and nitrogen mineralization in natural and agro-ecosystems: the contribution of soil animals[J]. Biogeochemistry, 1990, 11: 175-211.
    [78]De Ruiter PC, Moore JC, Zwart KB, et al. Simulation of nitrogen mineralization in the belowground food webs of two winter wheat fields[J]. Journal of Applied Ecology, 1993, 30: 95-106.
    [79]Didden WAM, Marinissen JCY, Vreeken-Buijs MJ, et al. Soil meso- and macrofauna in two agricultural systems,factors affecting population dynamics and evaluation of their role in carbon and nitrogen dynamics[J]. Agriculture, Ecosystems & Environment, 1994, 51: 171-186.
    [80]Vreeken-Buijs MJ, Brussaard L. Soil mesofauna dymanics, wheat residue decomposition and nitrogen mineralization in buried litterbags[J]. Biology and Fertility of Soils, 1996, 23: 374-381.
    [81]González G., Seastedt TR. Soil fauna and plant litter decomposition in tropical and subalpine forests[J]. Ecology, 2001, 82(4): 955-964.
    [82]Huish S, Leonard MA, Anderson JM. Wetting and drying effects on animal/microbial mediated nitrogen mineralization and mineral element losses from deciduous forest litter and raw humus[J]. Pedobiologia, 1985, 28: 177-183.
    [83]Hobbie SE. Interactions between litter lignin and soil nitrogen availability during leaf litter decomposition in a Hawaiian montane forest[J]. Ecosystems, 2000, 3: 484-494.
    [84]Cleveland CC, Reed TC, Townsend AR. Nutrient regulation of organic matter decomposition in a tropical rain forest[J]. Ecology, 2006, 87(2): 492-503.
    [85]TianG, Adejuyigbe CO, Adeoye GO, et al. Role of soil microarthropods in leaf decomposition and N release under various land-use practices in the humid tropics[J]. Pedobiologia, 1998, 42: 33-42.
    [86]H?ttenschwiler S, Tiunov AV, Scheu S. Biodiversity and litter decomposition in terrestrial ecosystem[J]. Annual Review of Ecology, Evolution and Systematics, 2005, 36: 191-218.
    [87]Araujo Y, Luiz?o FJ, Barros E. Effects of earthworm addition on soil nitrogen availability, microbial biomass and litter decomposition in mesocosms[J]. Biology and Fertility of Soils, 2004, 39: 146-152.
    [88]González G, Seastedt TR, Donato Z. Earthworms, arthropods and plant litter decomposition in aspen(Populus tremuloides) and lodgepole pine (Pinus contorta) forests in Colorado, USA[J]. Pedobiologia, 2003, 47( 5-6): 863-869.
    [89]Manna MC, Jha S, Ghosh PK, et al. Comparative efficacy of three epigeic earthworms under different deciduous forest litters decomposition[J]. Bioresource Technology, 2003, 88: 197-206.
    [90]Wardle DA, Yeates GW, Barker GM, et al. The influence of plant litter diversity on decomposer abundance and diversity[J]. Soil Biology & Biochemistry, 2006, 38: 1052-1062.
    [91]Hooper DU, Bignell DE, Brown VK, et al. Interactions between aboveground and belowground biodiversity in terrestrial ecosystems[J]. BioScience, 2000, 50: 1049-1061.
    [92]佐藤大七郎,堤利夫.陆地植物群落的物质生产[M].北京:科学出版社,1986.119-201.
    [93]戈峰.现代生态学(第二版).北京:科学出版社,2008. 395-404,334-339.
    [94]殷秀琴,张桂荣.森林凋落物与大型土壤动物相关关系的研究[J].应用生态学报,1993,4(2):167-173.
    [95]廖崇惠,陈茂乾.小良人工阔叶混交林中白蚁对枯枝落叶的消耗作用[J].生态学报,1990,10(2):173-176.
    [96]殷秀琴,仲伟彦,王海霞,等.小兴安岭森林落叶分解与土壤动物的作用[J].地理研究,2002,21(6):689-701.
    [97]杨效东,邹晓明.西双版纳热带季节雨林凋落叶分解与土壤动物群落:两种网孔分解袋的分解实验比较[J].植物生态学报,2006,30 (5):791-801.
    [98]殷秀琴,邱丽丽,杨令宾,等.森林凋落物-土壤动物-土壤系统中营养元素含量关系及分异[J].地理研究,2006,25(2):320-326.
    [99]殷秀琴,宋博,邱丽丽.红松阔叶混交林凋落物-土壤动物-土壤系统中N、P、K的动态特征[J].生态学报,2007,27(1):128-134.
    [100]Song B, Yin XQ, Zhang Y, et al. Dynamics and relationships of Ca, Mg, Fe in litter, soil fauna and soil in Pinus koraiensis-broadleaf mixed forest[J]. Chinese Geographical Science, 2008, 18(3): 284-290.
    [101]Yin XQ, Li JX, Dong WH. Microelement contents of litter, soil fauna and soil in Pinus koraiensis and mixed broad-leaved forest[J]. Frontiers of Forestry in China, 2007, 2(4): 424-428.
    [102]殷秀琴,辛未冬,齐艳红.温带红松阔叶混交林凋落叶与主要大型土壤动物热值的季节变化[J].应用生态学报,2007,18(4):756-760.
    [103]张雪萍,李春艳,张思冲.马陆在森林生态系统物质转化中的功能研究[J].生态学报,2001,21(1):75-79.
    [104]董炜华,殷秀琴.蚯蚓对不同阔叶的摄食作用[J].动物学报,2007,53(1):69-75.
    [105]Koukoura Z, Mamolos AP, Kalburtji KL. Decomposition of dominant plant species litter in a semi-arid grassland[J]. Applied Soil Ecology, 2003, 23: 13-23.
    [106]Koukoura Z. Decomposition and nutrient release from C3 and C4 plant litters in a natural grassland[J].Acta Oecologica, 1998, 19 (2): 115-123.
    [107]Moretto AS, Distel RA, DidonéNG. Decomposition and nutrient dynamic of leaf litter and roots from palatable and unpalatable grasses in a semi-arid grassland[J]. Applied Soil Ecology, 2001, 18: 31-37.
    [108]Briones MJI, Carreira J, Ineson P. Cognettia sphagnetorum (Enchytraeidae) and nutrient cycling in organic soils -- a microcosm experiment[J]. Applied Soil Ecology, 1998, 9: 289-294.
    [109]Chevallier T, Blanchart E, Girardin C, et al. The role of biological activity (roots, earthworms) in medium-term C dynamics in vertisol under a Digitaria decumbens (Gramineae) pasture[J]. Applied Soil Ecology, 2001, 16: 11-21.
    [110]Lindsay EA, French K. Chrysanthemoides monilifera ssp. rotundata invasion alters decomposition rates in coastal areas of south-eastern Australia[J]. Forest Ecology and Management, 2004,198: 387-399.
    [111]Smith VC, Bradford MA. Litter quality impacts on grassland litter decomposition are differently dependent on soil fauna across time[J]. Applied Soil Ecology, 2003, 24: 197-203.
    [112]Vossbrinck CR, Coleman DC, Woolley TA. Abiotic and biotic factors in litter decomposition in a semiarid grassland[J]. Ecology, 1979, 60(2): 265-271.
    [113]Mayer PM, Tunnell SJ, Engle DM, et al. Invasive grass alters litter decomposition by influencing macrodetritivores[J]. Ecosystems, 2005, 8: 200-209.
    [114]郭继勋.羊草草原分解者亚系统[M].吉林大学出版社,1994.67-99,124-153.
    [115]郭继勋,祝廷成.羊草草原生态系统的分解者与枯枝落叶分解研究[J].草业学报,1994,3(1):13-17.
    [116]郭继勋,姜世成,任炳忠.松嫩草原优势植物羊草立枯体分解的研究[J].生态学报,2000,20(5):784-787.
    [117]王娓,郭继勋,张保田.东北松嫩草地羊草群落环境因素与凋落物分解季节动态[J].草业学报,2003,12(1):47-52.
    [118]Liu P, Huang JH, Han XG. Differential responses of litter decomposition to increased soil nutrients and water between two contrasting grassland plant species of Inner Mongolia, China[J]. Applied Soil Ecology, 2006, 34: 266-275.
    [119]程积民,万惠娥,胡相明,等.半干旱区封禁草地凋落物的积累与分解[J].生态学报,2006,26(4):1207-1212.
    [120]张荣祖.中国动物地理[M].北京:科学出版社,1999.1-13,257-392.
    [121]南开大学,中山大学,北京大学,等.昆虫学(上册)[M].北京:人民教育出版社1980.55-59,73-321.
    [122]冯江,高玮,盛连喜.动物生态学[M].北京:科学出版社,2005.31-42.
    [123]Wardle DA. Communities and Ecosystems, Linking the Aboveground and Belowground Components[M]. Princeton: Princeton University Press, 2002. 392.
    [124]Bardgett RD, Cook R. Functional aspects of soil animal diversity in agricultural grasslands[J]. Applied Soil Ecilogy, 1998, 10: 263-276.
    [125]Anderson JM. The organization of soil animal communities[J]. Ecological Bulletin (Stockholm), 1977, 25: 15-23.
    [126]Maraun M, Migge S, Theenhaus A, et al. Adding to‘the enigma of soil animal species diversity’:fungal feeders and saprophagous soil invertebrates prefer similar food substrates[J]. European Journal of Soil Biology, 2003, 39: 85-95.
    [127]Ponsard S, Arditi R. What can stable isotopes (delta N-15 and delta C-13) tell about the food web of soil macro-invertebrates? [J]. Ecology, 2000, 81: 852-64.
    [128]Scheu S, Falca M. The soil food web of two beech forests (Fagus sylvatica) of contrasting humus type: stable isotope analysis of a macro- and a mesofauna-dominated community[J]. Oecologia, 2000, 123: 285-96.
    [129]Eijsackers H. A future for soil ecology? Connecting the system levels: moving from genomes to ecosystems: Opening Lecture to the XIII ICSZ“Biodiversity of soil organisms and ecosystem functioning”[J]. European Journal of Soil Biology, 2001, 37(4): 213-220.
    [130]Bardgett RD, Shine A. Linkages between plant litter diversity,soil microbial biomass and ecosystem function in temperate grasslands[J]. Soil Biology & Biochemistry, 1999, 31: 317-321.
    [131]Wardle DA. How soil food webs make plants grow? [J]. Trends in Ecology & Evolution, 1999, 14: 418-420.
    [132]Ekschmitt K, Klein A, Pieper B, et al. Biodiversity and functioning of ecological communities-why is diversity important in some cases and unimportant in others? [J]. Journal of Plant Nutrition and Soil Science, 2001, 164: 239-46.
    [133]Mikola J, Set?l? H. Relating species diversity to ecosystem functioning-mechanistic backgrounds and an experimental approach with a decomposer food web[J]. Oikos, 1998, 83: 180-194.
    [134]孙儒泳,李庆芬,牛翠娟,等.基础生态学[M].北京:高等教育出版社,2002.6-225.
    [135]郑慧莹,李建东.松嫩平原的草地植被及其利用保护[M].北京:科学出版社,1993 .1-67 .
    [136]祝廷成.羊草生物生态学[M].长春:吉林科学技术出版社,2004.177-254.
    [137]李建东,吴榜华,盛连喜.吉林植被[M].长春:吉林科学技术出版社,2001.49-64.
    [138]张雪萍吉林省羊草草原土壤动物生态地理研究[J].东北师大学报自然科学版,1990,S1:83-91.
    [139]殷秀琴,陈鹏,赵红音,等.东北羊草草原区土壤动物群落结构特征的研究[J].东北师大学报自然科学版,1994,3:51-56.
    [140]殷秀琴.松嫩沙地天然草地与人工草地的土壤动物对比研究[J].中国沙漠,1998,18(3):249-254.
    [141]王海霞,殷秀琴,周道玮.松嫩草原区农牧林复合系统大型土壤动物群落生态学研究[J].草业学报,2003,12(4):84-89.
    [142]吴东辉,胡克,殷秀琴.松嫩草原中南部退化羊草草地生态恢复与重建中大型土壤动物群落生态特征[J].草业学报,2004,13(5):121-126.
    [143]郑艳苗.松嫩草地植被不同演替阶段中小型土壤动物的群落动态变化[D]:[硕士学位论文].长春:东北师范大学城市与环境科学学院,2007.
    [144]刘静.松嫩草地植被不同演替阶段大型土壤动物群落结构及动态特征研究[D]:[硕士学位论文].长春:东北师范大学城市与环境科学学院,2007.
    [145]董满宇.吉林省羊草草原土壤鞘翅目昆虫群落特征及其生态分布[D]:[硕士学位论文].长春:东北师范大学城市与环境科学学院,2008.
    [146]付关强.吉林省羊草草原不同盐碱生境土壤动物多样性动态与生态因子关系研究[D]:[硕士学位论文].长春:东北师范大学城市与环境科学学院,2007.
    [147]曹志平.土壤生态学[M].北京:化学工业出版社,2007.40-75,136-157.
    [148]Hendix PE, Crossley DA, Blair JM, et a1. Soil biota as components of sustainable agroecosystems[C]. In: Edwards CA, eds. Sustainable Agricultural Systems. Ankeny: Soil and Water Conservation Society, 1990. 637-654.
    [149]忻介六,杨庆爽,胡成业.昆虫形态分类学[M].上海:复旦大学出版社,1985.86-398.
    [150]钟觉民.幼虫分类学[M].北京:农业出版社,1990.12-294.
    [151]唐祖庭.昆虫分类学[M].北京:中国林业出版社,1989.12-293.
    [152]郑乐怡,归鸿.昆虫分类(上、下)[M].南京:南京师范大学出版社,1999.52-975.
    [153]Bellinger PF, Christiansen KA, Janssens F. Checklist of Collembola of the world[EB/OL]. http://www.collembola.org/taxa/collembo.htm,2007-12-01.
    [154]Olson JS. Energy storage and balance of producers and decomposers in ecological systems[J]. Ecology, 1963, 44(2): 322-331.
    [155]中国科学院南京土壤研究所.土壤理化分析[M].上海:上海科学技术出版社,1978.96-134.
    [156]中国林业科学研究院林业研究所森林土壤研究室.LY/T 1270-1999森林植物与森林枯枝落叶层全硅、铁、铝、钙、镁、钾、钠、磷、硫、锰、铜、锌的测定[S].行业标准-林业(CSIC-LY),1999.
    [157]van Soest PJ. Fiber and Physicochemical Properties of Feeds[M]. Ithaca, NY: Cornell University Press, 1994. 140-160.
    [158]Negrete-Yankelevich S, Fragoso C, Newton AC, et al. Decomposition and macroinvertebrates in experimental litter along a secondary chronosequence of tropical montane forest[J]. Biology and Fertility of Soils, 2008, 44(6): 853-861.
    [159]马克平,刘玉明.生物群落多样性的测度方法Ⅰα多样性的测度方法(上,下)[J].生物多样性,1994,2(3):162-168,2(4):231-239.
    [160]Pilou EC.数学生态学引论[M].卢恩愚译.北京:科学出版社,1978.326-328.
    [161]Simpson EH. Measure of diversity[J]. Nature, 1949, 163: 688.
    [162]马克平,刘灿然,刘玉明.生物多样性的测度方法Ⅱβ多样性的测度方法[J].生物多样性, 1995,3(1):38-43.
    [163]苏智先,王仁卿.生态学概论[M].济南:山东大学出版社,1989.104-110.
    [164]马建华.系统科学及其在地理学中的应用[M].北京:科学出版社,2003.78-81.
    [165]Usher M. Seasonal and vertical distribution of a population of soil arthropods: Collembola[J]. Pedobiologia, 1970, 10: 224-236.
    [166]林英华,张夫道,刘海东,等.百望山土壤动物群落结构在枸树落叶分解中的变化[J].动物学杂志,2005,40(3):60-66.
    [167]陈吉泉,李博,马志军,等.生态学家面临的挑战——问题与途径[M].北京:高等教育出版社,2005.171-196.
    [168]张金屯.数量生态学[M].北京:科学出版社,2004.120-178.
    [169]Lep? J, ?milauer P. Multivariate Analysis of Ecological Data Using CANOCO[M]. New York: Cambridge University Press, 2003. 25-41.
    [170]廉毅,高枞亭,沈柏竹,等.吉林省气候变化及其对粮食生产的影响[J].气候变化研究进展,2007,3(1):46-49.
    [171]Chapin III FS, Matson PA, Mooney HA. Principles of Terrestrial Ecosystem Ecology[M]. New York: Springer, 2002. 151-174.
    [172]陈花癸,李阜棣,陈文新,等.土壤微生物[M].上海:上海科学技术出版社,1981.59-63.
    [173]傅声雷.土壤生物多样性的研究概况与发展趋势生物多样性[J].2007,15(2):109-115.
    [174]Berg B. Litter decomposition and organic matter turnover in northern forest soils[J]. Forest Ecology and Management, 2000, 133: 13-22.
    [175]Xu XN, Hirata E. Decomposition patterns of leaf litter of seven common canopy species in a subtropical forest: N and P dynamics[J]. Plant and Soil, 2005, 273: 279-289.
    [176]杨林章,徐琪.土壤生态系统[M].北京:科学出版社2005.34-51.
    [177]Zheng DW, Bengtsson J, ?grenGI. Soil Food Webs and Ecosystem Processes: Decomposition in Donor-Control and Lotka-Volterra Systems[J]. The American Naturalist, 1997, 149(1): 125-148.
    [178]Bardgett RD, Cook R. Functional aspects of soil animal diversity in agricultural grasslands[J]. Applied Soil Ecology, 1998, 10: 263-276.
    [179]白永飞,许志信,李德新.羊草草原群落生物量季节动态研究,中国草地,1994,3,1-5.
    [180]多里安,田德昌.羊草+杂类草群落数量特征季节动态的研究,植物研究,1996,16(2):235-241.
    [181]Lavelle P, Spain AV. Soil Ecology[M]. Dordrecht: Kluwer academic pulishers, 2001. 253-356.
    [182]Adl SM. The Ecology of Soil Decomposition[M]. Wallingford: CABI Publishing, 2003. 79-102.
    [183]Brussaard L. Soil fauna, guilds, functional groups and ecosystem processes[J]. Applied Soil Ecology, 1998, 9: 123-135.
    [184]Lawrence KL, Wise DH. Spider predation on forest-floor Collembola and evidence for indirect effects on decomposition[J]. Pedobiologia, 2000, 44:33-39.
    [185]Sanders D, Platner C. Intraguild interactions between spiders and ants and top-down control in a grassland food web[J]. Oecologia, 2007,150: 611-624.
    [186]周道玮.草地火生态学研究进展[M].长春:吉林科学技术出版社,1995.86-102.
    [187]Scheu S, Poser G.The soil macrofauna (Diplopoda, Isopoda, Lumbricidae and Chilopoda) near tree trunks in a beechwood on limestone: indications for stemflow induced changes in community structure[J]. Applied Soil Ecology, 1996, 3: 115-125.
    [188]刘继亮,殷秀琴,邱丽丽.左家自然保护区大型土壤动物与土壤因子关系研究[J].土壤学报,2008,45(1):130-136.
    [189]Popovici I, Ciobanu M. Diversity and distribution of nematode communities in grasslands from Romania in relation to vegetation and soil characteristics[J]. Applied Soil Ecology, 2000, 14: 27-36.
    [190]Neher DA, Wub J, Barbercheck ME, et al. Ecosystem type affects interpretation of soil nematode community measures[J]. Applied Soil Ecology, 2005, 30: 47-64.
    [191]Irmler U. Climatic and litter fall effects on collembolan and oribatid mite species and communities in a beech wood based on a 7 years investigation [J]. Applied Soil Ecology, 2006, 42: 51-62.
    [192]Enriquez S, Duarte CM, Sand-Jensen K. Patterns in decomposition rates among photosynthetic organisms: the importance of detritus C:N:P content[J]. Oecologia, 1993, 94: 457-471.
    [193]Gholz HL, Wedin DA, Smitherman SM, et al. Long-term dynamics of pine and hardwood litter in contrasting environments: toward a global model of decomposition[J]. Global change biology, 2000, 6: 751-765.
    [194]Berg B, Staaf H. Decomposition rate and chemical changes of Scots pine needle litter.Ⅱ. Influence of chemical composition[C]. In: Persson T, ed. Structure and function of northern coniferous forests: an ecosystem study. Stockholm: Ecological bulletins, 1980. 373-390.
    [195]Taylor BR, Parkinson D, Parsons WFJ. Nitrogen and lignin as predictors of litter decay rates: a microcosm test[J]. Ecology, 1989, 70: 97-104.
    [196]Cheng W, Coleman DC. Effect of living roots on soil organic matter decomposition[J]. Soil Biology & Biochemistry, 1990, 22: 781-787.
    [197]Liljeroth E, Kuikman P, van Veen JA. Carbon translocation to the rhizosphere of maize and wheat and influence on the turnover of native soil organic matter at different soil nitrogen levels[J]. Plant and soil, 1994, 161: 230-340.
    [198]郝树广,康乐.昆虫耐寒性的进化与生活史对策:不同起源昆虫的比较分析[M].见:邬建国主编,现代生态学讲座(Ⅲ)学科进展与热点论题.北京:高等教育出版社,2007.45-62.
    [199]Koponen HT, Jaakkola T, Kein?nen-Toivola MM, et al. Microbial communities, biomass, and activities in soils as affected by freeze thaw cycles[J]. Soil Biology & Biochemistry, 2006, 38: 1861-1871.
    [200]Konestabo HS, Michelsen A, Holmstrup M. Responses of springtail and mite populations to prolonged periods of soil freeze-thaw cycles in a sub-arctic ecosystem[J]. Applied Soil Ecology, 2007, 36(2-3): 136-146.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700