用户名: 密码: 验证码:
铁锰硅对凤眼莲生物质结构的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
凤眼莲(Eichhornia crassipes)由于其极强的繁殖和生物入侵能力,现已被列为世界十大害草之一。在对凤眼莲的治理和利用两方面,最近几十年来,很多学者都倾向于对凤眼莲利用。凤眼莲对水体具有很强的净化功能,且其对很多重金属都有富集能力,收获后的生物质是一种潜在的优异的吸附剂,但一些金属离子在其体内对于生物质功能的影响并不清楚。为了探讨铁、锰、硅在凤眼莲生物质形成过程中的作用,本文首先研究了铁、锰、硅三种元素在凤眼莲体内的分布,及其对铜、镁、磷、钾等元素分布的影响,并利用FT-IR、XRD、SEM-EDX等手段表征其官能团的丰度、结晶度等生物质材料性质。主要结果如下:
     (1)前期试验:铁在植物各部位的含量顺序(除Mn、FeSi、FeMnSi处理外)为根>叶>茎;锰在植物各部位的含量顺序为(除Si和Fe处理外)根>茎>叶;Si在植物各部位的含量顺序为(除Mn处理外)根>茎>叶。其中,硅的存在有利于铁在根部的累积,但铁较少转移到茎叶中;缺铁时,Mn使铁更多地向叶分配,以利光合作用。铁可以降低锰的含量,硅增加锰的含量,锰对凤眼莲根部吸收硅有协同作用。浓度过高的铁不利于凤眼莲对高浓度的锰的吸收,对低浓度的锰的吸收有促进作用,却不利于其在根部积累。铁、锰、硅在凤眼莲体内的不同分布将在一定程度地影响凤眼莲生物质材料的功能特性。
     (2)铁有利于镁在凤眼莲根部积累,而不利于镁向茎、叶部的分配;铁抑制了植物对铜的吸收,但高浓度的铁有利于铜转运到茎和叶中;高浓度铁有利于凤眼莲对磷的吸收,尤其在根部积累;铁能够显著促进凤眼莲对K的吸收,但随着铁浓度的增加,铁会抑制凤眼莲对钾的吸收。锰促进镁在植物根部积累,但抑制镁在茎部和叶部的分布;锰的存在抑制了植物根部对铜的吸收,促进茎叶部铜含量提高;锰促进植物根对磷的吸收,抑制凤眼莲茎和叶对磷的积累,但高浓度的锰抑制植物对磷的吸收;硅有利于凤眼莲根对镁的吸收,却不利于茎和叶对镁的积累;硅抑制凤眼莲根对铜的吸收,有利于铜在叶和茎中分布;硅对凤眼莲吸收磷没有显著影响,但抑制茎和叶对磷的累积;硅抑制凤眼莲对钾的吸收。铁、锰、硅对凤眼莲体内Mg、Cu、P、K这些元素分布的影响在凤眼莲生物质材料形成中的作用有待进一步研究。
     (3)吸附位点数在凤眼莲体内的规律为:在低浓度铁、锰及其组合处理条件下,凤眼莲秸秆三个部位的酸性位点数顺序为根>茎>叶,施硅条件下,凤眼莲秸秆三个部位的酸性位点数顺序与上述顺序相反,为叶>茎>根。铁降低凤眼莲秸秆的酸性位点数,Mn和Si则能提高其酸性位点数,Mn的作用尤其明显。铁降低凤眼莲叶中的碱性位点数,提升根、茎中的碱性位点数。锰促进植物根产生更多的碱性位点,但在茎和叶部抑制其产生碱性位点。硅抑制凤眼莲根和叶部碱性位点的产生,但促进茎部产生更多的碱性位点。与低浓度相反,高浓度的锰促进植物产生更多的碱性位点,高浓度铁促进植物茎和叶产生更多的碱性位点。由此可见,水环境中不同浓度的铁、锰、硅可以一定程度地改变凤眼莲生物质的荷电特性,从而改变凤眼莲生物质材料的性质。
     (4)红外图谱表明:Mn和Si增加木质素、果胶以及低分子的木聚糖(半纤维素)等非晶型物质含量,这些物质含有较高的C=C、-CH2、-C-O、-OH、-COOH等活性基团,有利于生物质材料的化学改性。Fe增加-CH3等官能团,降低吸附位点数,不利于生物质材料的化学改性。
     (5)X-射线衍射图谱表明:凤眼莲生物质根和叶纤维素结晶度含量较低;硅和铁能提升植物根的结晶度,锰降低植物根的结晶度。铁和锰均能降低植物茎叶的结晶度。高浓度铁可以增加植物的结晶度,尤其是植物根部的结晶度;锰降低植物的结晶度。铁锰硅对凤眼莲生物质材料结晶度的影响与其对凤眼莲生物质活性功能团的贡献相一致。
     (6)能谱分析表明:C、O、Si、P、Na是细胞壁的组成元素,主要分布在植物细胞壁上,Ca和S分布比较均匀。高浓度的铁和锰使植物的细胞壁和根表均分布有Fe和Mn,同时,提升了对P、Al的吸收。植物不同组织中主要元素的分布差异由营养液中不同的铁、锰、硅营养条件引起,与生物质的结构和吸附特性有一定的关系。
Eichhornia crassipes (i.e. water hyacinth) has been listed as one of the world's top ten harmful weeds, due to its strong reproductive capacity. In recent decades, many scholars have tended to use water hyacinth, in control and utilization of water hyacinth. Water hyacinth has a strong water purification function, accumulation ability for heavy metals, and its post-harvest biomass is also a potentially excellent adsorbent, but the role of metal ions in vivo is not clear. To investigate the role of iron, manganese and silicon in water hyacinth biomass, the paper studies the distribution of iron, manganese and silicon, and their influence on Cu, Mg, P, and K in water hyacinth. And FT-IR, XRD, SEM-EDX were used to characterize its functional group abundance, crystallinity, and the element distribution in the plant materials. The main results are as follows:
     (1) Except for Mn, FeSi, FeMnSi treatments, the sequence of Fe content in the three parts of plant is root> leaf> stem; the sequence of manganese content in the different parts of plant (except for Si and Fe treatments) is root> stem> leaf; the order of silicon content in the three parts of plant (except for Mn treatment) is root> stem> leaf. Silicon in plant benefited iron to accumulate in the roots, but less iron transfer to the stems and leaves. Manganese increased iron allocation to leaves, in order to facilitate photosynthesis when iron deficiency. Iron can reduce the content of manganese in plant, silicon increases the content of manganese and manganese help absorption of silicon in the water hyacinth root. High concentration of iron inhibits the absorption of high concentration manganese in water hyacinth and promotes the water hyacinth's absorption of low concentration manganese, but inhibits manganese accumulation in roots. The different distribution of iron, manganese, silicon in the water hyacinth will be affected to some extent of water hyacinth biomass material features.
     (2) Low concentration iron favors magnesium accumulation in water hyacinth roots, inhibits the absorption of Cu in plant. High concentration iron avail the absorption of Cu in stems and leaves. Low concentration iron inhibits the absorption of P in water hyacinth, but high concentration iron enhances the absorption of P, especially in roots. Iron can significantly promote the absorption of water hyacinth on K, but with the increase of the concentration of iron, iron inhibits the absorption of water hyacinth on K. Manganese promotes the magnesium accumulation in plant root, inhibit the accumulation of magnesium in stems and leaves. Mn inhibits the absorption of Cu in plant roots. Low concentration manganese inhibits the accumulation of P in water hyacinth stems and leaves, favors plant root uptake of phosphorus, but high conconcentration manganese inhibits plant uptake of phosphorus. Silicon favors the absorption of magnesium in water hyacinth root and inhibits the accumulation of magnesium in stems and leaves. Silicon favors the absorption of magnesium in water hyacinth root and inhibits the accumulation of magnesium in stems and leaves. To the contrary, silicon inhibits the absorption of Cu in water hyacinth root and favors the accumulation of Cu in stems and leaves. Silicon is no significant effect on P absorption in water hyacinth roots, but inhibits the accumulation in stems and leaves. Silicon inhibits the uptake of K. The effect of iron, manganese and silicon in the water hyacinth affect Mg, Cu, P, K distribution for water hyacinth biomass material the formation needs further study.
     (3) The rules of adsorption sites in water hyacinth are:the sequence of acidic sites amount among the three parts of plant is root> stem> leaf, in the treatment of Fe, Mn and their combination, and leaf> stem> root in Si treatment. Mn and Si can enhance acidic sites of the plant, in which Mn plays a great role, but Fe reduces the acidic sites. Fe reduces the alkaline sites in leaves and enhances the alkaline sites in root and stem of water hyacinth. Mn promotes the alkaline sites in roots and reduces alkaline sites in stems and leaves. Si reduces the alkaline sites in water hyacinth roots and leaves and promotes stems to produce more alkaline sites. High concentration Mn for water hyacinth produces more alkaline sites and high concentration iron for plant produces more alkaline sites in stems and leaves. This shows that different concentrations of iron, manganese, silicon in water environment can change some extent of characteristics of charge, thus changing the nature of the water hyacinth biomass.
     (4) FT-IR spectra show that:Mn and Si treated stalks of water hyacinth have more amorphous material, such as lignin, pectin and xylan (hemicellulose), which have more C=C,-CH2,-C-O,-OH,-COOH and acidic sites. Fe increases-CH3 functional group, which can reduce adsorption sites, is not conducive to the chemical modification of biomass materials..
     (5) X-ray diffraction pattern shows that:the cellulose of roots and leaves of water hyacinth has low crystallinity; silicon and iron can enhance the crystallinity in roots, manganese reduces cellulose crystallinity of the roots. Iron and manganese can reduce the cellulose crystallinity of plant stems and leaves. High concentration iron can increase the cellulose crystallity of plants, especially of plant roots. Manganese reduces cellulose crystallinity of the plant. Fe, Mn and Si has the same contribution on the crystallization of water hyacinth biomass and their functional groups.
     (6) SEM-EDX analysis shows that:C, O, Si, P and Na is the composition of cell wall elements, and mainly in the plant cell wall, Ca and S is more evenly distributed. High concentration of iron and manganese makes the plant cell wall and the root surface distribution Fe and Mn, also enhance the level of P, Al absorption. Different elements distribution in plant tissues is caused by nutritional conditions of Fe, Mn, Si, and has ralation with biomass structure and adsorption characteristics.
引文
1.鲍士旦,土壤农化分析.中国农业出版社,2000.
    2. 白云峰,周卫星,张志勇,等.凤眼莲的饲料资源化利用.家畜生态学报,2009,30(4):103-105.
    3.蔡成翔,王华敏,张宗明.凤眼莲对铜、铅、镉、锌、铁等离子的短期净化机制研究.乐山师范学院学报,2004,19(5):69-72.
    4. 陈灿,王国祥,朱增银,等.城市人工湖泊水生植被生态恢复技术.湖泊科学,2006,18(5):523-527.
    5.陈嘉翔,余家莺.植物纤维化学结构的研究方法.广州:华南理工大学出版社,1989:5,9,82.
    6.崔立,肖怀平,陈鲁勇,等.淀山湖水葫芦用于饲喂生长育肥猪的效果研究.饲料工业,2004,25(3):39-40.
    7. 蔡青,雷泽湘,胡宏伟,等.凤眼莲净化含铜废水的效果研究.长江大学学报,2009,6(2):68-72.
    8.陈若霞,张建国,张春芬,等.防除水葫芦高效除草剂筛选试验.杂草科学,2004,(1):34-36.
    9.蔡顺香,颜明娟,黄东风,等.水葫芦富集砷、汞、铅、镉、铬含量分析.福建农业科技,2005,3:49-50.
    10.陈瑛,金叶飞,王秀琴,等.水葫芦各部位富集能力的研究.环境保护科学,2004,30(123):31-35.
    11.陈志群.国外水葫芦生物防治研究概况.中国生物防治,1996,(3):143-145.
    12.杜彩琼,林克惠.硅素营养研究进展.云南农业大学学报,2002,17(2):193-196.
    13.段惠,强胜,等.水葫芦Eichhornia Crassipes (Mart.) Solms.杂草科学,2003,(2):39-40.
    14.窦鸿身,濮培民,张圣照,等.太湖开阔水域凤眼莲的放养实验.植物资源与环境,1995,4(1):54-60.
    15.丁建清,王韧.三种化学除草剂对水葫芦象甲的影响.中国生物防治,1998,14(1): 7-10.
    16.丁建清,陈志群,付卫东,等.水葫芦象甲对外来杂草水葫芦的控制效果.中国生物防治,2001,17(3):97-100.
    17.丁建清,陈志群,付卫东,等.水葫芦象甲的生物学及其寄主专一性.中国生物防治,2002.18(4):153-157.
    18.郭双莲,张无敌,宋洪川,等.蔬菜残余物沼气发酵潜力的研究.云南省科 学技术协会.水资源与能源可持续发展研究.昆明:云南科技出版社,200:402-404.
    19.高运强,王荣富.水葫芦净化富营养化水体有机物的研究.安徽农学通报,2008,14(11):74-75.
    20.黄斌,郭莹,宋菁,等.水葫芦防治的现状与展望.武夷科学,2004,(20):149-154.
    21.黄东风,李清华,陈超.水葫芦有机肥料的研制与应用效果.中国土壤与肥料,2007,(5):48-52.
    22.胡定金.水稻硅素营养.湖北农业科学,1995(5):33-36.
    23.黄和,方日明.标准胶加工废水加水葫芦厌氧处理的研究.中国沼气,1999,17(4):7-9.
    24.黄惠珠,叶夏,黄秀声,等.水葫芦净化猪粪便污水效果的研究.可再生能源,2008,26(4):105-108.
    25.何加骏,严少华,叶小梅,等.水葫芦厌氧发酵产沼气技术研究进展.江苏农业学报,2008,24(3):359-362.
    26.贺丽虹,沈颂东.水葫芦对水体中氮磷的清除作用.淡水渔业,2005(3):7-9.
    27.韩润平,李建军.结合重金属前后浮萍的红外光谱比较.光谱学与光谱分析,2000,20(4):489-491.
    28.黄旭光,张艳,黄燕,等.水葫芦茎处理含苯酚废水研究.五邑大学学报(自然科学版),2009,23(4):14-17.
    29.黄星炫,张皓东,谢刚,等.滇池水葫芦对铅和镉的富集形态模拟研究.安徽农业科学,2009,37(8):3498-3499.
    30.黄映红,张婧萱,廖保宁,等.超声波提取水葫芦总黄酮的工艺研究.广西师范学院学报(自然科学版),2008,25(1):50-53.
    31.江洪涛,张红梅.国内外水葫芦防治研究综述.中国农业科技导报,2003,5(3):72-75.
    32.蒋艾青.凤眼莲对城郊污水鱼塘的净化试验.淡水渔业,2003,33(5):42-43.
    33.江锦坡,金春华.控制水葫芦疯长的措施.水利渔业,2002,22(2):25-27.
    34.季萍.农业纤维素废物转化为酒精.上海工程技术大学学报,1997,11(3):53-56.
    35.柯玉诗,黄小红,张壮塔,等.硅肥对水稻氮磷钾营养的影响及增产的原因分析.1997,5:25-27.
    36.李宝林.凤眼莲根系微型动物群落的季节动态与净化效能的关系初探.环境科学,1996,16(5):64-66.
    37.陆昌伟,奚同庚.热分析质谱法.上海:上海科学技术文献出版社,2002.
    38.刘德章.在全省水葫芦冬季专项整治工作电视电话会议上的讲话,2003-12-17.
    39.兰吉武,陈彬,曹伟华,等.水葫芦厌氧发酵产气规律.黑龙江科技学院学报,2004,14(1):18-21.
    40.刘侯俊,张俊伶,韩晓日,等.根表铁膜对元素吸收的效应及其影响因素.土壤,2009,41(3):335-343.
    41.李庆波.近红外光谱分析中若干关键技术的研究.博士论文,天津:天津大学,2002.
    42.李军,张玉龙,黄毅,等.凤眼莲净化北方地区屠宰废水的初步研究.沈阳农业大学学报,2003,34(2):103-105.
    43.刘建武,林逢凯,王郁,等.水葫芦对萘的降解作用研橶.环境污染治理技术与设备,2003,4(6):19-23.
    44.卢隆杰,苏浓,岳森.低投入、高产出、多用途的凤眼莲.吉林畜牧兽医,2003,12:26-27.
    45.李合生,孟庆伟,夏凯,等.现代植物生理学.高等教育出版社.2001.
    46.李文杰.水葫芦用于水质污染治理的生态环境效应及其对策研究.环境科学与管理,2008,33(3):55-57.
    47.黎晓峰,陆申年,陈惠和,等.铁锰营养平衡与水稻生长发育.广西农业大学学报,1995,14(3):217-220.
    48.黎晓峰,顾明华,白厚义,等.水稻锰毒与铁素营养关系的研究.广西农业大学学报,1996,15(3):190-194.
    49.刘欣萍.浅谈水葫芦治理与利用.中国环境管理,2004(4):60-62.
    50.刘粤惠,刘平安.X射线衍射分析原理与应用.化学工业出版社,2003.
    51.李酉开,蒋柏藩,袁可能.土壤农业化学常规分析方法.科学出版社,1983,286-287.
    52.林义章,徐磊.铜污染对高等植物的生理毒害作用研究.中国生态农业学报,2007,15(1):201-204.
    53.郎咏梅,刘勃,季华东,等.水葫芦在污水处理中的应用.节能环保技术,2006,33-35.
    54.马德伟,马楠,陈冠华,等.瓜类孢粉扫描电镜能谱分析与遗传型.园艺学报,1997,24(2):201-202.
    55.毛达如,申建波.植物营养研究方法.中国农业大学出版社,2005,18-19.
    56.马玉忠.外来入侵物种经诱导化害为利紫根水葫芦“吃”蓝藻-滇池有救了.中 国经济周刊,52-54.
    57.孟令芝,龚淑玲,何永炳.有机波谱分析(第2版).武汉:武汉大学出版社,2003,213-232.
    58.马礼敦.X射线粉末衍射仪用试样的制作.上海计量测试,2008,(207):1-5.
    59.马礼敦.X射线粉末衍射仪.上海计量测试,2008,30(5):41-44.
    60.彭晶,孟超.傅里叶光谱仪扫描速度对测试的影响.光谱实验室,2009,26(6):1504-1507.
    61.濮培民,李正魁,王国祥.提高水体净化能力控制湖泊富营养化.生态学报,2005,25(10):2757-2763.
    62.全国人大常委会办公厅.中华人民共和国可再生能源法.北京:中国民主法制出版社,2005.
    63.任立民,成则丰,刘鹏,等.美洲商陆对锰毒生理响应的FTIR研究.光谱学与光谱分析,2008,28(3):582-585.
    64.商佳胤、铁等六种元素对三个葡萄品种生理特性的影响.硕士论文,兰州:甘肃农业大学,2007.
    65.盛婧,陈留根,朱普平,等.高养分富集植物凤眼莲的农田利用研究.中国生态农业学报,2010,18(1):46-49.
    66.沈明星,刘凤军,施林林,等.水葫芦沼液肥对菜薹产量和品质的影响.2009(4): 168-169.
    67.孙天华,刘振鸿,林少宁.凤眼莲净化印染废水过程中根系微生态系统的作用.环境化学,1989,11(3):24-27.
    68.孙文浩,俞子文,余叔文.城市富营养化水域的生物治理和凤眼莲抑制藻类生长的机理.环境科学学报,1989,9(2):187-195.
    69.施益华,刘鹏.锰在植物体内生理功能研究进展.江西林业科技,2003,(2):26-28.
    70.史增奎,赵润潮.凤眼莲对Cd2+、Zn2+富集能力的研究.水利渔业,2007,27(4):66-68.
    71.谭彩云,林玉满,陈祖亮.凤眼莲净化水中重金属的研究.亚热带资源与环境学报,2009,4(1):47-50.
    72.王彩旗,董宇平,吴彤,等.甲基纤维素三甲基硅醚的合成、表征及性能研究.纤维素科学与技术,2002,10(4):10-14.
    73.吴淑杭,姜震方.水葫芦深度净化猪粪便污水研究.上海农业学报,2003,19(4):76-80.
    74.汪模辉,苏庆平,陈中兰.纤维素离子交换剂在环境保护中的应用.化学世界,1996,(5):259-261.
    75.邬文英.疯长的水葫芦咋治.闽北报,2004-2-3.
    76.王唯一.水葫芦.城市公用事业,2000,14(4):25-26.
    77.王章霞,陈明强,王君,等.稻壳热解特性及其动力学研究.安徽理工大学学报(自然科学版),2009,29(1):43-46.
    78.徐大勇,徐祖信,金伟,等.水葫芦压榨液厌氧发酵及其发酵液对青菜种子发芽和生长的影响.环境污染与防治,2009,31(5):40-43.
    79.谢桂英,郭金春.水葫芦的发生特点、防治及其利用.农药,2005,44,(10):445-448.
    80.徐济春,林钊沐,罗微,等.矿质营养对光合作用影响的研究进展.安徽农学通报,2007,13(7):23-25.
    81.谢晶曦.红外光谱在有机化学和药物化学中的应用.北京:科学出版社,1987:77.
    82.谢萍,周学文,杨家雄,等.滇池凤眼芝伺喂肉仔鸡试验的研究.饲料科学,1999,20(4):26-28.
    83.严国安,任南,李益健.环境因素对风眼莲生长及净化作用的影响.环境科学与技术,1994(1):225,27.
    84.袁桂良,刘鹰.凤眼莲对集约化甲鱼养殖污水的静态净化研究.农业环境保护,2001,20(5):322-325.
    85.杨瑞林,杨艳萍.扫描电镜粉末样品的制备.山西师范大学学报(自然科学版),2002,16(4):44-46.
    86.袁蓉,刘建武,成旦红,等.凤眼莲对多环芳烃(萘)有机废水的净化.上海大学学报,2004,10(3):272-276.
    87.印寿根,李朝兴,徐欢驰,等.珠状纤维素的制备及其应用.高分子通报,1996,(2):100-103.
    88.叶小梅,周立祥,严少华,等.水葫芦厌氧发酵特性研究.江苏农业学报,2009,25(4):787-790.
    89.余有成.水葫芦的营养成分及青贮方法.畜产研究,1988,(2).
    90.杨之礼,蒋听培编.纤维素与粘胶纤维.上册.北京:北京高等教育出版社,1983.
    91.杨之礼,苏茂尧.纤维素醚基础与应用,华南理工大学出版社,1990.
    92.郑爱珍,任雪平.硅在水稻生理的作用.农业与科技,2004,24(1):50-52.
    93.张大同,伍慕兰.新鲜植物样品的冷冻制样技术.分析测试学报,1995,14(1): 39-41.
    94.邹邦基,何雪晖.植物的营养.北京:农业出版社,1985,219-228.
    95.郑建初,常志州,陈留根,等.水葫芦治理太湖流域水体氮磷污染的可行性研究.江苏农业科学,2008,(3):247-250.
    96.周凤霞.水生维管束植物对污水的净化效应及其应用前景.污染防治技术,1998,11(3):160-162.
    97.查国君,曾国揆,张无敌,等.水葫芦发酵产气潜力的实验研究.新能源及工艺,2006,49-50.
    98.张华.现代有机波谱分析.化学工业出版社,2005.
    99.翟丽梅.锰矿物对重金属的吸附及pH对锰矿物氧化Cr(Ⅲ)影响的机理.武汉:华中农业大学,2004.
    100.朱磊,胡国梁,卢剑波,等.水葫芦的资源化利用.浙江农业科学,2006,4:460-463.
    101.郑师章,乐毅全.水葫芦根际微生物对污水的净化作用.上海环境科学,1989,8(8):37-39.
    102.张小辉.X射线衍射在材料分析中的应用.沈阳工程学院学报(自然科学版),2006,2(3):281-282.
    103.张小青,徐智,凌晓峰,等.红外光谱技术在医学中的应用.光谱学与光谱分析,2010,30(1):30-33.
    104.周文兵.凤眼莲秸秆堆肥和钾素回收及其纤维改性材料的特性研究.博士论文,武汉:华中农业大学,2007.
    105.周岳溪,孔欣,郝丽芳,等.水葫芦两相厌氧生物处理技术研究.中国沼气,1996,(03):9-13.
    106.郑再就.水葫芦的危害及在污水处理中的应用.水利科技,2006,(1):51-52.
    107.张志勇,刘海琴,严少华,等.水葫芦去除不同富营养化水体中氮、磷能力的比较.江苏农业学报,2009,25(5):1039-1046.
    108.Abbasi S A, Ramasamy E V. Biotechnological methods of pollution control. Hyderabad, Orient Longman Universities Press India Ltd,1999a:168-168.
    109.Aboud A A O, Kidunda R S, Osarya J. Potential of water hyacinth (Eicchornia crassipes) in ruminant nutrition in Tanzania. Livest Res Rural Dev 2005,17 [http://www.logl.net/search/lrrd/lrrd17/8/abou17096.htm (Published 5 August 2005)].
    110.Adebajo M O, Frost R L. Infrared and 13C MAS nuclear magnetic resonance spectroscopic study of acetylation of cotton. Spectrochimica Acta Part A,2004, 60,449.
    111.Brendonck L, Maes J, Rommens W, et al. The impact of water hyacinth (Eichhornia crassipes) in a eutrophic subtropical impoundment (Lake Chivero, Zimbabwe). Ⅱ. Species diversity. Arch Hydrobiol,2003,158:389-405.
    112.Christensen J H, Bauw G, Welinder K G, et al. Purification and characterization of peroxidases correlated with lignification in poplar xylem. Plant Physiology,1998, 118(11):125-135.
    113.Chawakitchareon P, Krasinsri P. Removal of heavy metal ions by lignocellulosic-formaldehyde ion exchange resin produced from water hyacinth. Journal of Environmental Research,1998,20(2):1-9
    114.Dobelmann J K. Method for purifying waste water and generating methane. Ecological Economics,1998,19(5):648-660
    115.Ganesh P S, Ramasamy E V, Gajalakshmi S, et al. Extraction of volatile fatty acids (VFAs) from water hyacinth using inexpensive contraptions, and the use of the VFAs as feed supplement in conventional biogas digesters with concomitant final disposal of water hyacinth as vermicompost. Biochemical Engineering Journal 2005,27:17-23.
    116.Goswami T, Saikia C N.Water hyacinth-a potential source of raw material for greaseproof paper. Bioresour Technol 1994,50:235-238.
    117.Harley K L S, Julien M H, Wright A D. Water hyacinth:a tropical world wide problem and methods for its control, proceedings of the first meeting of the international water hyacinth consortium. World Bank,1997.
    118.Heard T A, Winterton S L. Interactions between nutrient status and weevil herbivory in the biological control of water hyacinth. Journal of Applied Ecolsogy 2000,37:117-127.
    119.Ingole N W, Bhole A G. Utilization of water hyacinth relevant in water treatment and resource recovery with special reference to India. J Water Supply:Res Technol, AQUA 2002,51:283-295.
    120.Jayaweera M W, Kasturiarachchi J C, Kularatne R K A, et al. Contribution of water hyacinth(Eichhornia crassipes (Mart.) Solms) grown under different nutrient conditions to Fe-removal mechanisms in constructed wetlands. Journal of Environmental Management (2007), doi:10.1016/j.jenvman.2007.01.013
    121.Koizumi H, Yasui A K, Tsutsumi C. Evaluation of inorganic components in water hyacinth. Baiomasu Henkan Keikaku Kenkyu Hokoku,1988,14:36-50
    122.Kumar S. Studies on efficiencies of biogas production in anaerobic digesters using water hyacinth and night-soil alone as well as in combination. Asian J Chem 2005,17:934-938.
    123.Leyva-Ramos R, Bernal-Jacome L A, Acosta-Rodriguez I. Adsorption of cadmium(II) from aqueous solution on natural and oxidized corncob. Separation and Purification Technology,2005,45:41-49.
    124.Liu C F, Xu F, Sun J X, et al. Physicochemical characterization of cellulose from perennial ryegrass leaves (Lolium perenne). Carbohydrate Res.2006,341(16): 2677-2687.
    125.Lu J B. Environmental research; Researchers from Zhejiang University report recent findings in environmental research (Abstract). Atlanta:Ecology, Environment & Conservation Business,2008:413-415.
    126.Malik A. Metal bioremediation through growing cells. Environ Int,2004,30: 261-278.
    127.Malik A. Environmental challenge vis a vis opportunity:The case of water hyacinth. Environment International,2007, (33):122-138.
    128.Marc B, Philippe G, Christian A, et al. Methanol from water hyacinth. Symp Pap —Energy Biomass Wastes,1983:1031-1055.
    129.Mathur S M, Singh P. Development and performance evaluation of a water hyacinth chopper cum crusher. Biosystems Engineering,2004,88(4):411-418.
    130.McKay G, Porter J F, Prasad G R. The removal of dye colours from aqueous solutions by adsorption on low-cost materials, Water Air Soil Pollut.1999, (114): 423-438.
    131.Mehra A, Farago M E, Banezjee D K. A study of Eichhomia crassipes growing in the overbank and floodplain soils of the river Yamuna in Delhi, India. Environmental Monitoring and Assessment,2000,60:25-45.
    132.Mishima D, Kuniki M, Sei K. Ethanol production from candidate energy crops: water hyacinth(Eichhornia crassipes) and water lettuce (Pistia stratiotesL.). Bioresource Technology,2007,98:56-62.
    133.Moreno-Castillaa C, Lopez-Ramonb M V, Carrasco-Marina F. Changes in surface chemistry of activated carbons by wet oxidation. Carbon,2000, (38):1995-2001.
    134.Mohammad I. El-Khaiary. Kinetics and mechanism of adsorption of methylene blue from aqueous solution by nitric-acid treated water hyacinth, Hazardous Materials,2007, (147):28-36.
    135.Mukherjee R, Ghosh M, Nandi B. Improvement of dry matter digestibility of water hyacinth by solid state fermentation using white rot fungi. Indian J Exp Biol 2004,42:837-843.
    136.Muhammad Iqbal, Asma Saeed, Saeed Iqbal Zafar. FTIR spectrophotometry, kinetics and adsorption isotherms modeling, ion exchange, and EDX analysis for understanding the mechanism of Cd2+ and Pb2+ removal by mango peel waste. Journal of Hazardous Materials.2009,164:161-171.
    137.Nigam J N. Bioconversion of water hyacinth (Eichhornia crassipes) hemicellulose acid hydrolysate to motor fuel ethanol by xylose-fermenting yeast. J Biotechnol 2002,97:107-116.
    138.Oudhia P. Medicinal weeds in rice fields of Chhattisgarh (India). Int Rice Res Notes 1999a,24:40.
    139.Oudhia P. Studies on allelopathy and medicinal weeds in chickpea fields. Int Chickpea Pigeonpea Newsl 1999b,6:29-33.
    140.Ouajai S, Shanks R A. Composition, structure and thermal degradation of hemp cellulose after chemical treatment. Polymer Degradation and Stability,2005, 89(2):327-335.
    141.Parveen S, Feroza B, Hossain M, et al. Production of biogas from cow dung by adding water hyacinth and mud. Bangladesh J. Sci. Ind. Res.1998,33(3): 369-372.
    142.Patel V B, Patel A R, Patel M C, et al. Effect of metals on anaerobic digestion of water hyacinth cattle dung. Appl Biochem Biotechnol,1993,43:45-50.
    143.Panchanadikar V V, Joshi S P, Babu S S, et al. Beta-carotene enriched extract from water hyacinth(Eichhornia crassipes). US patent 424725000 (USPTO), A61K035/78 (Intl Class) 09/29/05,#20050214389.2005.
    144.Pioto C L R, Caconia A, Souza M M. Utilization of water hyacinth for removal and recovery of silver from industrial wastewater. Water Science and Technology, 1987,19 (10):89-101.
    145.Rashwan W E, Girgis B S. Adsorption capacities of activated carbons derived from rice straw and water hyacinth in the removal of organic pollutants from water. Adsorption Science and Technology,2004,22:181-194
    146.Reddya N, Yang Y. Structure and properties of high quality natural cellulose fibers from cornstalks. Polymer,2005,46(15):5494-5500.
    147.Reddy K R, Agami M D, Angelo E M, et al. Influence of K supply on growth and nutrient storage by water hyacinth. Bioresource Technology.1991,37(1):79-84.
    148.Rose G. P V, Guimes R F, Rosana M N, et al. Synthesis and characterization of methylcellulose from sugar cane bagasse cellulose. Carbohydrate Polymers,2007, 67(2):182-189.
    149.Sarwar M, Masood M K, Ali M. Determination of K, Na, and Ca in various wild plants and agricultural wastes. Sci Int.1989,1(3):182-184.
    150.Segal L, Creely J, Martin, Conrad CM. Text Res J 1959,29:786.
    151.Smole M S, X-ray study of pre-treated regenerated cellulose fibres. Mat Res Innovat,2003,7:275-282.
    152.Srivastava S P, Dhar L N R. Effect of doses of rock phosphate with water hyacinth and urea on yield of wheat and maize. Proc. Natl. Acad. Sci., India, Sect. 1988,58(1):145-148.
    153.Stocker R K, Haller W T. Residual effects of herbicide-treated Eichhornia crassipes used as a soil amendment. Hydrobiologia,1999,415:329-333.
    154.Sun W H, Yu S W, Yang S Y, et al. Allelochemicals from root exudates of water hyacinth. Acta Phytophysiol Sin 1993,19:92-96.
    155.Szczeck M M. Suppressiveness of vermicompost against fusarium wilt of tomato. J Phytopathol Phytopathologische Zeitschrift 1999,47:155-161.
    156.Thoiron S. Pascal N. Briat J F. Impact of iron deficiency and iron Fe-suppy during the early stages of vegetative development in maize (Zea mays L.) 1997.
    157.Thomas T H, Eden R D. Water hyacinth-a major neglected resource. Material Science, Wind Energy, Biomass Technology,1990, (3):2092-2096.
    158.Tserki V, Zafeiropoulos N E, Simon F, et al. A study of the effect of acetylation and propionylation surface treatments on natural fibres. Composites:Part A,2005, 36(8):1110-1118.
    159.Urreaga J M, Orden M U. Chemical interactions and yellowing in chitosan-treated cellulose. European Polymer Journal,2006,42(10):2606-2616.
    160.Upadhyay A R, Mishra V K, Pandey S K, et al. Biofiltration of secondary treated municipal wastewater in a tropical city. Ecological Engineering,2007,30:9-15.
    161.Vesk P A, Nockolds C E, Allaway W G. Metal localization in water hyacinth roots from an urban wetland. Plant, Cell and Environment,1999,22,149-158
    162.Verma V K, Singh Y P. Raibiogas production from plant biomass used for phytoremediation of industrial wastes. Bioresource Technology,2007,98: 1664-1669.
    163.Verma R, Singh S P, Ganesha Raj K. Assessment of changes in water hyacinth coverage of water bodies in northern part of Bangalore city using temporal remote sensing data. Curr Sci 2003,2003:792-804.
    164.Vesk P A, Nockolds C E, Allaway W G. Metal localization in water hyacinth roots from an urban wetland. Plant Cell Environment,1999,22:149-158.
    165.Wang G, Fuerstenau M C, Smith R W. Sorption of heavy metals onto nonliving water hyacinth root. Mineral Processing and Extractive Metallurgy Review.1998, 19(1-4):309-322
    166. Wilson J R, Holst N, Rees M. Determinants and patterns of population growth in water hyacinth. Aquat Bot 2005,81:51-67.
    167.Yu H, Kawshima A M, Konoshima H. Water purification function and use as fertilizer of water hyacinth (Eichhornia crassipes). Shizen Kagaku,2000, (50): 55-60.
    168.Zawahry M M El, Kamel M M. Removal of azo and anthraquinone dyes from aqueous solutions by Eichhornia crassipes. Water Research,2004,38: 2967-2972.
    169.Zhu Y L, Zayed A M, Qian J H, et al. Phtoaccumulation of trace elements by wetland plants:Ⅱ. Water hyacinth. Journal of Environmental Quality,1999,28: 339-344.
    170.Zhang H Y, Wang S G, Mu Q Y. Effect of bagging on the peel structure and PPO, POD activity of Pyrus bretschneideri. Acta Hortic. Sin.,1996,23(1):23-26.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700